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Colon-specific eQTL analysis to inform on functional SNPs
Victor Moreno1,2,3,4, M. Henar Alonso1,2,3, Adrià Closa1,2,3, Xavier Vallés1,2, Anna Diez-Villanueva1,2, Laura Valle2,5,6, Sergi Castellví-Bel7,8,9,
Rebeca Sanz-Pamplona1,2,3, Adriana Lopez-Doriga1,2,3, David Cordero1,2,3 and Xavier Solé1,2,3

BACKGROUND: Genome-wide association studies on colorectal cancer have identified more than 60 susceptibility loci, but for
most of them there is no clear knowledge of functionality or the underlying gene responsible for the risk modification. Expression
quantitative trail loci (eQTL) may provide functional information for such single nucleotide polymorphisms (SNPs).
METHODS: We have performed detailed eQTL analysis specific for colon tissue on a series of 97 colon tumours, their paired
adjacent normal mucosa and 47 colon mucosa samples donated by healthy individuals. R package MatrixEQTL was used to search
for genome-wide cis-eQTL and trans-eQTL fitting linear models adjusted for age, gender and tissue type to rank transformed
expression data.
RESULTS: The cis-eQTL analyses has revealed 29,073 SNP-gene associations with permutation-adjusted P-values < 0.01. These
correspond to 363 unique genes. The trans-eQTL analysis identified 10,665 significant SNP-gene associations, most of them in the
same chromosome, further than 1 Mb of the gene. We provide a web tool to search for specific SNPs or genes. The tool calculates
Pearson or Spearman correlation, and allows to select tissue type for analysis. Data and plots can be exported.
CONCLUSIONS: This resource should be useful to prioritise SNPs for further functional studies and to identify relevant genes
behind identified loci.
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INTRODUCTION
Genome-wide association studies (GWAS) of common complex
diseases have escalated during the past decade, and multiple
susceptibility loci have been identified. For colorectal cancer (CRC),
more than 60 single nucleotide polymorphisms (SNPs) have
reached genome-wide significant results, but only few of them
have functional studies that identify the gene involved.1 Few SNPs
associated to diseases are protein altering non-synonymous
variants.2 Most disease-associated variants fall into non-coding
regions. Some are located in gene desserts far from putative
functional genes,3 and only 5% of the currently validated disease
associations are restricted to coding variants.4 Regarding CRC, only
3 (5%) of the GWAS SNPs known so far map to coding regions
(Supplementary Table 1). Some SNPs are located in gene introns,
but that does not guarantee that the real functional gene is the
one where the SNP is located, as it is known that some enhancers
are located in introns of nearby genes.5

There is a general agreement that the gene transcript
abundance may act as an intermediate phenotype useful to
assess the effect of genetic variation on a clinical phenotype.6–9

From this observation, rose the concept that disease-associated
SNPs located in regulatory regions of close (cis) or distant (trans)
genes act as quantitative trait loci through the modification of

gene expression levels (expression quantitative trait loci (eQTL)).
Regulatory sequences of a given gene (promoter, enhancer, splice
site), modified by genetic variation, may result in diverse RNA
abundance and ultimately, diverse phenotype.
The emergence of microarray technologies, and next-

generation sequencing more recently, has allowed the genome-
wide exploration of both genetic variation and gene expression.
Thus, agnostic search for eQTL is feasible and may be useful to
explain SNP-disease associations, to provide prior weights for the
statistical analysis of new SNPs discovery10–12 and to prioritise
which SNPs should be followed-up with additional functional
studies.
Data on eQTL-based association studies on CRC are still scarce.

Most eQTL analyses have used lymphoblastoid cell lines.13–15

Although germ-line genetic variation is assumed constant for all
cells, gene expression is tissue specific. The analysis of eQTL may
vary across tissues, either because some genes may not be
expressed in a specific tissue, thus being undetectable, or because
other (epigenetic) regulatory mechanisms of gene expression may
interact with the effect of genetic variation. The sharing of eQTL
among tissues is of interest.16 The Genotype Tissue Expression
(GTEx) project17 has been designed to address this issue, and
preliminary analyses showed a high degree of sharing,18 though
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colon tissue was not available at the time of that publication.
Some studies have analysed tumour tissue from The Cancer
Genome Atlas project,19 but gene expression is strongly altered in
the tumour tissue compared to normal tissue.20 Other than GTEx
data, to the best of our knowledge, there are no easy sources for
eQTL analysis specific to colon tissue, though some researchers
have published their analyses.21,22

In this article, we present an eQTL analysis specific for colon
tissue, and a web tool that allows the user to query specific SNPs
or genes for analysis, with options to combine data from healthy
patients, adjacent normal mucosa from patients with colon cancer
and tumour tissue. This source of data has been useful to identify
genes associated with CRC susceptibility SNPs,23 and may also be
of interest for studies of genetic determinants of inflammatory
bowel disease (IBD).24

MATERIALS AND METHODS
Subjects and samples
Colon tumour and paired adjacent normal mucosa tissue
samples were selected from a series of cases with a new
diagnosis of colon adenocarcinoma attending the University
Hospital of Bellvitge in Barcelona between January 1996 and
December 2000. Patients included were diagnosed of stage II,
microsatellite stable colon cancer, were surgically treated and
had not received adjuvant chemotherapy. Adjacent mucosa was
obtained from the proximal surgical margins and was at least 10
cm distant from the tumour lesion. Healthy colon mucosa
samples were obtained during colonoscopy between February
and May 2010. These samples were donated by a series of
unselected individuals who underwent a colonoscopy indicated
by screening or suspicion of colonic pathology but no colonic
lesions were observed. Biopsies were obtained from the left and
right colon. For this study, we randomly selected approximately
half from each tumour location. All subjects provided written
informed consent to participate in the study and the ethics
committee of the hospital cleared the protocol with reference
PR074/11. Additional information about the study can be found
at https://www.colonomics.org/eqtl-browser. The eQTL analysis
was focused on expression data assessed in normal mucosa.
Though we initially selected 100 patients and 50 healthy
controls, the final sample size after quality control of the data
was (N= 144): 97 adjacent normal mucosae from cancer patients
and 47 from healthy donors. Gene expression in tumours (n= 97)
was also analysed, and these data can be compared or combined
with those of normal mucosa.

Gene expression and SNP analyses
DNA was extracted from colon mucosa specimens using a
standard phenol–chloroform protocol. Total RNA was isolated
from tissue samples using the miRCURY™ RNA Isolation Kit
(Exiqon, Vedbæk, Denmark) according to manufacturer’s protocol,
quantified by NanoDrop® ND-1000 Spectrophotometer (Nanodrop
technologies, Wilmington, DE) and stored at −80 °C. The quality of
these RNA samples was assessed with the RNA 6000 Nano Assay
(Agilent Technologies, Santa Clara, CA). RNA integrity numbers
showed good quality (mean= 8.1 for tumours, 7.5 for adjacent
normal and 8.2 for healthy normal). RNA purity was measured with
the ratio of absorbance at 260 nm and 280 nm (mean= 1.96, SD
= 0.04), with no differences among tissue types.
Expression data were obtained with Affymetrix Human Genome

U219 ArrayPlate platform (Affymetrix, Santa Clara, CA). Three 96-
array plates were used with a block experimental design to avoid
batch effects. Four arrays (two normal—tumour pairs) were
excluded due to low quality. Therefore, a final data set of 246
arrays was used for subsequent analyses. Raw data were normal-
ised using the Robust Multiarray Average algorithm implemented
in the affy package of R/Bioconductor. Expression levels of a set of

genes on this microarray have been validated with quantitative
PCR and showed excellent correlation coefficients.25 Prior to the
analysis of eQTL, expression probe sets were mapped to genes.
For genes with more than one probe set in the array, a principal
component analysis was used to capture the largest common
variability extracting the first component. The expression array
provided data on 20,070 genes, but those with very low variability
(SD < 0.1 among all samples) and those on chromosome Y and
mitochondrial were excluded for the analysis of eQTL, rendering
15,298.
Genotypes were obtained hybridising genomic DNA extracted

from colonic mucosa in Affymetrix Genome-Wide Human SNP 6.0
array (Affymetrix,), which includes nearly 1 million SNP markers.
One cancer patient and three healthy subjects had to be excluded
because the array quality was not good enough. Thus, the final
sample size for eQTL analyses were 47 healthy colon mucosae and
97 paired tumour and adjacent normal tissues. Genotype calling
was performed for samples of healthy mucosa and normal tissues
with the Corrected Robust Linear Model with Maximum Likelihood
Classification algorithm as implemented in R/Bioconductor
package crlmm. In addition, untested genotypes were imputed
using IMPUTE226 after haplotyping with SHAPEIT.27 The 1000
Genomes panel (March 2012 version) was used as reference
(http://www.1000genomes.org). SNPs and indels with low imputa-
tion quality (info <0.2 or minor allele frequency [MAF] con-
cordance <0.9) were excluded from the data set. Also, SNPs with
MAF < 0.05 were ignored, and the eQTL analysis will be based on
6.76 million SNPs. No filters for redundant SNPs related to linkage
disequilibrium were applied.
The gene expression data set is available at the project website:

https://www.colonomics.org/data and at Gene Expression Omni-
bus with GEO series accession number GSE44076. SNP data have
been deposited at the European Genome-phenome Archive (EGA,
http://www.ebi.ac.uk/ega/), which is hosted by the EBI, under
accession number EGAS00001002453.

Statistical analysis
To reduce the number of tests performed, while maintaining high
power to identify eQTL, only the additive genetic model was
considered. Genotypes were coded as the number of variant
alleles (0, 1, 2) and this variable treated as quantitative. For
imputed genotypes, the posterior probabilities (dosage) were
used to consider imputation uncertainty. Dosage was calculated
as twice the posterior probability of BB genotype plus that of AB.
The additive model is known to capture most of the dominant and
recessive effects.28

Analysis of eQTL were performed with the R package
MatrixEQTL.29 SNPs within 1 Mb of the gene transcription starting
site were considered cis-eQTL. SNPs located further than 1 Mb or
in other chromosomes were considered trans-eQTL. The search
was limited to associations with P-values < 1e−6. Linear models
were calculated, adjusted for age, sex, tumour location and group
(healthy/affected). To avoid spurious results derived from extreme
expression values in some genes, a non-parametric analysis was
performed, using a rank transformation of the expression values
for each gene. This is equivalent to the Spearman correlation, but
in a regression framework that allows adjusting for potential
confounders.
To account for multiple comparisons, false discovery rates

(FDR) were calculated for all findings,30 taking into account all
tests performed ignoring redundancy related to linkage dis-
equilibrium (15,000 genes × 5000 SNPs within 1 Mb per gene).
The FDR for the least significant association (P= 1e−6) was
0.001. Also, for a more stringent analysis, a permutation
procedure was used. The distribution of the most significant
associations for the cis-eQTL analysis for 500 randomly permuted
analyses were used to calculate the adjusted 0.01 significance
level. This were nominal P-values of 2e−10 for cis-eQTL and 4e
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−13 for trans-eQTL. These significance levels are very similar to
those based on Bonferroni correction (1.3e−10 and 1.1e−13,
respectively), indicating an overall low degree of correlation in
the data.

RESULTS
Table 1 shows the distribution of the number of genes and SNPs
per chromosome selected for the descriptive analysis of eQTL.

cis-eQTL
The distribution of SNPs near genes was fairly uniform. On
average, 2255 SNPs with MAF > 0.05 were found within 500 Mb
(SD= 978) and 4555 (SD= 1815) within 1 Mb. A total of 77,139 cis-
eQTL associations were identified with P < 1e−6 (FDR < 0.001).
Using the more stringent significance level based on permutations
(P < 2e−10), 29,073 cis-eQTL were significant with adjusted P-
value < 0.01. We provide in a supplementary file all identified
eQTL, but will restrict further analyses to those significant
according to the permuted P-value.
A total of 363 genes (2.4%) had at least one significant cis-eQTL

within 1 Mb We will refer to these as ‘eGenes’ (Supplementary
Table 2). The median number of significant cis-eQTL per gene was
36 (range: 1–1.023). Approximately 27% of the significant cis-eQTL
per gene were located intragenic, 44% when only the most
significant eQTL per gene were considered. The distribution of
eQTL was symmetric upstream and downstream around the gene
transcription start site (TSS), irrespective of the gene orientation
(Fig. 1). The median distance of the most significant eQTL to the

gene TSS was 14Kb (median absolute deviation= 72Kb). There
was no association between the average gene expression and the
significance of the eQTL or the proportion of variance explained.
Regarding SNPs, 95% of the 29,067 significant eQTL were
associated with one gene, 2% were associated with two genes
and the other 3% ranged 3–6 genes.
To further analyse the relevance of the identified eQTL

database, we analysed the impact of using tumour samples in
the analysis of eQTL. When tumours were combined with the
normal samples, the number of significant cis-eQTL increased to
37,099 significant gene–SNP pairs, 22,759 (78%) common to the
analysis of normal mucosa only, but there were 14,337 new eQTL.
Since part of this increment could be due to the power gain
related to a larger sample size, we also compared the number of
significant eQTL identified in tumour only (n= 6063), 45% less
than those identified in the adjacent normal mucosa of patients
(n= 13,411). Only 4858 of the eQTL were identified both in
tumours and adjacent normal mucosa. A similar number
intersected with our list identified in the combination of normal
tissue from healthy donors and adjacent to tumour (18%). Figure 2
shows a Venn diagram with these numbers.

Validation
The significant eQTL identified were compared to those reported
by the GTEx consortium for transverse tissue. GTEx (version 6) had
reported a total of 592,069 eQTL in their analysis. Of those,
149,773 could be considered significant at P < 2e−10. We could
find 12,076 (42%) of our eQTL in GTEx significant results using the
same significance level. A 6500-additional list of our significant

Table 1. Distribution of SNPs, genes and eQTL across chromosomes

CHR Genotyped SNPs 1000G Imputed SNPs SNPs MAF > 0.05 Genes cis-eQTL SNPsa eGenesb cis-eQTL / gene trans-eQTL SNPsc

1 63,788 2,355,554 500,136 1548 2226 34 65.5

2 66,223 2,583,715 541,685 1019 2110 30 70.3 71

3 54,141 2,168,103 466,623 850 529 16 33.1

4 49,864 2,168,950 483,706 606 573 14 40.9 57

5 50,522 1,990,693 420,406 683 1244 16 77.8

6 50,532 1,926,303 450,052 814 3344 26 128.6 2791

7 42,042 1,753,429 387,420 737 3025 26 116.3 1

8 43,775 1,715,508 358,977 532 1270 12 105.8

9 36,939 1,298,383 281,170 603 610 14 43.6

10 43,414 1,486,816 335,916 582 763 18 42.4

11 39,718 1,485,686 325,463 899 1085 19 57.1

12 38,043 1,440,247 316,735 781 1414 18 78.6 66

13 30,842 1,086,129 244,462 268 460 8 57.5

14 25,227 989,387 216,774 501 890 11 80.9

15 23,462 883,939 187,482 489 576 5 115.2

16 24,942 942,939 198,649 684 347 12 28.9

17 18,379 818,215 177,606 924 2957 22 134.4 7474

18 23,775 855,576 187,532 211 296 4 74.0

19 10,429 652,249 155,600 1034 1418 22 64.5

20 20,617 668,157 145,784 417 923 7 131.9

21 11,323 409,662 95,007 157 317 4 79.3

22 10,169 394,297 91,478 379 1454 15 96.9 204

X 32,089 958,335 194,730 580 1236 10 123.6

All 810,255 31,032,272 6,763,393 15,298 29,067 363 80.1 10,664

MAF minor allele frequency, SNPs single nucleotide polymorphisms, TSS transcription start site a cis-eQTL within 1 Mb of the TSS with nominal p < 2e-10
(adjusted p < 0.01) b eGenes: unique genes with significant eQTL c trans-eQTL with nominal p < 4e-13 (adjusted p < 0.01)
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eQTL were in the GTEx file with lower significance level, increasing
the percentage of validated eQTL to 64%. The analysis of sigma
samples was similar and the combination slightly increased the
number of validated eQTL. The concordance of genes with at least
one eQTL was higher, 263 genes in common out of 362 (73%). We
also compared our eQTL with that published by Ongen et al.
These authors report 1693 genes with the most significant SNP for
each gene. Our equivalent list included 363 genes, and 210 of
them (58%) were in the list by Ongen et al., but only 15 were
perfect match with gene and SNP. However, 157 of Ongen’s eQTL
were in our extended list containing all significant SNPs for each
gene, not only the most significant one.

Mapping to other functional chromatin elements
We explored whether eQTL mapped to regions of the genome
with marks of functional activity. We used the Haploreg
database31 to search eQTL and could retrieve chromatin
states from 24,697 (85%) of them. To interpret the information,
we also searched 100,000 random SNPs within 1 Mb of TSS
and retrieved data from 90,558 of them. In general, eQTL
were more often located in chromatin marks (89% vs 84%),
DNAse (30% vs 25%), promoter histone marks (17% vs 11%)
and enhancer histone marks (48% vs 44%). We also observed
that eQTL were more often GWAS SNPs (0.5%) than expected
(0.2%).
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Fig. 1 The histogram shown the distribution of the distance between the significant cis-eQTL and the gene TSS in Kb. Most of the eQTL are
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trans-eQTL
Long-distance effects were frequently identified in our analysis.
These have not been implemented in the eQTL-browser, but the
files can be downloaded from the site. As each SNP is tested
against all genes, a more stringent P-value should be used to
consider an association significant. We report here significant
associations after permutation correction (P < 4e−13), but the sup-
plementary file includes all the associations with nominal P < 1e
−6 (FDR < 0.001).
There were 209,144 trans-eQTL identified at nominal P < 1e−6,

but only 10,665 statistically significant when the permutation-
derived significance level (P < 4e−13) was applied. Interestingly,
they were distributed predominantly in chromosomes 6 and 17,
with a minor frequency in chromosomes 2, 4 and 12 (Table 1).
These trans-eQTL were essentially among SNPs in the same
chromosome, but at a larger distance than 1 Mb, with three
exceptions: one block of 66 SNPs in chromosome 12 that are eQTL
for pseudogene RPS26P11 in chromosome X. The SNPs are near
RPS26, the active ribosomal protein 26, located in chromosome
12, but less expressed than the pseudogene in the colon. The
second block of 51 SNPs in chromosome 22 that are eQTL for
gene GGTLC1 (gamma-glutamyltransferase light chain 1) in
chromosome 20. The same SNPs are significant cis-eQTL for
GGT1, GGT2, GGT3P and GGTLC2, genes of the gamma-
glutamyltransferase family, located in chromosome 22. Finally,
there was a bloc of SNPs mapping to HLA-A in chromosome 6,
that were eQTL of troponin T3 (TNNT3), a gene located in
chromosome 11 related to muscle contraction.

eQTL browser
A web tool was designed to explore gene expression in colon
mucosa and analyse eQTL. The R package shiny (https://shiny.
rstudio.com) was used to develop the application, which
can be accessed at https://www.colonomics.org/data-browser.
Some screenshots are available as Supplementary Figs. 1 and 2.
The eQTL browser allows searching either one gene by its gene
symbol to explore nearby SNPs as candidate eQTL, or
one specific SNP, either by rsID or chromosome/position to
explore whether its genotypes are associated to the expression
of nearby genes. In both types of searches, the output includes
location plots and tables with the statistical analyses. The
application by default selects samples both from healthy mucosa
and adjacent normal tissue, but the used can also exclude some
of these or include tumours. Also, samples can be selected
according to sex and tumour location (left or right colon). The
initial search includes SNPs within 100 Kb upstream and
downstream of the selected gene, but the window can be
modified up to ±2 Mb. SNPs can be pruned by allele frequency
(MAF > 0.01 by default).
If tumours are also included in the analysis, the pairing is

ignored. Thus, the P-values for analyses that include both tumours
and adjacent normal tissue should be interpreted with caution. By
default, partial Pearson correlation coefficients are calculated,
adjusted for age, sex, tumour location and group (healthy/
affected). Non-parametric partial Spearman correlation can also
be used when expression values for some genes show gross
asymmetric distribution (expression plots are provided).
The initial analysis for one gene includes a plot of r2, as a

measure of the proportion of the gene expression variance
explained by each SNP. The SNP with highest r2 is highlighted in
the plot. The user can click one SNP in the plot to show a new plot
with the association of gene expression and genotypes (or dosage
for imputed SNPs).
To reduce false positive results, a threshold line is shown at

significance level of 0.01 by default. Also, to account for multiple
comparisons, a line with Bonferroni correction threshold is shown,
considering the number of SNPs analysed in the selected region.
Bonferroni correction may be too conservative since it ignores

linkage disequilibrium (LD) among SNPs. Additional threshold
lines can be added by the user.
When one SNP is selected, the plot shows r2 for the expression

of nearby genes (within 500 Kb by default). Options like the ones
explained above can be used to select gene ranges, tissues,
statistical test or covariates for adjustment.
Analysis of trans-eQTL, searching for genes associated to SNPs

outside the ±2 Mb region is not implemented in the web tool, but
has been performed and can be downloaded for additional
analysis (Supplementary file).

DISCUSSION
Our web tool for eQTL analysis is useful to inform a potential
functional roles of SNPs identified in GWAS of CRC1 or IBD.32 This
data source can complement others available specific for colon
tissue like the GTEx portal,17 and contribute to study the genetic
architecture of colorectal diseases.
Our whole-genome analysis of eQTL has revealed that genetic

variability may explain a substantial fraction of gene expression in
colon tissue. Nearly 6% (n= 869) of the expressed genes had at
least one cis-eQTL within 1 Mb. This number of eGenes is similar to
the reported for other tissues in the report of the pilot GTEx
project,18 for a similar sample size, or that reported by.22

In an attempt to avoid false positive findings, we have used a
non-parametric analysis method, and have restricted to SNP with
MAF > 5%. Regarding protection against multiple testing, we have
used a significance level of 1e−6 to search for eQTLs. The reported
results at this level had a theoretical FDR of 0.001. We have also
performed a permutation test to define the significant threshold
for 1% family wise false positive results, and found that we should
consider significant only findings with P < 2e−10 for cis-eQTL and
P < 4e−13 for trans-eQTL. These strict significance levels have
reduced the number of significant eGenes to 363. As this might be
too conservative, for the analysis of specific genes of candidate
SNPs, the web tool only reports nominal significance levels for
each association and provides several options to threshold (fixed
significance levels or Bonferroni correction according to the
number of SNPs/genes considered).
We have compared our eQTL findings with those of GTEx and

Ongen et al.,22 and found a reasonable good agreement, taking
into account that expression data had been generated in diverse
platforms and also the populations analysed probably had
different environmental exposures that may affect gene expres-
sion. If we relax the significance level, more than 64% of our eQTL
were reported in GTEx and up to 78% of the eGenes were
concordant. The agreement with Ongen’s results was lower, but
probably related to the fact that these authors only reported the
most significant eQTL for each gene.
Our expression data is based on 3′microarrays that do not allow

to estimate allele-specific expression at individual level or splicing
variants. This is a limitation over studies based on RNA-seq for
gene expression estimation, which may also better assess low
abundance transcripts and have a larger dynamic range.33 Our
microarray data, however, has shown good reproducibility with
qPCR in the validation studies performed.25

Only few SNPs identified in GWAS are strong eQTL for candidate
genes.23 Many eQTL, though significant, have low correlation
values, that indicate that the proportion of gene expression
variance explained by the SNP is small. This may not rule out a
causal effect, as lifetime exposures to small alterations in gene
expression may be sufficient to increase cancer susceptibility. In
fact, the associations observed for most common SNPs with
cancer are also of small magnitude.
As the specific SNPs identified in GWAS studies are dependent

on the genotyping platform used, SNP imputation is a useful
option to increase the likelihood of narrowing the window where
the functional SNP lies. We have also used SNP imputation in our
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web tool to increase the likelihood of finding stronger eQTL. In
fact, we have observed that often the genetic polymorphisms
showing highest association with gene expression is an imputed
indel in the region. Indels probably have higher effect disrupting
the genome sequence required for enhancers or promoters. SNP
imputation may introduce errors in the data and lead to false
results. Though recent imputation panels are improving quality for
rare variants, we have filtered imputed SNPs with low imputation
quality, that generally correspond to low allele frequency. This
filter also was decided due to the limited sample size of our
sample (144 independent subjects).
The recommended use of our web tool, when the search starts

with a candidate SNP identified in a GWAS, is to first search for
nearby genes which expression may be related to the SNP. Then, if
one or more genes are identified, specific searches by gene may
reveal other SNPs in LD with the candidate SNP that are also eQTL
but show stronger association. These SNPs are candidate to causal
variants and may then be searched in the UCSC genome
browser34 to identify whether they lie in regions of open
chromatin or other genomic marks suggesting a functional role.
In fact, we have compared chromatin marks for our eQTL with
those of random SNPs within 1 Mb of the genes’ TSS and found
that eQTL are significantly enriched in DNAse, promoter and
enhancer chromatin marks, which is in agreement with previous
reports that eQTLs more often fall within regulatory elements.22,35

Also, we observed that eQTL more often correspond to GWAS
SNPs of diverse traits than random SNPs near genes, as reported
by the Haploreg database.31

Our study only included colon tissue, but the eQTL analysis
should also be useful for rectal cancer. Previous studies have
shown that colon and rectal tissue have very similar expression
profiles,19,36 although these cancer sites may have important
differences regarding clinical outcomes.
Our study combines expression data from normal colon tissue

obtained from volunteers at colonoscopy, with adjacent macro-
scopically normal colon tissue obtained from patients. Other
studies on eQTL in CRC have analysed only tumour tissue or
paired tumour and adjacent normal, without healthy tissue as
reference.21,22 The inclusion of normal tissue adjacent to tumour
may not be completely optimal, as we know that gene expression
is altered in adjacent macroscopically normal tissue.37

The inclusion of tumour tissue in the analysis is a matter of
debate. Tumour gene expression is very different from normal,20

with genes changing both towards over and under-expression.
Although tumours may reveal some new eQTL that are only
evident when the gene is overexpressed, diverse genomic
alteration occur simultaneously in tumours like copy number
aberrations or epigenetic changes, that may generate false
positive and false negative results. In our analysis, the list of eQTL
identified in tumours had low overlap with that of normal tissue,
similar results were obtained by Ongen et al., who observed that
36% of the detected eQTL were tumour specific, and more prone
to carry somatic mutations and epigenetic modifications, like
methylation changes, compared to matched samples of normal
colon mucosa.22 Our web tool allows the user to select which
tissues are incorporated into the analysis among healthy colon,
adjacent normal colon and tumour. The user should be aware that,
if tumour and adjacent tissue are combined, the fact that these
samples belong to the same subject may show correlated
expression, which is not considered in the statistical analysis.
Even though the potential for a real functional role under a

trans-eQTL is low, since some long-distant effect mechanism must
mediate the association, it is interesting to note that a large
number of trans-eQTL effects were identified at P < 1e−6, but very
few remained significant when proper multiple comparisons were
accounted for. Most of them were in the same chromosome,
probably related to long-distance linkage disequilibrium. The
limited sample size of this study does not provide enough power

for a proper trans-eQTL analysis, and a deeper analysis would
require validation in other datasets and functional studies like
knocking-down the candidate trans-eQTL to understand the
mediation pathway that leads to the association.14

In conclusion, eQTL analysis is an approach to study func
tional SNPs identified in GWAS. The web tool that we provide at
https://www.colonomics.org/eQTL-browser allows easy analysis of
expression and eQTL specific for colon tissue and will help researchers
in the area to identify which SNPs deserve further functional research.
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