
A dynamic, modifiable model for estimating cost-
effectiveness of smoking cessation interventions in
pregnancy: application to an RCT of self-help delivered by
text message

Matthew Jones1 , Murray Smith2, Sarah Lewis3, Steve Parrott4 & Tim Coleman1

Division of Primary Care, University of Nottingham, Nottingham, UK,1 Community and Health Research Unit, University of Lincoln, LincolnshireUK,2 Division of
Epidemiology and Public Health, University of Nottingham, Nottingham, UK3 and Department of Health Sciences, University of York, York, UK4

ABSTRACT

Background and Aims Previous evaluations of smoking cessation interventions in pregnancy have several limita-
tions. Our solution to these limitations is the Economics of Smoking in Pregnancy (ESIP) model, which estimates
the life-time cost-effectiveness of smoking cessation interventions in pregnancy from a National Health Service
(NHS) and personal social services perspective. We aim to (1) describe how ESIP has been constructed and (2) illus-
trate its use with trial data. Methods ESIP links mothers’ and offspring pregnancy outcomes to estimate the bur-
dens of smoking-related disease they experience with different rates of smoking in pregnancy, both in pregnancy
and throughout their life-times. Smoking rates are inputted by model users. ESIP then estimates the costs of treating
disease burdens and also mothers’ and offspring life-years and quality-adjusted life years (QALYs). By comparing costs
incurred and healthy life following different smoking rates, ESIP estimates incremental cost-effectiveness and benefit–
cost ratios for mothers or offspring or both combined. We illustrate ESIP use using data from a pragmatic randomized
controlled trial that tested a smoking cessation intervention in pregnancy. Results Throughout women’s and off-
spring life-times, the intervention proved cheaper than usual care, having a negative incremental cost of £38.37 (in-
terquartile range = £21.46–56.96) and it improved health, demonstrating a 0.04 increase in incremental QALYs for
mothers and offspring, implying that it is ‘dominant’ over usual care. Benefit–cost ratios suggested that every £1
spent would generate a median of £14 (interquartile range = £8–20) in health-care savings.

Conclusions Economics of Smoking in Pregnancy is the first economic model to link mothers’ and infants’ costs
and benefits while reporting cost-effectiveness in readily-comparable units. Using ESIP with data from a trial which
reported only short-term economic analysis showed that the intervention was very likely to be cost-effective in the
longer term and to generate health-care savings.
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INTRODUCTION

Tobacco smoking during pregnancy remains a major
global public health concern estimated to cost £23.5 mil-
lion annually in the United Kingdom [1] and US$110 mil-
lion in the United States; [2] the prevalence varies from
39% in Spain [3] to 23% in Canada [4] and 12–14% in
the United Kingdom, United States, Australia and
Germany [5–8]. Many mothers expose themselves and

their offspring to both pregnancy-related and long-term
risks from smoking [9–12].

Economic evaluation is important for demonstrating
the value for money afforded by programmes competing
for scarce health-care resources. Previous evaluations of
smoking cessation interventions for pregnant women have
been inconsistent, making comparison of findings difficult
[13]. For example, models have: treated maternal and in-
fant health outcomes as mutually exclusive [14]; provided
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outputs in ‘cost-per-quitter’ units which cannot be com-
pared with other economic measures [15]; not adequately
justified the inclusion of morbidities [16]; or have provided
only limited allowance for uncertainty [17].

We describe the Economics of Smoking in Pregnancy
(ESIP) model which we designed to address these limita-
tions, by estimating the future health gains and treatment
costs associated with both the mother and her infant up to
the age of 100 years, using a UK National Health Service
(NHS) and Personal Social Services (PSS) perspective
[18]. We also demonstrate how ESIP estimates the cost-
effectiveness of a within-pregnancy cessation intervention
by using the data from a recently published trial.

DESCRIPTION OF ESIP MODEL

Overview

The cost-effectiveness of a smoking cessation intervention
can be expressed as the ratio of the increased ‘per-person’
costs of providing that intervention to the ‘per-person’
health benefits that the intervention causes. In the short
term, costs mainly comprise paying for intervention deliv-
ery; however, if an intervention promotes cessation and
smoking-related diseases occur less frequently, then
longer-term costs for treating these reduce. For women
and infants and for different smoking rates in pregnancy,
ESIP estimates the burden of smoking-related disease in
pregnancy and during their life-times and calculates the
health service costs incurred treating this. ESIP also
estimates the potential life years that women and infants
can expect before adjusting these into standard economic

terminology, quality-adjusted life years (QALYs). By com-
paring costs incurred due to different smoking rates, ESIP
estimates how much an intervention costs or saves; simi-
larly, by comparing healthy lifewhich accrues following dif-
ferent smoking rates in pregnancy, ESIP estimates whether
a cessation intervention provides health benefit; finally,
these cost and benefit estimates are combined to generate
cost-effectiveness measures.

ESIP components

Figure 1 provides a simplified maternal model structure
(full detail in Supporting information, Appendix S1). A
hypothetical cohort of 1000 singleton-pregnancy women
who smoke enter a decision tree (left-hand side), which
estimates smoking-relatedmorbidity in pregnancy; the first
branch of this tree is where smoking rates in pregnancy are
entered into the model, affecting all model calculations.
The tree determines women’s smoking behaviour at
childbirth, whether or not they survive pregnancy and
whether live births occur. Next, surviving women enter a
‘life-time’ Markov chain model component (right-hand
side) that predicts changes in their life-time smoking
behaviour and, dependent on this, determines their life-
time burden of smoking-related morbidity and mortality.
We defined ‘life-time’ as modelling women’s and infants’
outcomes until 100 years old or death.

Figure 2 shows a simplified fetal model structure
(Supporting information, Appendix S1). Fetuses conceived
by virtual cohort women enter a decision tree (left-hand
side) which determines how many survive to birth and,
of these, what proportion have low birth weights. Key

Figure 1 Simplified maternal model: women progress through ‘within-pregnancy’ decision tree determining their ‘states’ on entry to life-time Mar-
kov component
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parameters in the fetal decision tree (e.g. proportion of
stillbirths) are generated in the maternal one; hence,
both are linked and fetal pregnancy and birth outcomes
are dependent on smoking rates entered into the mater-
nal tree. Between birth and 15 years infants enter a
‘childhood’ Markov chain component (middle section)
which estimates their burden of asthma, factoring in
the impact of second-hand exposure to maternal
smoking, with smoking rates used, coming from the
maternal life-time model. However, not all women
who smoke expose their child to their smoking, and
this is allowed for (see Table S1 in Supporting informa-
tion, Appendix S2). However, it is assumed that once a
mother exposes a child to passive smoking, this behav-
iour would not change. This component also estimates
children’s rates of smoking uptake incorporating an al-
lowance for the influence of maternal smoking [19]. Fi-
nally, at 16 years children enter an ‘adulthood’ Markov
chain component (right-hand side) which estimates
their life-time burden of smoking-related morbidities
and mortality.

Inclusion of morbidities

We want decision trees and Markov components to in-
clude only those morbidities which are both caused by
smoking and are sufficiently prevalent to have meaning-
ful economic impacts. A scoping review identified
smoking-attributable morbidities occurring in pregnancy
and in infants [20]. Using the criteria outlined above, de-
cision trees include the following maternal morbidities:
placental abruption, ectopic pregnancy, pre-eclampsia,
placenta previa and miscarriage (fetal death and expul-
sion from uterus before 24 weeks). Trees also include
the following infant morbidities: low infant birth weight
(LBW; i.e. < 2500 g), stillbirth (i.e. born dead after

22 weeks gestation) and premature birth (i.e. born be-
fore 37 weeks). For infants in the ‘childhood’ compo-
nent, we included asthma [21,22]. For both women’s
and infants’ ‘life-time’ components, as in other models
[17,23,24], we included coronary heart disease (CHD)
[25], chronic obstructive pulmonary disease (COPD)
[26], lung cancer [26] and stroke [27].

Incorporating maternal smoking behaviour

ESIP incorporates maternal smoking-related data in four
places:
i) In pregnancy—user input: as above, the proportions of

women anticipated to stop smoking in pregnancy both
with and without an intervention are inputted and
used at the first node in the maternal decision tree
(Fig. 1).

ii) Maternal ‘life-time’ component: in the first two postpar-
tum years, relapse to smoking rates are higher than
those generally. For women who were not smoking at
childbirth a systematic review indicated their probabil-
ities of returning to smoking within the first and sec-
ond postpartum years (see Supporting information,
Appendix S2) [20,28]. For women who smoked at
childbirth, we estimated the percentage who would
make a quit attempt in the first postpartum year from
the 2010 Infant Feeding Survey (IFS), using data re-
ported at 10 months after childbirth as a proxy for 1-
year data [29].

iii) Both ‘life-time’ components: except for the situation in
(ii) above, we used English ONS smoking data to annu-
ally estimate ‘transition probabilities’, the annual prob-
abilities of moving between smoking ‘states’ (see
Supporting information, Appendix S2 and section C1
in Appendix S3) [22]. To estimate the annual probabil-
ity of restarting smoking after long abstinence periods,

Figure 2 Simplified fetal and infant model: offspring progress through ‘within-pregnancy’ decision tree determining ‘states’ for entry into Markov
childhood and life-time components
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we used 8-year follow-up data from a smoking cessa-
tion trial (see Supporting information, Appendix S2
and section C2 in Appendix S3) [30].

iv) ‘Childhood’ component: we used Health Survey for
England data to estimate the proportion of maternal
smokers who exposed children to passive smoking
[31], and systematic review findings [19] were used
to calculate teenagers’ probabilities of starting
smoking, given that their mothers smoked (see section
C2 in Supporting information, Appendix S3).

Determining smoking-related morbidity

To estimate accurately the burden of smoking-related
morbidity, ESIP needed contemporary data on the fre-
quency with which included conditions occurred. For
nodes in decision tree components, we sought propor-
tions of women and fetuses developing smoking-related
morbidities. We sourced data on frequency of fetal loss,
maternal morbidities and gestational length from Hospi-
tal Episode Statistics (HES) NHS Maternity Statistics for
England (2006–16) [32] on gestation-specific infant
mortality from Office of National Statistics (ONS), En-
gland and Wales (2006–12) [33] and on live births
and stillbirths by birth weight and prematurity from
Child Mortality Statistics (2006–12) [34]. A technical
explanation of how the proportions were calculated
can be found in section C3 in Supporting information,
Appendix S3. To estimate the probabilities that ‘never
smokers’ or their fetuses might experience morbidities,
we adjusted bootstrapped proportions, using the same
approach. Odds ratios and relative risks representing
the increased harm caused by smoking during preg-
nancy came from three systematic reviews [9–11]. Prob-
ability estimates can be found in Supporting information,
Appendix S2.

For life-time, childhood and adulthood components, we
calculated the number of women/infants with smoking-
related morbidities using English age- and gender-specific
prevalence for asthma, CHD, COPD, lung cancer and stroke
[35–37]; relative risks for current and former smokers
experiencing these were sourced from a US Surgeon Gen-
eral’s report (see section C4 in Supporting information, Ap-
pendix S3) [38]. Where the model predicted that a cohort
member had been abstinent for more than 1 year, they
were treated as former smokers. For the ‘childhood’ com-
ponent, we adjusted asthma prevalence for low birth
weight and passive smoking exposure, as both may in-
crease asthma risk (see section C5 in Supporting informa-
tion, Appendix S3) [20–22,39,40]. Odds ratios for
developing asthma after low birth weight birth and
following exposure to maternal smoking in pregnancy
and passive smoking came from the literature [40,41].

Prevalence estimates used are shown in Supporting infor-
mation, Appendix S4.

Determining smoking-related mortality

To estimate maternal deaths in pregnancy in ESIP, we used
ONS mortality statistics (2006–15) to apply morbidity-
specific probabilities of death with no adjustment for
smoking behaviour, as there was no evidence that this in-
fluenced chances of dying from within-pregnancy morbid-
ities (see section C6 in Supporting information, Appendix
S3) [42,43]. For the ‘life-time’ and offspring ‘adulthood’
components, we estimated male and female mortality
using ONS cohort life tables [44]. Probabilities were ad-
justed using relative risks from Doll et al. to represent the
impacts on mortality of smoking and former smoking (see
Supporting information, Appendix S4 and section C7 in
Appendix S3) [26,45], with prevalence for current-,
former- and never-smoking taken from ONS data [46].
When allocating mortality probabilities, those abstinent
for more than 1 year were treated as former smokers. For
the ‘childhood’ component, we similarly adjusted mortality
rates to allow for the impact of LBW, using odds ratios for
LBW-specific mortality (see section C8 in Supporting infor-
mation, Appendix S3) [47].

Determining health-related quality of life

ESIP calculates the potential for healthy life experience by
first awarding ‘life years’ to women and offspring, with
the numbers of years lived by cohort members being deter-
mined by model components. Life years are then converted
into QALYs. We assigned life years to mothers at the end of
pregnancy, adjusting for gestational length by assuming
that a pregnancy lasts 40 weeks. Informed by HES NHS
Maternity Statistics for England, we assumed the average
gestational length after ectopic pregnancy was 10 weeks,
miscarriage (14 weeks), premature birth (33 weeks), pla-
centa previa (38 weeks) and abruption and pre-eclampsia
(39 weeks) [32]. After birth, we first awarded 1 life year
to offspring for each year of life.

To generate QALY estimates, life years were weighted
by previously estimated utility tariffs [48]. We found no ev-
idence to suggest that there was any maternal quality of
life loss associated with pre-eclampsia, and assumed the
same for placental abruption and placenta previa
[20,49]. A one-off 0.1 utility loss was applied to all women
who experienced a fetal loss (ectopic pregnancy, miscar-
riage and stillbirth) [50], and was applied in the within-
pregnancy decision tree. For ectopic pregnancy there was
an additional one-off utility loss of 0.01 applied in the
within-pregnancy decision trees [51]. Utility weights for
smoking-related morbidities were applied to mothers and
offspring aged 16 and above were 0.73 [standard error
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(SE) = 0.3)] for CHD [52], 0.73 (SE = 0.23) for COPD [53],
0.67 (SE = 0.22) for lung cancer [54] and 0.72 (SE = 0.32)
for stroke [55]. In the ‘childhood’ component the utility
value for offspring aged 1–15 years in perfect health was
1 and, for children with asthma, 0.9 (SE = 0.18) [56].

Estimating health-care costs

ESIP’s determination of health-care costs depends on the
burden of morbidity estimated. Health-care events experi-
enced by both mothers and fetuses were counted only
once, hence costs were split between maternal and infant
components to avoid duplication. Costs attributed only
within the maternal components were those of antenatal
care, treatment(s) for within-pregnancy morbidities, still-
birth and mode of delivery. Neonatal care costs for infants
born with LBW and prematurity and treatment costs for
childhood asthma were attributed only in infant compo-
nents. Treatment costs associated for ‘life-time’morbidities
were attributed in both maternal and infant components.
ICD-10 codes were linked to Healthcare Resource Groups
(HRG) currency codes, and hence to NHS reference costs
(see Supporting information, Appendix S5) [57]. Treat-
ment costs for morbidities and delivery were then calcu-
lated across the different health-care settings to estimate
aweightedmean [58]. The cost of a cardiac event was used
as a proxy for the cost of a maternal death [1]. A practising
NHS midwife advised on attribution of health-care costs
and a detailed explanation of these is shown in Supporting
information, Appendix S5. All pregnancies received an an-
tenatal care cost amended for gestational length, morbidity
and, for live births, a delivery cost. All live-born infants re-
ceived a neonatal care cost based upon length of gestation,
using weighted neonatal care costs by the average
gestation-adjusted length of stay in a neonatal intensive
care unit [59]. Treatment costs for ‘life-time’ morbidities
and childhood asthma were taken from the literature
[60–62], and inflated to 2014–15 prices [63]. Individual
cost components are shown in Table 1.

Incorporating uncertainty

To enable ESIP outputs to reflect the uncertainty of esti-
mates, we fitted distributions enabling probabilistic sensi-
tivity analysis (PSA) using established methods [64]. ESIP
has 390 variables with fitted distributions and performs
10000 Monte Carlo simulations to control for uncertainty
[65]. A technical description can be found in section C9 in
Supporting information, Appendix S3.

Analysis and outcomes

ESIP is constructed in Microsoft Excel 2010 [66] and is
available online at https://www.nottingham.ac.uk/re-
search/groups/tobaccoandalcohol/smoking-in-

pregnancy/esip/index.aspx. Because we adopted a UKNHS
and PSS perspective [18], costs and benefits accrued after
pregnancy (i.e. in life-time components) were discounted
at 3.5% [18]. Markov chains are run in annual cycles up
to age 100.

The key outcomes ESIP produces are incremental cost-
effectiveness ratios (ICERs) per additional QALY for mother
and child, presented both separately and as a combined
‘per pregnancy’ measure of cost-effectiveness with a ‘life-
time’ perspective. Other outcomes are ICERs per additional
life year and per additional quitter, and all outcomes can
also be reported to reflect cost-effectiveness measured only
until the end of pregnancy.

Return on investment (ROI) estimates can also be pro-
duced for maternal and infant health care, both separately
and combined, and reported for all time horizons. These
are benefit–cost ratios, defined as incremental health-care
savings divided by incremental intervention cost.

ESIP can also estimate the following ICERs at end of
pregnancy: per experience of maternal morbidity, infant
death (fetal loss and stillbirth), premature birth, LBW birth
and per adverse birth outcomes avoided. Output from the

Table 1 Cost components for ‘within-pregnancy’, ‘life-time’,
‘childhood’ and ‘adulthood’ maternal and infant components.

Input Mean (£) SE (£)

Within-pregnancy maternal morbidity treatment
Ectopic and miscarriage 578.07 226.31
Abruption and previa 1202.38 559.71
Pre-eclampsia 657.89 329.60
Obstetrician first visit 146.38 68.31
Obstetrician subsequent visit 113.90 62.86
Routine observation after birth 345.24 206.71
Death 1630.98 854.11

Within-pregnancy maternal birth
Normal birth 2497.05 745.03
Emergency caesarean section 4180.54 1214.01
Caesarean section 3781.28 1072.94
Stillbirth 1063.28 676.26

Within-pregnancy maternal ante-natal care
Community midwife visit 55.51 17.29
Standard ultrasound scan 110.77 60.65
Specialized ultrasound scan 131.81 50.98

Within-pregnancy infant delivery
Neonatal care (premature) 15934.55 7127.79
Neonatal care (full gestation) 2645.87 2423.44

Childhood treatment
Asthma 1624.00 162.40

Life-time morbidity treatment
CHD 1838.62 183.86
COPD 843.65 84.37
Lung cancer 9554.98 955.50
Stroke 4347.08 29.59

SE = standard error; CHD = coronary heart disease; COPD = chronic ob-
structive pulmonary disease.
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PSA is demonstrated by incremental cost-effectiveness
plane scatterplots and cost-effectiveness acceptability
curves (CEACs), which illustrate the likelihood that an in-
tervention might be judged to be cost-effective at
preselected thresholds.

USING ESIP WITH TRIAL DATA: A
WORKED EXAMPLE

In this section we demonstrate the use of published data
from the ‘MiQuit’ pilot randomized controlled trial (RCT)
in conjunction with the ESIP model to estimate the cost-
effectiveness of the intervention used: self-help smoking
cessation support delivered by text message [67,68]. Par-
ticipants were pregnant smokers who received standard
NHS smoking cessation care with an intervention group
additionally receiving a 12-week programme of tailored
text messages; for full details see Naughton et al. [68] No
pregnancy outcome data were collected, follow-up ended
at 36 weeks gestation and a simple economic evaluation
estimated a ‘cost per quitter’ of £134 [95% confidence in-
terval (CI) = –£396 to £844), basing this only upon inter-
vention costs incurred during pregnancy [68].

Inputting data

The following data from the trial paper are inputted (values
in brackets): mean maternal age (27 years); birth year
(2014); per-participant intervention cost (£3.04, standard
error = £0.30) and control and intervention group quit
rates (2 and 5.4%). ESIP requires standard errors for cessa-
tion outcome data; as these were not reported [67,68] they
were estimated as 1.6 and 1.1%, respectively, using
established methods [69,70]. As MiQuit was delivered in
addition to standard NHS treatment, we assumed that, in
the worst-case scenario, MiQuit would not improve the
chances of a woman quitting over NHS treatment. There-
fore, we restricted ESIP to not sample MiQuit quit rates be-
low that of NHS treatment; where this did happen (i.e.
sampled MiQuit quit rate was less than sampled NHS treat-
ment), ESIP would assume that the quit rates in the inter-
vention and comparison were equivalent.

ESIP outputs

Although the published trial economic analysis suggested
that the MiQuit intervention was potentially cost-effective,
as measured in ‘cost-per-quitter’ units [68], ESIP shows
that the greatest health benefits come in the longer term
and it also estimates value for money in terms of QALYs,
life years and in ROI, none of which was possible in the
original trial.

More specifically, Table 2 shows base case (using initial
model input values with no allowance for uncertainty) and

PSA (allows model inputs to vary to estimate the impact of
uncertainty) findings. The base case suggests thatMiQuit is
dominant because it is more effective and cheaper than
standard NHS care (incremental cost was negative). The
benefit–cost ratio suggests that for every £1 spent on
MiQuit the health-care provider could expect to save £14
per pregnancy throughout the life-time of the mother
and offspring, a finding reinforced by PSA, which demon-
strates negative median incremental costs and positive me-
dian incremental life years/QALYs with an interquartile
range suggesting that the saving could be as little as £8
and as great as £20. The scatterplot of incremental costs
versus incremental QALYs (see left-hand side of Fig. 3)
demonstrates that the majority of iterations can be found
in the south-east quadrant (i.e. indicating cost-
effectiveness) [71], and the associated cost-effectiveness ac-
ceptability curve (CEAC) (right-hand side of Fig. 3) suggests
that MiQuit has a probability 0.95 of being cost-saving,
which increases to 0.97 when a decision-maker is willing
to pay £20000 to gain an additional QALY.

Table 3 provides results constrained to the end-of-
pregnancy time horizon, including estimates for infant
morbidities averted by using the intervention. Although
ESIP estimates that MiQuit increases maternal QALYs
and decreases several adverse infant birth outcomes, it is
no longer dominant because it also leads to an increase
in cost. However, both base case and PSA ICERs are still be-
low commonly accepted threshold values for QALYs so,
even in this analysis, MiQuit appears cost-effective against
standard care as judged by usual norms [72,73]. Benefit–
cost ratios suggested that there may be health-care savings
in terms of infant health care; however, this was
outweighed by the increased cost associated with the
mother.

DISCUSSION

ESIP is the first economic model to acknowledge that ma-
ternal smoking in pregnancy and afterwards directly af-
fects fetal and infant pregnancy outcomes, offspring
smoking uptake and life-time experience of smoking-
related illness for both mothers and children. Previous
models have considered mothers or infants in isolation
[14,16,74,75], and none have incorporated the impact of
infants’ exposures to passive smoking. ESIP estimates not
only common measures of cost-effectiveness [13], but also
ROI, which may be of interest to decision-makers.

Impact of modelling assumptions

By assuming that women who stop smoking in pregnancy
have the same risks as those who have never smoked, the
model may overestimate the benefits and cost-effectiveness
of cessation in pregnancy. It is probable that ‘quitters’ in
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pregnancy will have slightly greater risks of experiencing
morbidities than ‘never smokers’, as they will have smoked
for at least at some of their pregnancies. However, the in-
crease in risk may be small because, for example, when
women quit early in pregnancy their infants’ birth weights
are no different from those born to non-smokers [76] and
low birth weight is arguably the principal cause of morbid-
ity and mortality among neonates and infants [40,47].
Furthermore, most smokers who stop when pregnant do
so early on in pregnancy [77,78], so this assumption may
not affect ESIP outputs greatly.

The model assumes that smoking by household mem-
bers other thanmothers have no impact on either children’s
passive smoking or their uptake of smoking, so it may un-
derestimate children’s smoking-related morbidity and
smoking uptake. If a household has a father or other family
members who smoke [19] this has an additional influence
on children’s smoking uptake, so the benefits attributable
tomaternal smoking cessationmay be overestimated. How-
ever, it has been shown that maternal smoking has more
impact on children’s smoking uptake than paternal
smoking [19,39], so ESIP incorporates the major influence.

The assumption that smoking mothers do not change
their smoking behaviour around their child (i.e. either ex-
posing or not exposing them to second-hand smoking)
may mean that ESIP does not estimate children’s
smoking-related morbidity accurately. It is unlikely that a
mother’s smoking behaviour around her child would re-
main fixed throughout childhood [79], but we could iden-
tify no longitudinal data to inform the model about this,
and this remains a model limitation. However, the model
does attempt to model maternal smoking behaviour after
pregnancy accurately, making use of the most recent data
on postnatal relapse, and it could be argued that this will
have a more substantial impact.

ESIP allows women to make quit attempts after preg-
nancy, but because Markov models are ‘memoryless’ it as-
sumes each attempt is independent of previous ones [80].

However, the more quit attempts an individual makes, the
more likely that they are to quit successfully [81–84], and
a woman takes, on average, 6.3 quit attempts throughout
her life-time to become a former smoker [85]. ESIP may,
therefore, underestimate long-term abstinence. However,
we believe themodelmakes optimal use of the best available
smoking behaviour data and improves on other models by
taking into account the different rates of restarting smoking
during the first two postnatal years [17,24].

As incorporating subsequent pregnancies would have
been challenging, the model assumes that women have
only one pregnancy in their life-times. The impact this
might have on model estimates is uncertain; ESIP may un-
derestimate health-care costs incurred, but equally it may
underestimate siblings’ benefits resulting from mothers’
cessations. In England andWales in 2013 there was an av-
erage of two children in families [86], suggesting that this is
a potentially serious limitation. However, if a cessation in-
tervention proved to be cost-effective for a single child, it
seems likely that this would also have benefits for any other
children (e.g. in reduced passive smoking) and ESIP esti-
mates would be conservative.

The assumption that MiQuit is superior to standard
care removes the possibility of negative incremental quit
rates between MiQuit and standard NHS care. The MiQuit
pilot study found that there was a non-significant increase
in abstinence [odds ratio (OR) = 2.7, 95% CI = 0.93–9.35]
[68], therefore there is the possibility that MiQuit could de-
crease the likelihood that awoman quits. By not estimating
negative incremental quit rates, ESIP could be
overestimating the cost-effectiveness of MiQuit because
ESIP is ignoring cases where women and infants are made
worse off. However, if MiQuit was to become part of NHS
practice in the United Kingdom, it would be delivered in ad-
dition to usual care, and hence we considered it additive to
usual care rather than replacing it. Furthermore, out of
10000 replications, this assumption was only applied
345 times, therefore the chance that MiQuit will make

Figure 3 Life-time horizon probabilistic sensitivity analysis: maternal and offspring costs and outcomes with scatterplot and cost-effectiveness
acceptability curve
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women less likely to quit smoking is 3.45%. While this as-
sumptionmight be made in instances where new interven-
tions are delivered in addition to usual care, it can be
relaxed for instances where the new intervention is a direct
replacement for usual care, thus ESIP can perform those
types of analyses.

The model is restricted to singleton pregnancies. Multi-
ple gestations are infrequent: in 2013 fewer than 2% of all
births in England and Wales were multiple births [87];
however, pregnancy outcomes in multiple pregnancies
are worse than after singleton ones and so health-care
costs are likely to be higher. ESIP would need substantial
amendments to account for multiple births; it is not en-
tirely clear how estimates may be affected by excluding
the possibility of multiple births but, as these are reasonably
rare, any impact is unlikely to be large.

The MiQuit RCT recruited women at an average at
15 weeks gestation and so may have had a limited impact
on fetal loss due to miscarriages, which occur principally
early in pregnancy; however, we included this outcome in
our example, as late miscarriage could be affected by the
MiQuit intervention. This may have resulted in some over-
estimation of MiQuit’s cost-effectiveness in our ‘worked ex-
ample’, but a positive feature of ESIP is flexibility and it is
possible to re-run analyses removing miscarriage from
the list of outcomes as a sensitivity analysis, if desired.

Application and implication for policy

The ability of ESIP to provide ‘common currency’ outputs
(e.g. cost per QALY) is likely to be of most interest to
decision-makers and researchers, as these will allow simple
comparisons between cessation interventions delivered in
pregnancy and other health-care interventions. Provided
the additional costs of delivering an intervention and the
likely (or demonstrated) absolute effect on cessation are
known, these can be fed into the programmable interface
of ESIP to generate life-time estimates for intervention
cost-effectiveness without the need for an additional eco-
nomic model to be built. ESIP inputs currently apply only
to the UK population, and so caution is needed when ap-
plying ESIP estimates to countries with very different prev-
alence of smoking behaviours or of smoking-related
illnesses. Model outputs may not be generalizable to such
jurisdictions; however, with support, it would be straight-
forward to re-parameterize ESIPwith other countries’mor-
bidity andmortality data. ESIP is to be published at: https://
www.nottingham.ac.uk/research/groups/tobaccoandalcohol/
smoking-in-pregnancy/esip/index.aspx and the lead author
would able to provide such support.

One consideration with regard to the cost-effectiveness
estimates from the ESIP outputs is to what extent infant
outcomes are valued in comparison with maternal out-
comes. Currently, there is a lack of international

standardization with regard to the inclusion of infant out-
comes not only in evaluations of smoking cessation inter-
ventions, but also many other pregnancy-related
interventions [88]. In the United Kingdom, current guid-
ance on economic evaluations for decision-making is am-
biguous [18]. Many previous evaluations of within-
pregnancy smoking cessation interventions have either fo-
cused solely on outcomes related to the mother or infant
[13]; however, several recent interventions have presented
a combined measure [17,24], and thus we presented com-
bined measures of cost-effectiveness to aid comparison
with previous evaluations. It is anticipated that guidance
regarding the inclusion of infant outcomes is likely to
change, althoughwhat this societal decision will be cannot
be foreseen. The authors hope that we have demonstrated
the flexibility of ESIP in terms of valuing bothmaternal and
infant outcomes, allowing decision-makers the facility of
having the maximum amount of information available to
make an informed decision, irrespective of their viewpoint
regarding the valuing of infant outcomes.

CONCLUSION

ESIP resulted from a systematic approach to address the
limitations of previous economic evaluations of smoking
cessation interventions used in pregnancy, and offers
researchers a comprehensive approach to estimating costs,
outcomes and cost-effectiveness. The inclusion of future
cost savings for both mother and child enables decision-
makers to allocate scarce resources with an information
set which demonstrates the longer-term paybacks
associated with current investment. Short-term cost-
effectiveness ratios are misleading when evaluating
preventive interventions because future savings are not
included, the result being a suboptimal allocation of
resources.
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