
sensors

Article

Activity-Aware Vital SignMonitoring Based on a
Multi-Agent Architecture

Todor Ivas, cu * and Viorel Negru

����������
�������

Citation: Ivas, cu, T.; Negru, V.

Activity-Aware Vital SignMonitoring

Based on a Multi-Agent Architecture.

Sensors 2021, 21, 4181.

https://doi.org/10.3390/s21124181

Academic Editors: Mario

Martínez-Zarzuela and David

González Ortega

Received: 10 May 2021

Accepted: 12 June 2021

Published: 18 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, Faculty of Mathematics and Informatics, West University of Timisoara,
Blvd. V. Pârvan nr. 4, 300223 Timis, oara, Romania; viorel.negru@e-uvt.ro
* Correspondence: todor.ivascu@e-uvt.ro; Tel.: +40-256-592-261

Abstract: Vital sign monitoring outside the clinical environment based on wearable sensors ensures
better support in assessing a patient’s health condition, and in case of health deterioration, automatic
alerts can be sent to the care providers. In everyday life, the users can perform different physical
activities, and considering that vital sign measurements depend on the intensity of the activity,
we proposed an architecture based on the multi-agent paradigm to handle this issue dynamically.
Different types of agents were proposed that processed different sensor signals and recognized
simple activities of daily living. The system was validated using a real-life dataset where subjects
wore accelerometer sensors on the chest, wrist, and ankle. The system relied on ontology-based
models to address the data heterogeneity and combined different wearable sensor sources in order
to achieve better performance. The results showed an accuracy of 95.25% on intersubject activity
classification. Moreover, the proposed method, which automatically extracted vital sign threshold
ranges for each physical activity recognized by the system, showed promising results for remote
health status evaluation.

Keywords: human activity recognition; vital signs; health status monitoring; wearable sensors;
multi-agent architecture; knowledge-based system

1. Introduction

The world population is aging rapidly, and according to a World Health Organization
(WHO) report [1], it is estimated that the number of elderly people over 60 years of age will
double by 2050, reaching approximately 2.1 billion, with 80% of them living in developing
countries. Chronic diseases are another issue that affects the quality of life of the population.
Often, chronic disease patients require continuous monitoring, which increases the number
of patient visits to the hospital. Another issue is that symptoms can be absent during
hospital visits, and this makes it difficult for physicians to establish the correct diagnosis.
To reduce the healthcare costs and to improve the quality of life, different remote, real-
time, and continuous monitoring solutions have been proposed in recent years. With the
recent development and advancement of wearable and portable sensing technologies,
it is possible to continuously monitor patients’ health conditions and the effectiveness
of exercise and treatments, outside the clinical environment, during daily life (at work,
at home, during sports or fitness activities, etc.).

In the last few years, wearable sensors and wireless body area networks (WBANs)
have been used in different medical and non-medical applications in order to monitor
patients’ physiological measurements [2–4], physical activities [5,6], as well as for fall
detection [7–9]. WBANs, which are a relatively new and emerging technology, first intro-
duced by [10], consist of tiny body-attached sensors that can noninvasively monitor and
measure physiological (vital) signs, such as the heart rate (HR), the respiratory/breathing
rate (BR), blood pressure (BP), the blood oxygen level (SpO2), the electrocardiogram (ECG),
etc., and are capable of sending data to other devices for further processing and analysis,
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where appropriate actions can be taken. The major role of such a system is to ensure better
support in disease diagnosis or to alert medical services when a major deterioration has
happened in the patients’ health status.

Changes in vital signs are an important indicator of health status deterioration, and
generating alerts about the patients’ health condition to caretakers or medical personnel
in case of critical situations is very useful in order to provide immediate help. In recent
years, different remote monitoring systems were proposed that use a data fusion model
for health status evaluation. These systems use the early warning score (EWS) [11] model,
a simple physiological aggregate scoring system. Ranges for each vital sign are configured,
and in most cases, based on fuzzy set theory and a decision matrix, alarms are generated
when an emergency is detected.

Vital sign measurements are related to the intensity of the activity that the user
performs; thus, physiological measurements increase in proportion to the increase in
the intensity and metabolic needs of the activity [12–22]. Vital signs’ normal threshold
ranges can be considered when a patient is sitting quietly. Inside and outside the clinical
environment, where users can perform light-, moderate-, and vigorous-intensity activities,
different threshold ranges must be considered as normal in order to not generate false
alarms. To solve this issue, the monitoring system must recognize the patient’s physical
activity. In this work, we took into account the metabolic equivalent of tasks (METs) [23],
a measure that expresses the energy cost of each physical activity as a multiple of the
resting metabolic rate. One MET, defined as 1 kcal/kg/hour, is considered when a person
is resting, obtained while quietly sitting. A physical activity of three METs would require
three-times the energy that an average person consumes while quietly sitting. Information
about the physical activity is useful either for medical personnel when analyzing health
data or for the system when generating alarms. On the other hand, in the majority of recent
research work, in case of the deterioration of the user’s health status, the notifications
or alarms are displayed to the user or sent to the caretakers/medical personnel based
on the manual customization of the threshold ranges, either by the final user or by the
medical personnel according to the user’s particularities, so an adaptability mechanism
must be considered.

In recent years, human activity recognition (HAR) has been investigated using various
types of sensors, smartphones [24,25], body-attached sensors [26,27], ambient sensors [28],
video-based information [29], etc. Considering the privacy concerns of installing a camera
in private spaces, sensor-based activity recognition has dominated the recent research.
Furthermore, the advantage of using a smartphone or body-attached sensors for activity
recognition is that the person can move freely, at home or at work, while being continu-
ously monitored without dependence on the environment. In recent research work on
human physical activities, different sensing modalities were considered, such as accelerom-
eters, gyroscopes, and magnetometers; the optimal sensor position; the sampling rate;
feature extraction and selection; and even using a single sensor or aggregating different
sources [30–34]. Aggregating data from multiple sources has shown better classification
accuracy. In order to recognize physical activities, different machine learning models were
considered, such as the support vector machine (SVM), decision tree (DT), artificial neural
network (ANN), random forest (RF), and deep learning (DL) approaches.

One of the challenges in WBAN technology, and in sensor networks in general, is
the fusion of data from different heterogeneous sources, which would directly impact
the performance of the application [35,36]. Different body-attached and wearable sensors
come from different manufacturers; different types of physiological measurements can
be recorded; different techniques of signal processing must be performed; recorded data
can be collected at different time intervals; thus, considering the complexity of the system,
the heterogeneity of hardware devices and data, and the necessity for flexibility, in this
work, a multi-agent architecture was considered.

The key contributions of this research are the following:
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• To build an activity recognition component that uses the accelerometer data obtained
from different wearable sensors in order to discriminate between different activities
of daily living;

• To automatically extract threshold ranges for different monitored vital signs, from the
group of users when performing different physical activities, which are used for
evaluating the health status of a target user;

• To implement a multi-agent architecture that is easily adaptable to the sensor network
and hardware from different manufacturers, which can process signals from different
body sensors, recognize the physical activity, evaluate the user’s health status based
on the recognized activity, and alarm when necessary, using ontology-based models
to address the data heterogeneity.

The rest of the paper is organized as follows. Section 2 summarizes the related studies
in vital sign extraction, human activity recognition, multi-agent systems, and semantic
modeling. In Section 3, we introduce the proposed multi-agent architecture and present
the different system components and their behaviors. Results and a discussion regarding
the activity recognition performance and the extracted knowledge about the vital sign
ranges are presented in Section 4. Finally, the conclusions and future research directions
are summarized in Section 5.

2. Background and Related Work
2.1. Vital Sign Monitoring

The electrocardiogram (ECG) is one of the most widely used biosignals to analyze
cardiac rhythm. Different vital signs, such as the HR and BR, which are extremely valuable
indicators of the user’s health condition, can be extracted from this signal. On the ECG
waveform, a QRS complex is the most recognizable part. The most differentiated peak on
the waveform is the R peak. The interval between two consecutive peaks (also known as
the RR-interval) is used to determine the HR. For the ECG signal, a higher sampling rate is
required, but it shows acceptable results using only 50 Hz [37,38].

In [39], the authors presented an algorithm for heart rate analysis from photoplethys-
mogram (PPG) and ECG signals collected in noisy settings. The algorithm was validated
on two different datasets. On the ECG signal, the algorithm successfully detected 99.72%
of the peaks present. In order to estimate the BR from the ECG signal, the RR-interval
can be used. During inspiration, the heart rate increases, meaning a shorter RR-interval,
and during expiration, this results in a longer RR-interval.

In [40], the authors discussed an algorithm for extracting ECG-derived respiration.
Two methods were considered for extracting the BR, the heart rate variability (HRV)
method and the peak amplitude variation (PAV) method, as well as interpolating the
signal’s amplitude using cubic spline interpolation. The algorithm was analyzed on a
database that included 30 subjects, and a mean absolute error (MAE) value of 0.57 and 0.70
for the HRV and PAV method, respectively, was obtained.

2.2. Physical Activity Recognition

Accelerometer-based activity recognition has been increasingly used in recent years
because of the good classification results compared to other sensing modalities. In order to
recognize physical activities from the accelerometer signal, several steps must be consid-
ered, which implies data sampling, data segmentation, feature extraction, the selection of
the most discriminant features, and model training.

The literature review highlighted that the most common sampling rate used in hu-
man activity recognition is around 50Hz, which contains enough information for simple
activities of daily living [41]. Segmentation techniques, which include different methods
and window sizes, have shown an impact on the classification accuracy. The most used
is the fixed-size nonoverlapping sliding window (FNSW) and the fixed-size overlapping
sliding window (FOSW) [41,42]. In [43], the authors investigated the effectiveness of the
window-based segmentation approach with different window sizes showing that the slid-
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ing window approach was generally effective at HAR. Usually, a window with a size that
ranges between 1 s and 10 s is used [44]. Simple activities of daily living can be recognized
with good accuracy with a window size as short as 2 s [45].

Feature extraction has an important role in activity classification. Features can be
extracted from both the time domain and the frequency domain of the signal. In the litera-
ture, the most common metrics that were extracted from the signal data were: max, min,
mean, median, variance, kurtosis, skewness, zero-crossing rate, root mean square, standard
deviation, interquartile range, signal magnitude area, energy, and signal entropy [30,44].
Different positions of the sensors have been considered, usually placed on the subject’s
chest, wrist, ankle, waist, hip, and thigh. The position of the sensors has an important
role in the classifier’s accuracy. In [46], the authors investigated various methods for
feature extraction from different accelerometer placements, achieving a 95% of classifier
accuracy, applying the intersubject cross-validation method, using features from the time
and frequency domains. By combining data from different sources, an improvement in
the classification accuracy could be achieved. In [47], the authors reported an accuracy
of 97.20% for eight daily living activities, by combining the data from seven wearable
sensors applying the DL method. On the other hand, by combining the data only from two
sensors, the best score obtained from the shin and forearm positions with 93% accuracy
was reported.

The most used classifiers in the literature are artificial neural networks/multi-layer
perceptron, random forest, decision trees (C4.5/J48), support vector machines, K-nearest
neighbors, naive Bayes, and the hidden Markov model, which showed good classification
of activities of daily living.

In [48], the authors presented a subject’s monitoring system based on IoT technology,
which used a single wearable device, a ZephyrTM Bioharness 3 Model K113045. The system
implemented two modules: an activity recognition module, which could be implemented
on any mobile device, and an e-health application, which could be implemented on the
server. Two machine learning methods were implemented for the classifiers, a Bayesian
algorithm (naive Bayes) and a decision tree (the C4.5 model), for activity recognition. Using
a small dataset, an accuracy of 95.83% was achieved on four types of activities. An accuracy
of 100% was reported in [49]. A model based on an RF classifier was used to recognize six
activities of daily living, extracting the angle, maximum, minimum, and mean values from
the accelerometer and gyroscope signals. These features were selected by their importance
score. The subject-dependent hold-out method, by dividing the data randomly into 70%
and 30% for training and testing, respectively, was applied.

2.3. Multi-Agent Systems

In recent years, due to their characteristics, such as autonomy, reactiveness, proac-
tiveness, and social ability, agents have been widely used in different WBAN/IoT-based
healthcare applications [50]. The scalability, heterogeneity, flexibility, and distributed nature
are the major challenges that must be considered in these applications, and the multi-agent
system (MAS) architecture has proven to be a very effective solution. The multi-agent
distributed information platform (MADIP) system proposed in [51], composed of six types
of intelligent agents, was one of the first e-health platforms based on multi-agent systems
integrating remote and continuous vital sign monitoring, having a diagnosis component,
automatically alerting care providers in case of physiological abnormalities, and also,
offering remote medical advice.

In [52], the authors proposed a flexible MAS architecture with a clear separation
of concerns. Agents’ activities were organized according to the different types of roles,
represented as a group of related goals and tasks. Each agent adopted a role and pur-
sued its goals, performed tasks, and adapted to the available resources and information.
These activities were related to sensor management, signal processing, agents’ interaction,
and adaptation to the changes in available sensor devices and their capabilities. Fur-
thermore, agents can form teams, a hierarchical group of roles, performing collaborative
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activities in the platform. A MAS architecture, based on a virtual organization of agents,
for remote patient monitoring, was presented in [53]. The system, which allowed the
integration of different sensor devices, monitors the patient’s health condition by analyzing
the ECG signal. A physical activity monitoring component was also implemented by using
the accelerometer data. This component was used for detecting whether a patient was in
motion or not. In this architecture, an agent with the ECG analysis role, in case of anomaly
detection in the physiological signal, could send notifications or alerts automatically to
the emergency services. The alert also included information about the user’s movements,
which was very useful when medical personnel analyzed the data. In [54], the authors pro-
posed an intelligent heart rate monitoring system based on agents. The system could collect
vital signs, detect anomalies, and send alerts to relatives or medical personnel. The authors
raised the self-adaptation and self-management issues, which were their motivations in
using the agent-based approach by adding an agent to each element in the architecture.

In order to react adequately and to adapt to the monitored environment, the system
must be aware of the context and its changes. In [55], the authors proposed solutions for
the design, implementation, and management of home care applications for elderly people.
The system analyzed different context information, patient health status, or environment
conditions and adapted its behavior according to the relevant context changes, for example
in which circumstances the monitored vital sign was out of range.

Context modeling allows the MAS to better understand the environment and the
changes that were made to its environment. Knowledge modeling using ontologies has
been regarded to be one of the best solutions for representing context information [56].
The MAS system must be aware of different concepts that characterize different entities,
such as the user’s profile, the information in the databases, the sensor devices and their
capabilities, the type of signal that is processed, or other situations. Therefore, using the
specific domain ontologies and semantically describing these concepts allowed the system
to perform better and to complete its tasks.

3. Proposed Architecture

Before we detail the multi-agent architecture, we want to highlight the system’s
main functionalities first. The system’s workflow can be seen in Figure 1. The proposed
system was made of six main subsystems: the data collection and processing subsystem, which
collects and processes the signals from various wearable/body-attached sensors; the activity
recognition subsystem, which uses stored physical activity data to train different machine
learning models in order to recognize the user’s physical activity and store that information
in the knowledge base (KB); the vital sign extraction subsystem, which extracts physiological
data from the given signal according to available algorithms/techniques and stores the
measurements in the knowledge base; the knowledge base modeling and management subsystem,
which uses and combines different domain-specific ontologies to model and manage the
knowledge base; the health monitoring subsystem, which uses stored physiological data
from different users to extract new knowledge from these data, by means of extracting
monitored vital sign ranges, and evaluates user’s health status by monitoring vital sign
measurements stored in the knowledge base; and the decision and alert subsystem, which
takes the appropriate actions related to the user’s health condition and informing different
external subsystems.
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Figure 1. Proposed system’s workflow.

3.1. Knowledge Representation and Semantic Modeling

The knowledge of each agent, as well as about the monitored subjects, sensor devices,
and health-related context is semantically represented using domain-specific ontologies.
In this work, we used different existing and publicly available ontologies, as well as others
defined/extended by us. The Vital Sign Ontology [57] was used to model the HR and
BR data collected from the sensors. For the physical activity concepts, we did not find
an ontology that was suited better to our requirements. The closest was the Physical
Activity Concept Ontology (PACO) [58], but it did not cover all the concepts that we
needed. Inspired by this ontology, we defined a simple ontology, using the open-source
ontology editor framework Protege Version 5.1.0, which contains the activities of daily
living concepts that were used in this work, the intensity of activities and the relation
between activity, and their cost or metabolic equivalent score. For the sensor concepts, we
integrated the Semantic Sensor Network Ontology [59], which was extended to represent
the particularities of the sensors (IMUs) for activity recognition, their sensing modalities,
the sampling rate, and the positions on the body. For this, we were inspired by the MIMU-
Wear Ontology [60]. In addition to health sensors (the ECG sensor used in this work), the
HealthIoT Ontology [61] was used as a model. We developed a patient context ontology
that modeled the context about the patient by capturing different key information, such
as the patient’s demographics, health status, relatives, or assigned physician, which were
necessary for providing health care. An individual patient from this ontology was used to
represent the monitored patient in the application. This individual was a central point in
the knowledge base; all other concepts were related directly or indirectly to this one.

The developed/extended ontologies only strictly covered the most important concepts
that were used in this work, and most of the inverse relations were omitted. The interon-
tology concept mapping the relations among the user and sensors, the vital signs, and
the activities, as well as the relation between the health sensor and the vital signs were
realized manually. The previously mentioned ontologies were combined into a single one
after which the knowledge base was modeled. Individuals from these ontologies were
used to model the data and the relationships between the data in the knowledge base.
The knowledge base acted as a blackboard where different system components could store
their actual knowledge and be accessed/visualized by the interested parts.



Sensors 2021, 21, 4181 7 of 29

3.2. MAS

The proposed multi-agent architecture, which was an extension and completion of
our previous work presented in [62], considered different types of specialized agents in the
knowledge extraction, knowledge management, signal processing, and interaction with
external systems. Some of these agents communicate directly with other agents, while some
access shared information on the blackboard, which acted as a common shared service
for all agents. The agents that were present in the proposed architecture are illustrated in
Figure 2. Next, we describe the agent types and their roles and behaviors. Some basic agent
interactions, such as initialization, registration to the directory facilitator (DF) services, etc.,
are also implied, but are not mentioned.
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Figure 2. Proposed multi-agent architecture.

Manager agent (MAgent): A single instance of this type of agent exists in the monitor-
ing platform. Its main task is to coordinate the MAS. It receives information or updates
from the application about the monitored user, the sensors, and the types of sensors that
are used for monitoring and initializes other agents that will take care of a specific task,
or can form a team of agents, depending on the monitoring scenario.

Knowledge base agent (KBAgent): Just as in the case of the Manager agent, a single
instance of this type of agent exists in the monitoring platform. Its main task is to manage
the knowledge base. It selects and loads the predefined domain-specific ontologies in order
to model the KB. Because the KB location, the name of the classes, or individuals, and
properties can change over time, it holds the knowledge of the structure of the KB and the
form of the SPARQL queries. It receives information from the Manager agent about the
user and sensors and creates data individuals. Furthermore, this agent stores and labels
the datasets that are used by other agents to extract the knowledge. All other agents that
are present in the system and need to access the knowledge base or other data must receive
the template from this agent.

Signal processing agent (SPAgent): This is a simple worker agent that has the main
knowledge and skills of how to collect and process the given signal. One instance of this
type of agent exists for each sensor or type of signal present in the monitoring platform.
Because there is no universal method for processing various types of data, this agent
receives the information about the signal, the filtering, the sampling rate, and the segmen-
tation and loads the appropriate methods or techniques for that specific signal. This agent
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does not directly access the knowledge base, and the processed data are stored in a local
database. Its presence and the given tasks (which methods to load) are coordinated by the
Activity agent and Vital sign agent(s).

Vital sign agent: One instance of this type of agent exists for each monitored vital sign.
Its main task is to extract the vital sign measurements from the local database, where the
processed data were stored, and to update that knowledge in the KB. This agent receives
the information from the Manager agent about the health sensors and the signal type and
requests the creation of a signal processing agent. The detailed description of vital sign
extraction is presented in Section 3.4.

Activity agent: One instance of this type of agent exists, and its main task is to
recognize the user’s physical activity. When this agent is introduced in the system, it
receives the location of the database from which the physical activity data are loaded in
order to train the activity recognition model. The recognized activity is stored in the KB.
Because for activity recognition, data from different wearable sensors, that are present, can
be used and fused, this agent requests the creation of, and coordinates, different signal
processing agents. The detailed description of activity recognition by this agent is presented
in Section 3.5.

Health status agent (HSAgent): This agent has the main scope to evaluate the user’s
health status. It uses the vital signs’ database, which contains samples of vital sign measure-
ments from various users performing different physical activities, in order to automatically
extract the threshold ranges (intervals) for each monitored vital sign separately. Ranges
are marked as a normal range (green zone), altered range (yellow zone), or emergency
range (red zone). The extracted ranges are stored in the form of rules in the KB. This agent
will write one rule for each range and for every physical activity that is present in the
knowledge base. Based on these rules, the user’s health status is evaluated. The detailed
description of knowledge extraction by this agent is presented in Section 3.3.

Alert agent: This type of agent has the main task to select the appropriate action based
on the patient’s health situation determined by the Health status agent. It communicates
to external agents to display warning notifications or alerts for the user or relatives/care
providers about the user’s health status. In this version of the architecture, it implements a
simple Alert protocol: it sends a warning message to the User agent when one of the vital
signs is in the yellow zone and an alert message if two vital signs are in the yellow zone; an
alert message to the Caretaker agent if one vital sign is in the red zone; and an alert message
to the Emergency service agent if two vital signs are in the red zone. The content of the
messages refers to the name of a vital sign that exceeds the normal range, its value, and the
activity that the user was performing.

External agent: This type of agent represents each agent (User agent, Caretaker agent,
and Emergency service agent) from the external systems that interact with the architecture,
representing different persons or entities in the application that must be informed when the
user’s health status worsens. Their main task is to receive and display warning notifications
or alerts.

3.3. Vital Sign Ranges

To extract the vital sign ranges, we applied Karl Pearson’s theory of histograms.
For each physical activity present in the database, the Health status agent extracts the
interval (all measurements for one vital sign recorded during that activity) and divides it
into five subintervals (bins). Each bin that contains a number of samples higher that the
mean number of samples is marked as the green zone. Therefore, the the normal range for
that vital sign is extracted as being between the minimum and maximum value of that bin.
If the bins marked as the green zone are adjacent, then the normal range is between the
minimum value from the first bin and the maximum value of the last bin marked as the
green zone. Then, this agent extracts the ranges from the bins that contain fewer samples
(the number of samples in the bin is less than mean number of samples), which are marked
as the yellow zone. In case there exists a bin, marked as the yellow zone, between two
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bins marked as the green zone, that bin will also be marked as the green zone. For values
lower than the normal range, it checks if the first bin is not marked as the green zone, then
the altered range is extracted as being between the minimum value in the interval and
the minimum value of negative one of the first bin marked as the green zone. The same
proceeds with the physiological measurements that are higher than normal range. It checks
if the last bin is not marked as the green zone, then the altered range is extracted as being
between the maximum value of positive one of the last bin marked as the green zone and
the maximum value in the interval. Finally, the red (emergency) zone is defined as being
the value lower than the minimum or higher than the maximum in the extracted interval.

We chose this approach because the Health status agent can adapt the ranges to
different target users. Based on their demographics, such as age group, geographical
region, or health information, the appropriate user data can be selected from the vital signs’
database to perform range extraction.

3.4. Vital Sign Extraction

If in the application, the heart rate and breathing rate are monitored, there exists one
agent for each vital sign (BR agent and HR agent). In the absence of a dedicated sensor
that can send the raw physical measurement data, these agents implement the possibility
to extract or estimate vital signs from the ECG signal. Because both vital sign agents
access the same resource, a single signal processing agent is created. This agent adopts the
available filtering method and only stores the data in the local database. No segmentation
is performed by this agent because the BR agent and HR agent use different window sizes
to extract the measurements. In this work, the ECG signal was filtered using the “notch”
filter of the second order with a cutoff frequency of 0.05 Hz and a quality factor of 0.005 Hz,
as presented in [39]. This filter is useful especially for removing the baseline wander from
ECG signals. The filtered signal is stored for further processing by the two vital sign agents.
The extraction of the vital signs from the ECG signal was performed using the methods
described in [39,40,63].

3.4.1. HR Agent

In order to extract the HR, filtered physiological data are segmented using a non-
overlapping sliding window approach. We selected the size of the window as 4 s. To detect
the heartbeats, for each given window size, this agent applies a rolling window technique
of 0.25 s on both sides of the data points and calculates the rolling average. For each rolling
segment in the given window of 4 s, the regions of interest (ROI) where the signal amplitude
is larger than the rolling average (if the signal is above the local mean) are marked. The
positions of the R peaks are taken as being the highest point in the marked ROI. Then, this
agent computes the RR-interval, the distance, between each consecutive detected peak.
The distance is converted to ms. The positions of the R peaks and RR-interval lists are
retained for further processing. The heart rate is determined by the interval between two
consecutive R peaks, so the average RR-interval divided by 1 min is computed as being the
average HR in a given window of 4 s. The computed heart rate measurement is stored in
the KB.

HRw =
T

RRImean
(1)

where T represents the time of 1 min (6000 ms), RRImean is the average value of the RR-
interval distances, and w represents the given signal window.

Because the signal can contain noise, especially produced by moving artifacts, we
applied the signal quality index algorithm proposed in [64] for labeling the signal as “bad
signals” if the extracted HR was above 190 bpm. The raw ECG signal with visible R peaks,
before and after applying the filtering technique, is presented in Figure 3.
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Figure 3. Raw and filtered ECG signal with visible R peaks in a 4 s window.

3.4.2. BR agent

Because the BR agent uses the heart rate in order to estimate the breathing rate,
with the HR agent present in the system, this agent does not need to extract the R peaks
from the signal and compute the RR-interval by itself. It subscribes to the HR agent to
receive the needed information. If the HR agent is not present, this agent loads the R peak
detection method. To estimate the BR, a sliding window of 20 s was selected with an 80%
overlap, meaning that this agent extracts the BR every 4 s from the previous 20 s interval.
After receiving the RR-intervals (distance between peaks) in ms from the HR agent and
computing the HR for each interval, a cubic spline interpolation method was performed to
obtain the EDR (ECG-derived respiration) waveform. In the case of a low sampling rate
of 50 Hz, the data was up-sampled four times. After detecting the respiratory peaks, this
agent computed the mean respiratory frequency for the given window size.

BRw =
NRespPeaks

Nw
(2)

where w represents the given window, NRespPeaks is the number of detected respiratory
peaks in w, and NResPeaks is the size of the given window.

3.5. Activity Recognition

In order to recognize the user’s physical activity, the Activity agent uses only ac-
celerometer data. In case of multiple sensors present in the system that have the accelerom-
eter sensing capability and because each sensor can have a different sampling rate or
different communication protocol, the Activity agent requests a signal processing agent
that manages each sensor’s data. It informs these agents about the segmentation method
that must be performed. The processed data are stored in the local database.

3.5.1. Signal Processing

The raw accelerometer signal, containing readings from all three axes (x, y, z), is seg-
mented using a fixed-size non-overlapping sliding window (FNSW) of 2 s. We chose a win-
dow length of 2 s because it was sufficient to recognize simple physical activities. In Figure 4
is presented the accelerometer signal patterns for different activities of daily living.

Different physical activities may have similar characteristics, thus making it difficult
to represent one activity uniquely. In this context, the Activity agent computes different
features in order to discriminate between physical activities. From the segmented data,
in a local database, a feature vector is extracted for the given window size. The Activity
agent can extract features from the original raw signal or compute the signal magnitude
(SM), from which it extracts the feature vector. The signal magnitude is computed using
the following formula:

SM(i) =
√

x2
i + y2

i + z2
i (3)
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where xi, yi, and zi are the i-th readings of the three axes of the accelerometer’s signal in a
given window.

X-axis Y-axis Z-axis

0 1 2 3 4
Time (s)

(a)

X-axis Y-axis Z-axis

0 1 2 3 4
Time (s)

(b)

X-axis Y-axis Z-axis

0 1 2 3 4
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(c)

X-axis Y-axis Z-axis

0 1 2 3 4
Time (s)

(d)

Figure 4. Tri-axial accelerometer data from the IMU placed on the chest for different physical activities (x-axis, top; y-axis,
middle; z-axis, bottom): (a) standing; (b) walking; (c) climbing stairs; (d) running.

Features from both the time domain and the frequency domain were extracted. The fre-
quency domain was obtained by applying the fast Fourier transform (FFT) on the original
signal. In total, six feature vectors were considered for further analysis:

• xyz_t—feature vector from the original signal in the time domain;
• xyz_f —feature vector from the FFT components of the original signal;
• xyz_tf —aggregated features from xyz_t and xyz_f ;
• mag_t—feature vector from the computed magnitude of the original signal in the

time domain;
• mag_f —feature vector from the FFT components of mag_t;
• mag_tf —aggregated features from mag_t and mag_f.

For the time domain features, we considered the statistical features such as: mean
value (mean), standard deviation (std), minimum value (min), maximum value (max),
median absolute deviation (mad), interquartile range (iqr), variance (var), zero crossing
(zc), root mean square (rms), skewness value (s), and kurtosis value (k). Furthermore, we
considered the energy measure (e) computed as the sum of squares divided by the window
length (number of readings):

Ex =
∑ |xi|2

w
(4)

where xi is the reading in the x-axis and w represents the window length. This feature has
shown good results in discriminating the intensity of physical activities [65].



Sensors 2021, 21, 4181 12 of 29

All of the above-mentioned features were computed and extracted for each of the
three axes. Therefore, three attributes of each feature would be present in the feature
vector obtained from the original signal, and a single attribute of each feature would be
present in the feature vector from the signal’s magnitude. Further, we considered the signal
magnitude area (sma) as the sum of the integrals of the magnitude of all three accelerator
axes. This feature is linearly related to the metabolic energy expenditure of the subject [43].

SMA(x,y,z) =
∑(|xi|+ |yi|+ |zi|)

w
(5)

where xi, yi, and zi represent each reading of the three axes of the accelerometer’s signal in
a given window and w is the window length.

Applying only on the raw signal, where all three signals from the corresponding axes
were present, we computed also the correlation among the axes (xy, xz, and yz) [66].

Corr(x,y) =
cov(x, y)

δxδy
(6)

where cov(x,y) is the ratio of the covariance between the x-axis and y-axis and δxδy is the
product of the standard deviations of the two axes.

In total, the feature vector contained 40 and 13 attributes for the raw signal vector and
magnitude vector, respectively. For the frequency domain, we extracted all the features
computed for the time domain, and in addition, we extracted the signal entropy (se) and
the index of the maximum frequency component (im).

3.5.2. Activity Classification

The recognition of physical activities was based on Waikato Environment for Knowl-
edge Analysis (WEKA) [67,68], an open-source data-mining toolkit and libraries for Java.
The parameters used for the classifiers and for selecting the best feature set were the default
parameters to ensure reproducibility. The Activity agent uses the WEKA library to train a
model using data from the Activity database and to classify activities based on the selected
model. All six mentioned feature vectors were analyzed, and the model selection, as well
as the optimal feature set were based on the highest accuracy score obtained. Most of
the standard and state-of-the-art supervised machine learning models, such as support
vector machine (SVM), random forest (RF), and k-nearest neighbors (KNN), were used.
Furthermore, a multilayer perceptron (MLP) neural network with three hidden layers was
implemented. We chose these classifiers because they showed a good performance on
similar activity recognition work in the literature. Model evaluation was performed using
both the k-fold cross-validation and the leave-one-subject-out evaluation methods.

Further, after selecting the model with the best performance and the feature vector
on which that performance was obtained, the Activity agent selects the optimal number
of features to improve the classification accuracy. The feature reduction was based on
feature importance, and for each iteration, features with the lowest importance were elimi-
nated and the model retrained with the remaining features until the most discriminatory
features remained.

3.6. Team of Agents

The proposed architecture can perform with a single user in the environment, ad-
dressed mostly toward home monitoring systems, or with multiple users in the environ-
ment, addressed toward nursing homes for the elderly or rehabilitation centers. In the
case of multiple users present in the monitoring platform, a single instance of the Manager
agent and the Knowledge base agent exists, and a team of agents is created for each moni-
tored user. The information is shared only between team members, and each team has its
blackboard. The hierarchical architecture is presented in Figure 5.
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Figure 5. Hierarchical architecture and team clusters for multi-user monitoring.

4. Experimental Results and Discussion

In order to validate the proposed multi-agent architecture, we performed different
experiments on a real-life dataset that contained both body motion data and physiological
data obtained from subjects while performing different activities of daily living. The
agents were implemented in the Java Agent Development Environment (JADE) (https:
//jade.tilab.com/, accessed on 10 January 2021) framework Version 4.5, and we used the
Apache Fuseki (https://jena.apache.org/documentation/fuseki2/, accessed on 10 January
2021) server for the triple store. We chose this lightweight triple store server because
it can be easily installed locally and can also run on devices with limited computing
resources. The triple store was modeled using the presented ontologies. Apache JENA
(https://jena.apache.org, accessed on 10 January 2021), an open-source Java framework
for building linked data applications, was used for the interaction between agents and the
triple store. All the experiments were conducted on a macOS computer equipped with an
Intel Quad-Core i7 2.5 GHz CPU and 16 GB 1600 MHz DDR3 RAM.

4.1. Dataset

Experiments were performed using the publicly available MHEALTH dataset accessi-
ble online at UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets/
MHEALTH+Dataset, accessed on 12 May 2021). This dataset, initially introduced and
described in [45,69], contains the body motion and physiological measurements from
10 subjects, of diverse profiles, while performing different activities of daily living. Con-
sidering the ethical aspects regarding the subjects’ privacy, the dataset is fully neutralized;
therefore, explicit identifiable data are absent from the dataset. The data were collected
in an out-of-lab environment with no restriction on how the physical activities had to
be executed, with the exception that the subjects should try their best when executing
them. The collected data were obtained from three Shimmer2™ inertial measurement units
(IMUs) placed on the subjects’ chest, right wrist, and left ankle. Data were recorded at a
50 Hz sampling rate for all sensing modalities. In this work, we considered only the triaxial
accelerometer data from all three wearable sensors, used by the Activity agent, and the lead
Idata from the two-lead ECG obtained from the IMU placed on the subjects’ chest, used for
vital sign extraction by the Vital signs agents. From the total of twelve physical activities
that were present in the dataset, all eight common activities of daily living, with various
MET scores that corresponded to a light, moderate, and vigorous intensity of activities,
were taken into consideration. We excluded the remaining four activities, frontal elevation
of the arms, crouching, waist bends forward, and jump front and back, because these are
more exercise-/fitness-related activities, and also, based on the Compendium of Physical
Activities [70] , we could not determine the MET score or intensity of these activities. The
activities that were considered in this work were: standing, sitting, and lying, which are
posture-related activities; walking and climbing stairs, which are motion-related activities;

https://jade.tilab.com/
https://jade.tilab.com/
https://jena.apache.org/documentation/fuseki2/
https://jena.apache.org
http://archive.ics.uci.edu/ml/datasets/MHEALTH+Dataset
http://archive.ics.uci.edu/ml/datasets/MHEALTH+Dataset
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and cycling, jogging, and running, which are more dynamic and sports-related activities.
These activities were performed for a 1 min range by each subject. The selected activities
and their updated MET score according to [70] are presented in Table 1.

Table 1. Physical activities and MET scores.

Physical Activity MET

Light-intensity activities <3

standing 1.3
sitting 1.3
lying down 1.0

Moderate-intensity activities 3–6

walking 3.5
climbing stairs 4.0
cycling 4.0

Vigorous-intensity activities >6

jogging 7.0
running 8.0

4.2. Activity Recognition
4.2.1. Classifiers’ Results

We analyzed all six feature vectors, which were presented in Section 3.5.1, separately
in order to evaluate the classifiers’ performance and from which signal the features had
to be extracted. In this section, we consider the signals obtained from the IMU on the
chest because it provided the best performance, as was reported in related research work.
Feature fusion, from different body-attached sensors, will be discussed in Section 4.2.3.

For the model evaluation, we chose the four most present evaluation measures in
the literature: accuracy, precision, recall, and F-measure. The accuracy measure was
computed by dividing the true positives (TPs, the number of correctly classified instances
of one activity) by N (the total number of instances of that activity present in the dataset).
The precision measure was computed as a division of the TPs by the sum of TPs and false
positive (FPs, the number of instances of other activities that were misclassified as the
target activity). The recall measure was computed by dividing the TP by the sum of the
TPs and False Negatives (FNs, the number of target activity instances that were classified
as other activities). The F-measure was computed as the harmonic mean of precision and
recall, dividing the product of the precision and recall by the sum of these two measures.

Accuracy =
TP
N

(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F−measure = 2× Precision× Recall
Precision + Recall

(10)

The machine learning models (KNN, SVM, RF) were trained using extracted features
from the raw signals, while the NN model was trained on raw signals in order to extract
features by themselves. Machine learning models extracted all the features presented in
Section 3.5.1, after which they selected the most discriminatory feature set. The feature
selection method will be discussed in the next section. We used two methods to evaluate
the models’ performance, a 10-fold cross-validation method and a leave-one-subject-out
(LOSO) cross-validation method. The k-fold method randomly splits data into k − 1 folds,
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which are used for model training, and the evaluation is performed on the remaining
fold. We chose a stratified k-fold because this ensures the same number of classes in the
validation set while shuffling the data on each run. Using the LOSO method, each fold is
made from all the data from one user, which are used for the validation, while the model is
trained using the data from the rest of the users. This method is subjectwise and ensures
that the data of the target user are not present in the training process. The results were
computed by averaging the results of each fold. All the experiments were run 20 times,
and the average values, in terms of accuracy and F-measure, are present in Figure 6.
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Figure 6. Classifiers performance. (a) Ten-fold cross-validation; (b) LOSO cross-validation.

Because the number of classes in the dataset was perfectly balanced, we analyzed
only the accuracy score. The best results were obtained from the RF classifier for both
cross-validation methods. For the 10-fold cross-validation method, extracting features
from the magnitude vector in the time domain (mag_t), the classifier achieved an accu-
racy of 83% (+/− 1.53 std); extracting features from the magnitude vector in both the
time and frequency domains (mag_tf ), the obtained accuracy was 85% (+/− 1.94 std);
extracting features from the raw triaxial signal in time domain (xyz_t), an accuracy of
98% (+/− 1.06 std) was achieved; and extracting features from the raw triaxial signal in
both the time and frequency domains (xyz_tf ), the classifier obtained an accuracy of 98%
(+/− 0.79 std). On the other hand, using the LOSO cross-validation method, extracting
features from the magnitude vector in the time domain (mag_t), the classifier achieved an
accuracy of 75% (+/− 7.45 std); extracting features from the magnitude vector in both the
time and frequency domains (mag_tf ), an accuracy of 76% (+/− 7.70 std) was achieved;
extracting features from the raw triaxial signal in the time domain (xyz_t), an accuracy
of 80% (+/− 11.30 std) was achieved; and extracting features from the raw triaxial signal
in both the time and frequency domains (xyz_tf ), the classifier obtained an accuracy of
79% (+/− 11.80 std). All classifiers obtained worse accuracy scores from the frequency
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domain-only vector because most of the activities required a longer window size of data in
order to obtain the magnitude spectrum of the signal.

Giving the highest accuracy score, the RF model was selected for activity recognition.
Due to the computational cost of the computing frequency domain, and almost the same
performance obtained, we analyzed only the RF classifier’s performance in the time domain-
only vectors. In Figure 7, we present a confusion matrix for the magnitude and raw signal
vectors. As can be noticed, all the misclassifications, for both the raw signal and magnitude
vectors, were made among activities with the same intensity. The most confusions were
made between the sitting and standing activities and between jogging and running. Better
discrimination between activities was obtained by using features from the raw triaxial
signal than from the magnitude vector. Therefore, for further analysis, the raw triaxial
signal was considered.

Applying the 10-fold cross-validation method, we obtained a very good accuracy of
98%, similar to the related work that used this evaluation method, but this can be seen as
a very optimistic evaluation. Considering that this method is subject dependent, it was
sufficient for only a small amount of instances from the target subject to exist, and the
accuracy increased, thus making it very hard to evaluate new subjects. In real life, a model
is developed and trained with a set of people, but the target users are usually unseen by the
systems, so it must perform on unseen data. On the other hand, using the LOSO method, a
more robust result can be achieved when the system acts on unseen subject data. Using
this approach, a cold start problem can be solved when the system must handle the case
where there are no data about the target subject. The detailed performance for each activity
obtained from the raw triaxial signal using the LOSO cross-validation method is presented
in Table 2.
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Figure 7. Confusion matrices for the RF classifier on the magnitude and raw accelerometer signals: (a) magnitude vector
using 10-fold cross-validation; (b) magnitude vector using LOSO cross-validation; (c) raw triaxial vector using 10-fold
cross-validation; (d) raw triaxial vector using LOSO cross-validation.
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Table 2. Activities’ recognition rate for the RF classifier using the LOSO cross-validation method.

Physical Activity Accuracy Precision Recall

standing 0.72 0.53 0.72
sitting 0.36 0.56 0.36
lying 1.0 1.0 1.0

walking 0.82 0.84 0.82
climbing stairs 0.84 0.81 0.84

cycling 0.97 0.99 0.97
jogging 0.88 0.85 0.88
running 0.84 0.87 0.84

4.2.2. Feature Reduction

Feature reduction was performed in order to select the best subset of features that
discriminated the physical activities. The reduced subset could lead to the improvement
of the model’s accuracy and also reduce the computational cost of feature extraction.
Initially, the model was trained on all the features discussed in Section 3.5.1. Then, on
each iteration, the feature with the least importance was removed from the set, and the
model was retrained with the remaining features. On the raw accelerometer data, where
signals from all three axes were present, we applied the rule that the same feature for
all three axes must remain in the feature set. In that case, the average importance of a
triple was compared, not a single attribute. A comparison of the performance of the RF
classifier performing on different feature sets and the execution time for each set from the
raw triaxial signal originated from the sensor placed on the chest is presented in Figure 8.
The execution time reported was obtained by computing the average cost of 20 consecutive
runs on each feature subset.
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Figure 8. Accuracy and execution time on different feature subsets.

The best accuracy score of 80% was obtained from a feature set that contained 22 at-
tributes. Reducing the number of features more slightly reduced the execution time, but the
accuracy significantly decreased. In this work, we did not address the resource constraints.
The scalability tests were not the focus of this work, which will be addressed in the future
work, so the feature subset was selected based only on the accuracy metrics.

4.2.3. Two-Layer Multimodal Fusion

The obtained accuracy of 80% from the chest-worn sensor was not sufficient for a good
activity recognition system, so we analyzed different sensor combinations. In this work,
we applied the feature-level fusion only, also known as early fusion. The same features
were extracted from two sensors to produce a single feature vector. By combining features
from the chest and wrist sensors, we obtained an overall accuracy of 85.25%; from the wrist
and ankle sensors, an overall accuracy of 94.83% was obtained; and from the chest and
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ankle sensors, an overall accuracy of 91.83% was obtained, recognizing all eight types of
physical activity. Confusion matrices for all three modalities are present in Figure 9.
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Figure 9. Confusion matrices of feature fusion for all three combinations.

If we look at the chest and wrist sensor fusion, we can notice an accuracy of 94%
among light-intensity activities (standing, sitting, and lying). Combining features from the
wrist- and ankle-worn sensors, an accuracy of 99% was achieved for moderate-intensity
activities (walking, climbing stairs, and cycling). Combining the chest and ankle sensors,
an accuracy of 92% was achieved for vigorous-intensity activities (jogging and running).

Further, we considered the detection of the intensity of activities, and based on this
knowledge, the appropriate sensors were selected for the feature fusion. Therefore, on the
first layer of activity recognition, we used a decision tree (DT) classifier based on the J48
model to recognize the intensity of the activity. Almost identical accuracy was obtained
from the KNN model, but we chose the DT because of the run-time cost compared to the
KNN, which uses more run-time resources. In this step, we reduced the sliding window
to 1 s, which was sufficient for a very good classification. The best accuracy was obtained
from the magnitude vector with only four features (mad, var, rms, and iqr). Furthermore,
a very good performance can be obtained from any of the three sensors, as can be seen in
Figure 10.
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Figure 10. Confusion matrices for detecting the intensity of the activity.

After detecting the intensity, on the second layer, the RF classifier extracted the features
from the appropriate combination of sensors and achieved an accuracy of 95.25%. If the
intensity of the activity was recognized as light, the features were extracted from the chest
and wrist sensors; if the activity was recognized as moderate, the features from the wrist
and ankle sensors were extracted; and finally, if the activity had vigorous intensity, the
features from the chest and ankle sensors were extracted. The following knowledge was
extracted, as presented in Table 3, and stored in the KB.

Table 3. Rules’ extraction for the intensity of activity.

IF intensity=light THEN fuse chest sensor AND wrist sensor
IF intensity=moderate THEN fuse wrist sensor AND ankle sensor
IF intensity=vigorous THEN fuse chest sensor AND ankle sensor
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The best performance was obtained by extracting ten attributes from each sensor’s
signal. Extracting only seven features slightly improved the accuracy from 92% to 93% for
vigorous-intensity activities, while for moderate-intensity activities, the obtained accuracy
was the same, but for light-intensity activities, we noticed a drop in performance from
94% to 87%. Therefore, for the final model, we relied on 10 extracted attributes from each
sensor. The overall performance of the two-layer multimodal fusion approach is presented
in Figure 11. The following features were selected by the system: mean, std, sma, and rms.
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Figure 11. Confusion matrix for the two-layer multimodal fusion approach.

Applying this technique, we achieved an accuracy of 92% for the standing activity
and 90% for the sitting activity, and the rest were misclassified between these two activities.
Considering that sitting and standing are both stationary posture activities and the sensors
on the chest and wrist can be oriented in the same way during both activities, it can be
difficult to distinguish between them using only the accelerometer data and early fusion
approach. In the future work, we will also investigate, in case the recognized activity
is sitting or standing, if the performance improves by including the data of the sensor
placed on the ankle. All instances of the lying activity were classified correctly. For the
walking and climbing stairs, we achieved a 99% accuracy, in both cases, the remaining
1% of which was misclassified between these two activities. The cycling activity was very
well discriminated, achieving the best accuracy. For the jogging and running activities,
we achieved 95% and 88%, respectively, with the remaining misclassified between these
two classes. Considering that jogging is defined as “running” slower than 10 km/h, in the
different datasets presented in the literature, these two activities are often considered as a
single activity. The detailed performance obtained for each activity is presented in Table 4.

Table 4. Activities’ recognition rate using the two-layer multimodal fusion approach.

Physical Activity Accuracy Precision Recall

standing 0.92 0.90 0.92
sitting 0.90 0.92 0.90
lying 1.0 1.0 1.0

walking 0.99 0.99 0.99
climbing stairs 0.99 0.99 0.98

cycling 1.0 1.0 1.0
jogging 0.95 0.89 0.95
running 0.88 0.94 0.88

In the literature, on the same dataset, using different methods, very good classification
results were reported. Using the accelerometer, gyroscope, and magnetometer signals
from all three sensors, a temporal sliding window of 5 s, and the leave-one-trial-out with
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10-fold cross-validation method, an accuracy of 94.72% was obtained from the ensemble
of classifiers in [71] . In [72] , using data from all three sensors and sensing modalities, as
well as the hold-out method, an accuracy score of 74.85% and 97.15% was achieved for the
single base classifier and the hierarchy-based classification method, respectively. In [73] ,
also using data from all three sensors and all three sensing modalities, a 1 s fixed sliding
window, and the LOSO cross-validation method, an accuracy of 90.91% was obtained using
Adam optimization and the maximum entropy Markov model. With the convolutional
neural network (CNN) approach with a sliding window with a size of 60 samples with 50%
overlap over the time domain, using the hold-out method and the data from all sensors
and modalities, an accuracy of 98.30% was reported in [74] . Furthermore, considering the
accelerometer data from all three sensors and the gyroscope data from the wrist and ankle
sensors, using the LOSO cross-validation method, an accuracy of 91.94% was obtained
in [75] . The long short-term memory-convolutional neural network (LSTM-CNN) model
presented in [76] achieved an accuracy of 95.56% using the hold-out method and fixed-
width sliding windows of 128 readings, from all three sensors and sensing modalities.
A dual-stream recurrent convolutional attention model presented in [77] , using the LOSO
cross-validation method and data from all three sensors and sensing modalities, obtained
an accuracy of 94.0%. In [78] , using accelerometer data from the combination of all sensors
was investigated. The best accuracy of 91.64% was obtained from the fusion of the ankle
and wrist sensors, using a 2 s sliding window and the LOSO cross-validation method to
estimate the performance of the recognition model.

The proposed activities’ recognition model, using the two-layer multimodal fusion
approach, addressing the cold start problem, acting on unseen subject data by applying
the subject-independent evaluation method, reducing the number of data transmissions
from the sensors, automatically selecting the appropriate combination of body-attached
sensors, performed as well as many systems presented in the literature, obtaining a similar
accuracy score.

4.3. Activity-Aware Vital Sign Thresholds

In order to extract the vital signs, HR and BR, we used the lead IECG signal from the
dataset. Vital signs were extracted using the methods presented in Section 3.4. For the HR,
we used a 4 s non-overlapping sliding window, and for the BR, we used a 20 s window,
applying 80% overlap. Therefore, we extracted the BR every 4 s for the previous 20 s
interval. In Figure 12, the detected peaks in the ECG signal for the HR obtained from
Subject 1 while climbing stairs, with an average HR of 83 bpm and the estimated BR,
with an average breathing frequency of 0.30 Hz or 18 brpm, obtained from the same subject
while performing a walking activity, are presented. The extracted vital signs were rounded
to the nearest integer and stored in the KB. From the dataset, due to the noise caused by
moving artifacts, only 88% of the vital signs’ data were obtained, and the remaining were
labeled as “bad signal” by the HR agent. In the future work, adaptive filtering methods
must be considered.

For each monitored vital sign, the Health agent extracted the new knowledge from
the vital signs’ database (dataset). It established the threshold ranges for each vital sign for
every activity present in the dataset, as presented in Section 3.3. In the case of the HR ranges
only, considering the acceptable error rate of +− 3 bpm in most of the commercial monitors,
the extracted intervals were adjusted to the nearest multiple of five. Established ranges,
by analyzing the data of all 10 subjects from the dataset, are presented in Figures 13 and 14
for the two monitored vital signs, HR and BR, respectively. The examples of the knowledge
in the form of rules, which was extracted from the dataset, are presented in Table 5.
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Figure 12. Extracted vital signs, HR and BR, from the ECG signal.
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Figure 13. HR threshold ranges.
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Figure 14. BR threshold ranges.

Table 5. Rules’ extraction for vital signs threshold ranges.

IF activity=walking THEN normal HR range is 70–125 bpm
IF activity=running THEN altered HR range is 100–135 bpm
IF activity=cycling THEN normal BR range is 18–30 brpm
IF activity=sitting THEN emergency BR range is <8 brpm
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4.4. Health Status Monitoring

After the independent evaluation of each of the two main components of the pro-
posed architecture (vital sign range extraction and activity recognition), we performed a
simulation on each subject from the dataset, acting as the target user, in order to analyze
the warnings or alerts that were generated. The purpose of this simulation was strictly
to investigate how the system behaved in real-life scenarios. For each subject, the corre-
sponding team was created, and physical activity model training and vital sign threshold
range extraction were performed from the data of the other nine subjects from the dataset,
except the target user (subject) monitored by the corresponding team. Because only the
server-side part of the application was implemented, the external agents, which received
the warning/alert messages, ran on the same machine. In addition to this, for each sample
from the dataset (for each user’s reading in our simulation), a new Reading individual in
each local KB was created. This information was used for analysis purposes and was not
used by the multi-agent system. The extracted ranges that were used for the vital sign
evaluation of each of the ten subjects are presented in Table 6. Because of the small size
of the dataset, changing the subjects from which the vital sign intervals were extracted
affected some activities’ ranges. For some activities, the monitored subjects had different
ranges. A comparison of the warnings/alerts generated (messages sent to the external
agents) by the proposed method, for the ten evaluated subjects, is presented in Figure 15.

Table 6. Vital signs’ green zone ranges during physical activities for each monitored subject.

Physical Activity Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
HR BR HR BR HR BR HR BR HR BR

standing 60–105 9–30 60–90 9–23 60–105 9–30 60–100 9–30 60–110 9–30
sitting 55–95 6–22 55–80 8–22 55–80 6–22 55–80 6–22 55–80 6–22
lying 45–90 6–18 55–80 6–18 45–70 6–18 45–70 6–18 45–70 6–18

walking 70–125 12–30 65–125 12–30 70–125 12–30 70–100 12–30 85–110 18–30
climbing stairs 100–160 25–38 100–145 25–38 100–145 24–40 100–145 25–38 105–125 28–37

cycling 60–120 18–30 60–125 16–28 90–145 18–30 90–145 18–30 75–120 18–27
jogging 105–160 29–33 105–160 29–33 105–145 28–33 110–160 29–33 110–160 28–33
running 150–185 21–38 150–185 20–37 150–185 21–38 150–185 23–34 150–185 21–38

Physical Activity Subject 6 Subject 7 Subject 8 Subject 9 Subject 10
HR BR HR BR HR BR HR BR HR BR

standing 75–105 9–30 60–105 9–30 60–105 9–30 65–105 9–28 60–105 9–30
sitting 55–80 6–22 60–85 6–22 55–80 6–22 60–85 6–18 55–95 6–22
lying 45–70 6–18 45–70 6–18 45–70 6–18 45–70 12–18 45–90 6–18

walking 70–125 18–30 70–125 12–28 70–125 18–30 70–115 14–30 70–125 12–30
climbing stairs 100–145 25–38 100–145 25–38 100–145 25–38 110–145 25–38 100–145 25–38

cycling 90–145 18–30 90–145 18–30 90–145 18–30 80–135 22–30 90–145 18–30
jogging 110–160 28–33 110–160 28–33 110–160 28–33 95–150 28–33 110–160 28–33
running 150–185 21–38 150–185 21–38 150–185 21–38 155–185 21–38 150–185 21–38
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Figure 15. Warnings/alerts generated when physiological measurements exceeded the normal range.
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In the case of the HR, the number of generated warnings/alerts was low for Subjects
1, 8, and 10, generating 9, 11, and 10 warnings/alerts, respectively, meaning that approxi-
mately 92% of the samples were classified in the green zone. Between 20 and 25 warnings
or alerts were generated for Subjects 2, 3, 5, and 6, resulting in approximately 82% of the
samples being classified in the green zone. For Subject 7, there were 37 warnings/alerts
generated, resulting in 70% of the samples being classified in the green zone. The num-
ber of generated warnings/alerts was very high for Subjects 4 and 9, generating 65 and
64 warnings/alerts, respectively, meaning that approximately 54% of the samples exceeded
the green zone. From the dataset, considering all ten experiments, on average, there 77% of
the samples classified in the green zone.

In the case of BR, for Subjects 1, 3, and 6, there were 3, 4, and 9 warnings/alerts
generated, respectively, resulting in approximately 96% of samples being classified in the
green zone. For Subject 8 and Subject 10, there were 12 and 17 warnings/alerts generated,
meaning that approximately 88% of the samples fit in the green zone. Between 20 and
29 warnings/alerts were generated for Subjects 2, 4, 5, and 7, resulting in approximately
81% of the samples being classified in the green zone. Most warnings/alerts were generated
for Subject 9, 54 in this case, resulting in that only 55% of the samples were classified in the
green zone. On average, there 84% of the samples classified in the green zone.

The fewest warnings were generated for Subject 1. Most of the warnings were caused
by the lower HR during the jogging and running activities. In both cases, the lower values
were recorded at the beginning of these activities.

In the case of Subject 2, most of the warnings/alarms were generated because of the
higher HR during the standing activity performed by this user. The extracted HR for this
activity was between 81 and 104 bpm. Regarding the BR, warnings/alarms were generated
because higher values were recorded during the standing and cycling activities. The user
recorded 18–30 brpm and 33–42 brpm, respectively, while performing these two activities.

For Subject 3, the warnings were caused by the recorded HR of 72 bpm during lying,
146–150 bpm during climbing stairs, as well as by higher values, above 145 bpm, recorded
during the jogging activity.

Warnings were generated for Subject 4 because the extracted HR was in many cases
above the threshold ranges for all light- and moderate-intensity activities. Only three
warnings were recorded for high-intensity activities. Regarding the BR, warning alarms
were generated because of the lower BR during the running activity for which the extracted
values ranged between 9 and 33 brpm.

For Subject 5, warnings/alerts were generated because of the higher HR during
walking and climbing stairs. The recorded values were 77–176 bpm and 107–176 bpm
while performing the walking and climbing stairs activity, respectively. Regarding the BR,
warnings/alarms were generated because of the lower BR during climbing stairs for which
12–24 brpm was recorded for the subject.

In the case of Subject 6, the automatically extracted HR threshold range for the standing
activity was 75–105 bpm, which contained the highest value for the lower limit, compared
to the threshold ranges of the other subjects, therefore resulting in a warning for each
sample because the recorded values from this subject were all below that range.

For Subject 7, most of the warnings/alarms were caused because of the higher HR
during the standing and sitting activities performed by this user. The extracted HR values
during these activities ranged between 74 and 110 bpm. The computed BR for this subject
was very high, in most of the cases exceeding the threshold ranges during the cycling and
jogging activities.

In the case of Subject 8, only a few samples fit below the threshold ranges, for the
obtained HR, during different activities. Regarding the BR, most of the warnings/alerts
were generated because the extracted values were below the threshold range for the
walking activity.

For Subject9, the highest number of warnings/alerts was generated. Regarding the
HR, almost all samples from the standing, ranging between 61 and 66 bpm, and running,
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ranging between 98–162 bpm, activities exceeded the threshold ranges. Furthermore,
the BR, of 30–42 brpm, was higher than the threshold ranges for almost all samples from
the standing, sitting, and lying activities. The BR was the highest among the monitored
subjects, during these activities, and was possibly caused by noise in the signal. This issue,
by applying different filtering techniques, will be investigated in the future work.

For Subject 10, a few warnings/alerts were generated for the HR during different
activities. Most of them (three) were caused by the lower HR during running, recorded
from the sample from the beginning of the activity. Regarding the BR, warnings/alerts were
generated because of the lower values recorded during the jogging and running activities.

Regarding the number of alerts (in the case that both of the vital signs were out of the
green zone), none were generated for Subjects 1, 6, and 10; for Subject 3 and Subject 8, there
were three and two alerts registered, respectively (approximately 2% of the total monitored
samples from these subjects); for Subject 4 and Subject 7, only six were registered from
each subject (5% of the total monitored samples from these subjects); eight were registered
for Subject 2 (7% of total monitored samples from this subject); fourteen for Subject 5 (12%
of total monitored samples from this subject); and twenty-nine for Subject 9 (24% of total
monitored samples from this subject).

Regarding the alerts received by the Caretaker agent (when at least one of the physio-
logical measurements exceeded the yellow zone), only the cases of Subject 5, Subject 7, and
Subject 9 were registered. For Subject5, from a total of nine alerts, four alerts were received
because of the high HR, which exceeded the above range of 150 bpm of the yellow zone for
climbing stairs and five alerts in the case of the walking activity because the measurements
exceeded the above range of 135 bpm of the yellow zone for that activity. A single alert
was registered for Subject 7 because of the elevated HR, of 106 bpm, during the sitting
activity (exceeding the above range of 105 bpm of the yellow zone). In the case of Subject 9,
from a total of 22 alerts, one was registered because of the HR of 54 bpm during jogging,
exceeding the bottom range of 90 bpm, and three were registered for the lower HR, of 58–69
bpm, which exceeded the bottom range of 120 bpm for the running activity, while eighteen
were registered because of the very high BR, of 38–48 brpm, during the standing (6 alerts),
sitting (3 alerts), and lying (9 alerts) activities.

Because there was no demographic information present in the dataset, in this work,
we selected the data of all nine subjects, which were used for each target user. Considering
that subjects had diverse profiles, the method showed promising results. However, in order
to reduce the number of warnings/alerts, a larger dataset must be considered, including a
larger number of subjects in different categories, in order to select only the data from the
subjects with similar characteristics, because users with different characteristics, referring to
age or health status, may perform physical activities differently. As in the case of the cycling
activity, it can be performed with different intensities, as well as in the case of climbing
stairs. For generating warnings/alerts also, the previous activity must be considered
because when performing an activity with a higher intensity prior to light activities, the
vital sign measurements would remain elevated.

5. Conclusions and Future Work

In this work, we proposed a multi-agent architecture for activity-aware vital sign
monitoring. The architecture included several predefined types/roles of agents. Each role
had a set of tasks that were executed in order to process the signal from the sensors, monitor
the vital signs, recognize the user’s physical activity, and alert different entities when the
user’s vital signs exceeded the normal ranges. Because the vital signs were related to the
physical activity performed by the user, these ranges were extracted automatically for each
physical activity known by the system. To better suit the monitored user, these ranges must
be obtained automatically from other users with similar characteristics as the monitored
user, thus eliminating the manual threshold ranges’ configuration either by the end user or
by the medical personnel.
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Because activity recognition was the main component in our architecture and vital
sign ranges depend on the recognized activity, we dedicated much work in this direction.
The system recognized eight simple activities of daily living from the accelerometer data of
different body-attached sensors. Features were extracted from both the time and frequency
domain, either from raw signals or from the computed magnitude of the signal, for analysis
and the best approach selected. The system selected the most discriminant features based
on their importance. The system used a two-layer multimodal fusion, in order to fuse data
from different available sensors: on the first layer, the intensity of the activity is considered,
which can be obtained from each sensor using the decision tree classifier, and based on
the intensity, on the second layer, data were fused from those sensors that gave the best
accuracy for activities with that intensity.

The system was validated on a real-life dataset, which contained activity data from
three body-attached sensors, and using the random forest classifier, overall, the best
accuracy obtained from the system was 95.25% by applying the intersubject cross-validation
method. Assuming that in real-life, a user performs one activity for some period of time
and does not change the type of activity performed very often, by using the two-layer
fusion model, the remaining sensor that is not used for recognizing that activity can be put
in sleep mode. In the case of the malfunction of one sensor, worst accuracy by using only
the two remaining sensors was 84.50%. To cope with the data heterogeneity, the system
loaded different domain-specific ontologies. Individuals from these ontologies were used
to model data in the knowledge base.

The proposed architecture is flexible and easily extensible to a different context, so
it can be implemented either for monitoring a single user in home settings or to monitor
multiple users in nursing homes for the elderly or in rehabilitation centers.

Considering the noise that is produced by moving artifacts, when subjects performed
the jogging and running activity, the vital signs were extracted from only 88% of the dataset.
For the future work, we intend to implement adaptive filtering methods for physiological
signals based on the recognized activity.

We intend to extend the architecture with different specialized or expert agents to
be able to recognize different heart anomalies, for example, an agent that detects atrial
fibrillation or other irregular heartbeats, as well as agents that can extract other vital signs.

One of the drawbacks of the system was the size of the dataset used because the
system performance relied on the given data. Using a larger dataset, preferably with users
from different age categories and/or with different health conditions, could give a better
image in terms of activity classification, because younger people and elderly people can
perform the same activity in different modes, especially for vital sign extraction, because
the vital sign ranges related to the activities may be different in different age groups and
even more if the individuals have different health conditions.

Because the scalability test was not the main focus of this research, in the future,
we intend to address this issue regarding the execution time for the feature extraction,
the feature subset selection, as well as the machine learning model training and selection.
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