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Abstract

An electronic transition-based bare bones particle swarm optimization (ETBBPSO) algo-

rithm is proposed in this paper. The ETBBPSO is designed to present high precision results

for high dimensional single-objective optimization problems. Particles in the ETBBPSO are

divided into different orbits. A transition operator is proposed to enhance the global search

ability of ETBBPSO. The transition behavior of particles gives the swarm more chance to

escape from local minimums. In addition, an orbit merge operator is proposed in this paper.

An orbit with low search ability will be merged by an orbit with high search ability. Extensive

experiments with CEC2014 and CEC2020 are evaluated with ETBBPSO. Four famous pop-

ulation-based algorithms are also selected in the control group. Experimental results prove

that ETBBPSO can present high precision results for high dimensional single-objective opti-

mization problems.

Introduction

An electron transition is essentially an energy change of electrons in the particles that make up

matter. According to the principle of conservation of energy, the outer electrons of a particle

absorb energy as they move from a lower to a higher energy level, and release energy as they

move from a higher to a lower energy level. The energy is the absolute value of the difference

between the energies of the two energy levels. In this paper, we use particles to simulated the

electronic transition behavior to solve high dimensional optimization problems. Particles are

designed to search in different orbits. The particles on the worse-positioned orbits have the

opportunity to make a transition to the better-positioned orbits.

Optimization problems appear everywhere in our daily life. Whenever we want to make a

choice, we believe the option is better. In numerical optimization problems, the numerous

global optimization (GO) problems is often described in Eq 1:

f : X ! R

x� 2 X

f ðx�Þ � f ðXÞ

ð1Þ
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where X � RD is a nonempty compact set that contains all feasible solutions, D is the dimen-

sion of the problem, f is a real valued objective function, x� is the theoretical optimal solution

[1]. The purpose of an optimization algorithms is finding the x�, even the objective functions

maybe non-convex, multimodal, or badly scaled [2].

To solve numerical optimization problems, population-based methods like genetic algo-

rithms (GA) [3], differential evolution (DE) [4], particle swarm optimization (PSO) [5] ant col-

ony (AC) [6], walf pack algorithm [7] are proposed. Among these methods, PSO is famous for

fast convergence and easy applying. PSO algorithms are widely applied in engineering like

route planning [8, 9], data clustering [10, 11], feature selection [12, 13], image segmentation

[14, 15], power system [16, 17], engineering areas [18–20], and so on.

The class PSO algorithm is inspired by the social behavior of fish and birds. Particles begin

searching from random solutions and aim at the solution which can minimize the target prob-

lem. In PSO, each particle represents a solution of the target problem. In function optimiza-

tions, each particle retains follow attributes: velocity, represents how fast a particle is moving

in the search space; current fitness value, represents the function value at current position; cur-

rent position, represents the coordinate at this generation; personal best value, represents the

best function value across all generations; personal best position, represents the coordinate of

the personal best value. The behavior of the particles is controlled by many parameters, so to

achieve the best performance researchers need to adjust parameters for every specific problem.

Also, with the developing of technology, optimization problems become high dimensional and

multimodal. Traditional PSO methods sometimes difficult to provide high precision results.

For some complicate prblems, PSO methods are easily fall into local minimal and leading to

unacceptable results.

Researchers tried to improve the performance of PSO by combining different strategies. In

2016, Pornsing [21] propsoed a self-adaptive strategy to imoprove the search ability of PSO.In

2017, Chen proposed a new biogeography-based learning strategy for PSO [22]. In 2018, Xu

proposed a novel chaotic PSO for combination optimization problems [23]. In 2018, Tian pro-

posed a chaos-based initialization strategy and robust update mechanisms for PSO [24]. In

2019, Ghasemi proposed a new parameter control strategy to enhance the search ability of

PSO [25]. In 2019, Xu [26] combined the quantum behavior with PSO and achieved better

search ability. In 2021, Yamanaka tried to improve the performance PSO by introducing the

new concept of particle clustering [27].

Bare bones PSO (BBPSO) [28] is a simple type of PSO. With the cancellation of the velocity

term, BBPSO can solve different types of optimization problems without any parameters. In

2017, Guo [29] combined a pair-wise strategy with BBPSO (PBBPSO). Particles change infor-

mation with a pair-particle during iterations. In addition, three particles are placed in one

local group in hierarchical BBPSO (HBBPSO) [30]. Three particles form two different spatial

structures to handle different optimization problems. On the other hand, Guo [31] proposed a

dynamic local search strategy to enhance the local search ability of BBPSO. In 2018, Guo [32]

developed a dynamic allocation operator for BBPSO. In 2019, Guo [33] proposed a fission-

fusion strategy for BBPSO. In 2020, Guo [34] proposed a novel BBPSO based method for trav-

eling salesman problem (TSP). Proposed method can present high precision for TSPs.

The rest of this paper is organized as follows: Section 2 introduces the proposed method; Sec-

tion 3 introduces the numerical experiments; Section 4 presents the conclusions of this paper.

Materials and methods

The electronic transition-based bare bones particle swarm optimization (ETBBPSO) algorithm

is proposed in this section.
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Particle swarm explosion

The initialization of ETBBPSO is called particle swarm explosion (PSE). In PSE, particles are

randomly dispersed into the search space. Then, the personal best position and the personal

best value of every particle will be calculated. The global best position and the global best value

of the particle swarm will be recorded.

Dynamic particle grouping

In ETBBPSO, particles will be assigned to different orbits. During the evolutionary process,

particles in orbits play two different roles: the core and the satellite. Each orbits contains one

core and several satellites. The number of satellites can be zero. Different evolutionary strate-

gies are applied to different roles. A core particle aims at searching around the global best par-

ticles and Enhancing the global search capability of the orbit. The candidate position of a core

particle is selected by Eq 2.

a ¼
ðpbestðcoretÞ þ GbesttÞ

2

b ¼ jpbestðcoretÞ � Gbesttj

pbestðcoretþ1Þcandidate ¼ GauDisða;bÞ

ð2Þ

where the pbest(coret) is the personal best position of the core particle in (t)th generation, Gbestt

is the personal best position of the global best particle in (t)th generation, pbest(coret+1)c andi-
date is the candidate new position for main particle in (t + 1)th generation, GauDis(α, β) is the

Gaussian distribution with a mean α and a standard deviation β.

A satellite particle aims at searching around the core of the orbit and implementing a local

search. The candidate position of a satellite particle is selected by Eq 3.

g ¼
ðpbestðcoretÞ þ ðpbestðsatellitetÞÞ

2

d ¼ jpbestðcoret � ðpbestðsatellitetÞÞj

pbestðsatellitetþ1Þcandidate ¼ GauDisðg; dÞ

ð3Þ

where the pbest(coret) is the personal best position of the core particle in (t)th generation,

where the pbest(satellitet) is the personal best position of the satellite particle in (t)th genera-

tion, pbest(satellitet) is the personal best position of the global best particle in (t)th generation,

pbest(satellitet+1)c andidate is the candidate new position for the satellite particle in (t + 1)th

generation, GauDis(γ, δ) is the Gaussian distribution with a mean γ and a standard deviation

δ.

A dynamic particle grouping (DPG) strategy is used to divide the particle swarm into differ-

ent orbits. At the beginning of DPG, the particle x1 is selected as the core of the first Orbit.

Then the next particle is selected to compare with the previous core. If the selected particle is

better than the previous core, a new orbit will be created and the selected particle will be the

core of the new orbit. Otherwise the particle will be a satellite of the original orbit. Then this

process will be repeated until all particles have been assigned to orbits. The pseudo code of

DPG is shown in Algorithm 1.

Algorithm 1 Dynamic Particle Grouping
Require: Max generation time, MIT
Require: Test function, F
Require: Search Space, R
Require: Number of particle, n
Require: Pbest_value
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Require: Pbest_position
Require: Gbest_value
Require: Gbest_position
Require: No
Require: t
1: while t < MIT do
2: if NO == 1 then
3: t = t + 1
4: Select the first particle x1 as the core for Orbit(NO)
5: CurrentCore = xk
6: for i in range (2, n) do
7: if pbi < pbCurrentCore then
8: Select a new position for xi according to Eq 2
9: Create a new Orbit, NO = NO + 1
10: CurrentCore = xi
11: else
12: Make xi a satellite of CurrentCore, belonging to Orbit(NO)
13: Select a new position for xi according to Eq 3
14: end if
15: end for
16: Update Pbest_value, Pbest_position, Gbest_value,Gbest position
17: In each Orbit, make the particle with a smallest Pbest_value be
the new core
18: end if
19: end while

Particle transition

To enhance the local search ability of the top orbit, the particle transition operator (PTO) is

proposed. All orbits will be ranked according to the personal best value of their cores. Then all

particles in the second best orbit will transit to the best orbit. By doing this the best orbit will

gather more and more particles to obtain stronger local search ability. Other orbits still have

change to do global search and replace the best orbit. The pseudo code of the PTO is shown in

Algorithm 2.

Algorithm 2 Particle transition operator
Require: Max generation time, MIT
Require: Test function, F
Require: Search Space, R
Require: Number of particle, n
Require: Pbest_value
Require: Pbest_position
Require: Gbest_value
Require: Gbest_position
Require: NO, t
Require: Orbit
1: while t < MIT do
2: if NO > 1 then
3: t = t + 1
4: Rank all Orbits according the personal best values of their
cores
5: A core with a smaller personal best value is a better core, its
corresponding Orbit is the better Orbit
6: Merge the first and second best Orbits
7: Select a new position for all cores according to Eq 2
8: Select a new position for all satellites according to Eq 3
9: NO = NO − 1
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10: Update Pbest_value,Pbest_position, Gbest_value,Gbest_position
11: end if
12: end while

Console

The DPG and the PTO collaborate to balance the local and global search. The DPG adaptive

grouping strategy is applied so that the internal structure of the particle swarm can change

with the change of the target problem. The PTO will merge the top two orbits. By doing this,

the distribution of orbits enables the particle swarm to take into account the global search

capability while enhancing the local search capability in specific regions. The overall process of

ETBBPSO is shown in Algorithm 3. The flowchart of the ETBBPSO is shown in Fig 1.

Algorithm 3 Console
Require: Max generation time, MIT
Require: Test function, F

Fig 1. The flowchart of ETBBPSO.

https://doi.org/10.1371/journal.pone.0271925.g001
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Require: Search Space, R
Require: Number of particle, n
Require: Pbest_value, Pbest_position, Gbest_value, Gbest_position
Require: NO, t, Orbit
1: Run PSE
2: while t < MIT do
3: if NO == 1 then
4: Run Algorithm 1
5: end if
6: if NO > 1 then
7: Run Algorithm 2
8: end if
9: end while

Results

Experiments with CEC2014

In order to conduct a fair and comprehensive comparison, the CEC2014 benchmark functions

are selected in experiments. Four famous population based methods PBBPSO [29], DABBPSO

[32], DLS-BBPSO [31], and FBBPSO [33] are selected in the control group. PBBPSO conducts

a novel paired evolution strategy and has shown reliable performance in single modal and

multi-modal optimization problems. DABBPSO integrates the scattering and ordering of par-

ticle swarms. DLS-BBPSO carries out a dynamic local search operator and show powerful abil-

ity in single-objective optimization problems. FBBPSO is the state-of-the-art method based on

Bare-bones PSO and has shown great performance and stability on CEC2014. To test the

extreme optimization capability of ETBBPSO, experiments are conducted in 100-dimension,

max generation time is 1.00E+4, population size for all algorithms is 100. Details of benchmark

functions can be found in Table 1. All code are written in Matlab R2020b.

Experimental results and discussion. Experimental results are shown in Tables 2 and 3.

Mean is the mean calculation error (CE) from 31 independent runs. CE is defined as |Global-
BestValue − TheoreticallyMinimum|. Std is the standard deviation of the 31 independent runs,

Rank is the ranking results of the six algorithms. The Wilcoxon rank sum test is also imple-

mented andaverage rank results are shown in Table 4.

Numerical analyses are listed below: In f19, f23, f25, the result of ETBBPSO is ranked sec-

ond among the six algorithms. In f1, f3, f5 − 7, f12, f17, f20, f27, f28, f30, the result of ETBBPSO

is ranked second among the six algorithms. In f2, f9, f11, f13−16, f18, f21, f24, the result of

ETBBPSO is ranked third among the six algorithms. It can be seen that ETBBPSO can present

the top three results in 24 test functions. This proves that B is able to give an efficient optimiza-

tion solution for most problems. It also proves that the electronic transition strategy can pro-

vide acceptable solutions for different problems. In f10 and f22, the result of ETBBPSO is

ranked fourth among the six algorithms. In f4, f8, f26, f29, the result of ETBBPSO is ranked

fifth among the six algorithms. These results suggest that ETBBPSO search ability is easily

bounded in the face of such problems, and this is a major direction for future research. It is

worth noting that ETBBPSO never finished last in the ranking test, which proves that

ETBBPSO does not give extremely bad results even when faced with problems that it is not

very good at handling. A ranking competition is designed for every test function. The algo-

rithm presents the best results will get 1 point, presents the second-best results will get 2 points,

presents the third-best results will get 3 points, presents the fourth-best results will get 4 points,

presents the fifth-best results will get 5 points, presents the worst results will get 6 points. The

mean ranking results are shown at the bottom of Table 2. ETBBPSO shows the best results in

the 100-dimension test. This is mainly because DPG is able to divide the particle swarm into
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different orbits. The whole partitioning process is self-controlled by the algorithm and does

not require any parameters. Then, PTO enhances the local search ability of particle swarm

while taking into account the global search ability, making it more possible for the particle

swarm to escape from the local optimum.

Evolutionary curves across iterations are shown in Figs 2 to 31. The horizontal axis repre-

sents the number of iterations, vertical axes represents CEs.

Discussion. A ranking competition is designed for every test function. The algorithm

presents the best results will get 1 point, presents the second-best results will get 2 point, pres-

ents the third-best results will get 3 point, presents the forth-best results will get 4 point, pres-

ents the fifth-best results will get 5 point, presents the worst results will get 6 point. The mean

ranking results are show in the bottom of Table 3. ETBBPSO shows the best results in the

100-dimension test. This is mainly because DPG is able to divide the particle swarm into dif-

ferent orbits. The whole partitioning process is self-controlled by the algorithm and does not

Table 1. Experimental functions, the CEC 2014 benchmark functions, the search range for each function is (-100,100), the dimension is 100.

Types Function Name Dimension Search Range Theoretically Minimum

Unimodal Functions f1 = Rotaten High Conditioned Elliptic Function 100 (-100,100) 100

f2 = Rotated Bent Cigar Function 100 (-100,100) 200

f3 = Rotated Discus Function 100 (-100,100) 300

Simple Multimodal Functions f4 = Shifted and Rotated Rosenbrock’s Function 100 (-100,100) 400

f5 = Shifted and Rotated ACKLEY’s Function 100 (-100,100) 500

f6 = Shifted and Rotated Weierstrass’s Function 100 (-100,100) 600

f7 = Shifted and Rotated Griewank’s Function 100 (-100,100) 700

f8 = Shifted Rastrigin’s Function 100 (-100,100) 800

f9 = Shifted and Rotated Rastrigin’s Function 100 (-100,100) 900

f10 = Shifted Schwefel’s Function 100 (-100,100) 1000

f11 = Shifted and Rotated Schwefel’s Function 100 (-100,100) 1100

f12 = Shifted and Rotated Katsure Function 100 (-100,100) 1200

f13 = Shifted and Rotated HappyCat Function 100 (-100,100) 1300

f14 = Shifted and Rotated HGBat Function 100 (-100,100) 1400

f15 = Shifted and Rotated Expanded 100 (-100,100) 1500

Griewank’s plus Rosenbrock’s Function 100 (-100,100)

f16 = Shifted and Rotated 100 (-100,100) 1600

Expanded Scaffer’s F6 Function 100 (-100,100)

Hybrid Functions f17 = Hybrid Function 1 (N = 3) 100 (-100,100) 1700

f18 = Hybrid Function 2 (N = 3) 100 (-100,100) 1800

f19 = Hybrid Function 3 (N = 4) 100 (-100,100) 1900

f20 = Hybrid Function 4 (N = 4) 100 (-100,100) 2000

f21 = Hybrid Function 5 (N = 5) 100 (-100,100) 2100

f22 = Hybrid Function 6 (N = 5) 100 (-100,100) 2200

Composition Functions f23 = Composition Function 1 (N = 5) 100 (-100,100) 2300

f24 = Composition Function 2 (N = 3) 100 (-100,100) 2400

f25 = Composition Function 3 (N = 3) 100 (-100,100) 2500

f26 = Composition Function 4 (N = 5) 100 (-100,100) 2600

f27 = Composition Function 5 (N = 5) 100 (-100,100) 2700

f28 = Composition Function 6 (N = 5) 100 (-100,100) 2800

f29 = Composition Function 7 (N = 3) 100 (-100,100) 2900

f30 = Composition Function 8 (N = 3) 100 (-100,100) 3000

https://doi.org/10.1371/journal.pone.0271925.t001
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Table 2. Experimental results, CE of PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO for f1−f15. Mean is the mean valut from 31 independent runs,

STD is the standard deviation of the 31 runs, Rank is the rank of 6 algorithms.

Function Number Data Tpye PSO PBBPSO DA-BBPSO DLS-BBPSO FBBPSO ETBBPSO

f1 Mean 1.454E+08 4.725E+07 4.253E+07 4.872E+07 5.172E+07 4.339E+07

Std 6.297E+07 1.608E+07 1.514E+07 1.505E+07 1.934E+07 1.797E+07

Rank 6 3 1 4 5 2

f2 Mean 9.363E+06 2.879E+04 5.013E+04 4.562E+04 3.781E+04 4.392E+04

Std 5.200E+07 4.923E+04 5.615E+04 4.438E+04 4.272E+04 5.973E+04

Rank 6 1 5 4 2 3

f3 Mean 6.772E+03 2.103E+04 1.736E+04 1.647E+04 1.893E+04 1.631E+04

Std 3.541E+03 1.666E+04 1.462E+04 1.391E+04 1.216E+04 1.052E+04

Rank 1 6 4 3 5 2

f4 Mean 5.351E+02 1.356E+02 1.470E+02 1.282E+02 1.551E+02 1.624E+02

Std 1.145E+02 4.452E+01 5.656E+01 4.246E+01 4.468E+01 4.725E+01

Rank 6 2 3 1 4 5

f5 Mean 2.127E+01 2.131E+01 2.131E+01 2.131E+01 2.132E+01 2.131E+01

Std 4.477E-02 3.207E-02 2.341E-02 2.662E-02 2.290E-02 2.535E-02

Rank 1 3 4 5 6 2

f6 Mean 7.908E+01 1.564E+02 1.517E+02 1.233E+02 1.055E+02 1.036E+02

Std 6.381E+00 1.074E+01 1.765E+01 3.031E+01 1.764E+01 1.928E+01

Rank 1 6 5 4 3 2

f7 Mean 4.081E-03 4.133E-03 1.987E-03 3.259E-03 4.606E-03 2.780E-03

Std 6.490E-03 5.486E-03 4.380E-03 5.736E-03 7.290E-03 5.494E-03

Rank 4 5 1 3 6 2

f8 Mean 1.340E+02 3.205E+02 3.704E+02 3.254E+02 3.281E+02 3.407E+02

Std 1.807E+01 6.020E+01 5.821E+01 4.384E+01 4.966E+01 4.927E+01

Rank 1 2 6 3 4 5

f9 Mean 3.573E+02 9.789E+02 1.006E+03 9.273E+02 1.059E+03 9.322E+02

Std 5.343E+01 1.442E+02 1.404E+02 1.586E+02 1.539E+02 1.740E+02

Rank 1 4 5 2 6 3

f10 Mean 3.705E+03 6.341E+03 8.020E+03 6.390E+03 6.642E+03 6.543E+03

Std 7.200E+02 8.816E+02 2.003E+03 8.226E+02 9.828E+02 8.886E+02

Rank 1 2 6 3 5 4

f11 Mean 1.492E+04 3.173E+04 3.249E+04 2.881E+04 2.346E+04 2.542E+04

Std 2.896E+03 3.209E+03 3.138E+03 7.556E+03 8.871E+03 7.969E+03

Rank 1 5 6 4 2 3

f12 Mean 3.399E+00 3.987E+00 4.040E+00 4.015E+00 3.960E+00 3.901E+00

Std 3.983E-01 2.166E-01 1.733E-01 2.399E-01 4.298E-01 6.487E-01

Rank 1 4 6 5 3 2

f13 Mean 6.861E-01 7.117E-01 7.211E-01 7.375E-01 6.858E-01 7.059E-01

Std 5.123E-02 8.652E-02 1.013E-01 9.950E-02 8.404E-02 8.266E-02

Rank 2 4 5 6 1 3

f14 Mean 3.855E-01 4.972E-01 5.907E-01 5.608E-01 6.102E-01 5.452E-01

Std 1.500E-01 2.573E-01 3.229E-01 2.760E-01 2.894E-01 2.632E-01

Rank 1 2 5 4 6 3

f15 Mean 6.745E+01 6.357E+01 7.252E+01 5.186E+01 6.924E+01 6.724E+01

Std 1.249E+01 1.804E+01 1.858E+01 1.901E+01 1.919E+01 2.413E+01

Rank 4 2 6 1 5 3

https://doi.org/10.1371/journal.pone.0271925.t002
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Table 3. Experimental Results, CE of PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO for f16−f30. Mean is the mean valut from 31 independent

runs, STD is the standard deviation of the 31 runs, Rank is the rank of 6 algorithms. Alvrage rank point is at the bottom of the table.

Function Number Data Tpye PSO PBBPSO DA-BBPSO DLS-BBPSO FBBPSO ETBBPSO

f16 Mean 4.574E+01 4.741E+01 4.715E+01 4.712E+01 4.665E+01 4.678E+01

Std 4.751E-01 9.261E-01 9.833E-01 8.539E-01 9.872E-01 9.423E-01

Rank 1 6 5 4 2 3

f17 Mean 1.497E+07 9.276E+06 7.522E+06 8.617E+06 9.513E+06 7.641E+06

Std 6.872E+06 2.908E+06 3.370E+06 4.707E+06 6.360E+06 3.086E+06

Rank 6 4 1 3 5 2

f18 Mean 1.474E+05 9.621E+03 1.303E+04 7.654E+03 1.132E+04 1.008E+04

Std 8.087E+05 1.179E+04 2.912E+04 7.838E+03 1.296E+04 1.284E+04

Rank 6 2 5 1 4 3

f19 Mean 1.679E+02 1.088E+02 1.080E+02 1.135E+02 1.072E+02 1.065E+02

Std 1.780E+01 4.609E+01 3.587E+01 5.465E+01 4.175E+01 4.431E+01

Rank 6 4 3 5 2 1

f20 Mean 9.281E+03 2.410E+05 1.920E+05 2.112E+05 1.614E+05 1.443E+05

Std 2.844E+03 2.549E+05 1.207E+05 1.428E+05 1.337E+05 8.422E+04

Rank 1 6 4 5 3 2

f21 Mean 6.073E+06 4.210E+06 4.481E+06 5.010E+06 5.283E+06 4.672E+06

Std 3.942E+06 1.955E+06 2.218E+06 2.894E+06 2.809E+06 2.093E+06

Rank 6 1 2 4 5 3

f22 Mean 2.157E+03 5.133E+03 3.902E+03 5.345E+03 3.721E+03 4.044E+03

Std 5.585E+02 1.452E+03 1.231E+03 1.376E+03 6.787E+02 1.194E+03

Rank 1 5 3 6 2 4

f23 Mean 3.531E+02 3.472E+02 3.450E+02 3.450E+02 3.450E+02 3.450E+02

Std 1.536E+00 1.215E+01 1.036E-05 2.707E-05 4.445E-05 6.985E-06

Rank 6 5 2 3 4 1

f24 Mean 3.850E+02 3.889E+02 3.949E+02 3.901E+02 3.925E+02 3.892E+02

Std 4.407E+00 5.792E+00 7.376E+00 4.694E+00 6.482E+00 7.166E+00

Rank 1 2 6 4 5 3

f25 Mean 2.807E+02 2.046E+02 2.046E+02 2.045E+02 2.048E+02 2.043E+02

Std 1.254E+01 1.043E+00 8.726E-01 8.597E-01 1.138E+00 9.194E-01

Rank 6 4 3 2 5 1

f26 Mean 2.119E+02 1.007E+02 1.007E+02 1.007E+02 1.007E+02 1.007E+02

Std 5.258E+01 9.343E-02 8.228E-02 7.951E-02 7.457E-02 6.422E-02

Rank 6 3 2 4 1 5

f27 Mean 2.242E+03 4.229E+03 3.911E+03 3.674E+03 3.232E+03 3.214E+03

Std 1.554E+02 4.651E+02 6.673E+02 6.689E+02 4.774E+02 4.074E+02

Rank 1 6 5 4 3 2

f28 Mean 4.937E+03 5.430E+02 5.490E+02 5.587E+02 5.461E+02 5.448E+02

Std 1.227E+03 5.380E+01 7.079E+01 7.318E+01 3.959E+01 6.800E+01

Rank 6 1 4 5 3 2

f29 Mean 3.409E+03 2.664E+02 2.739E+02 2.777E+02 2.941E+02 2.947E+02

Std 7.679E+02 2.396E+01 3.576E+01 4.246E+01 5.769E+01 6.961E+01

Rank 6 1 2 3 4 5

f30 Mean 7.110E+04 3.965E+03 4.101E+03 3.600E+03 3.990E+03 3.895E+03

Std 3.459E+04 9.916E+02 9.365E+02 6.542E+02 1.013E+03 8.328E+02

Rank 6 3 5 1 4 2

Average Rank 3.40 3.47 4.00 3.53 3.83 2.77

https://doi.org/10.1371/journal.pone.0271925.t003
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Table 4. Parameters of the CEC2020 test.

Dimension 20

Populatiuon size 100

Max iteration times 10000

Independent runs 31

Search Range [-100,100]

Control Group FBBPSO and BBPSO

https://doi.org/10.1371/journal.pone.0271925.t004

Fig 2. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f1, (a) iteration

0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g002

Fig 3. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f2, (a) iteration

0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g003
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require any parameters. Then, PTO enhances the local search ability of particle swarm while

taking into account the global search ability, making it more possible for the particle swarm to

escape from the local optimum.

Experiments with CEC2020

The standard BBPSO and the ETBBPSO are tested with the CEC2020 benchmark functions.

Parameters are shown in Table 4. Experimental results are shown in Table 5. CE is defined as

|GlobalBestValue−TheoreticallyMinimum|. The ETBBPSO scored 4 firsts and 4 seconds in 10

test functions, shown great performance in this experiments.

Fig 5. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f4, (a) iteration

0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g005

Fig 4. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f3, (a) iteration

0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g004
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Fig 7. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f6, (a) iteration

0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g007

Fig 6. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f5, (a) iteration

0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g006

Fig 8. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f7, (a) iteration

0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g008
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Fig 11. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f10, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g011

Fig 9. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f8, (a) iteration

0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g009

Fig 10. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f9, (a) iteration

0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g010

PLOS ONE An ETBBPSO algorithm for high dimensional optimization problems

PLOS ONE | https://doi.org/10.1371/journal.pone.0271925 July 25, 2022 13 / 23

https://doi.org/10.1371/journal.pone.0271925.g011
https://doi.org/10.1371/journal.pone.0271925.g009
https://doi.org/10.1371/journal.pone.0271925.g010
https://doi.org/10.1371/journal.pone.0271925


Fig 12. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f11, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g012

Fig 14. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f13, (a)

iteration 0-6000, (b) iteration 6000-10000, the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g014

Fig 13. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f12, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g013
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Fig 17. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f16, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g017

Fig 15. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f14, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g015

Fig 16. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f15, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g016

PLOS ONE An ETBBPSO algorithm for high dimensional optimization problems

PLOS ONE | https://doi.org/10.1371/journal.pone.0271925 July 25, 2022 15 / 23

https://doi.org/10.1371/journal.pone.0271925.g017
https://doi.org/10.1371/journal.pone.0271925.g015
https://doi.org/10.1371/journal.pone.0271925.g016
https://doi.org/10.1371/journal.pone.0271925


Fig 20. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f19, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g020

Fig 18. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f17, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g018

Fig 19. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO,f18, (a) iteration

0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g019
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Fig 23. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f22, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g023

Fig 21. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f20, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g021

Fig 22. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f21, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g022
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Fig 26. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f25, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g026

Fig 24. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f23, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g024

Fig 25. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f24, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g025
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Fig 29. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f28, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g029

Fig 27. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f26, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g027

Fig 28. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f27, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g028
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Conclusions

In this paper, a novel electronic transition-based bare bones particle swarm optimization

(ETBBPSO) algorithm is proposed for high dimensional optimization problems. A dynamic

particle grouping (DPG) strategy and a particle transition operator (PTO) collaborate to find

the global optimal solution for high dimensional optimization problems. The DPG is mainly

used to assign particles to different orbits, with a variable number of orbits and a variable num-

ber of particles per orbit. The PTO is used to combine the best and the second-best orbits. Par-

ticles that belong to the second-best orbits will transit to the best orbit to enhance the local

search ability of the best orbit. A set of comprehensive experiments are designed to verify the

optimization ability of ETBBPSO. Several famous population-based methods are used in the

control group. Experimental results prove that ETBBPSO is able to present high precision

results for high dimensional optimization problems.

Fig 31. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f30, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g031

Fig 30. Comparison of convergence speed between PSO, PBBPSO, DA-BBPSO, DLS-BBPSO, FBBPSO and ETBBPSO, f29, (a)

iteration 0-6000, (b) iteration 6000-10000 the unit is 100 iteration.

https://doi.org/10.1371/journal.pone.0271925.g030
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Table 5. Experimental Results with CEC2020, CEs of BBPSO and ETBBPSO. Mean is the mean valut from 31 independent runs, STD is the standard deviation of the 31

runs.

Function Number Data Tpye FBBPSO BBPSO ETBBPSO

f1 Mean 3.002E+04 1.278E+04 1.778E+04

Std 3.915E+04 2.346E+04 3.322E+04

Rank 3 1 2

f2 Mean 5.768E+02 6.037E+02 5.568E+02

Std 2.124E+02 2.718E+02 2.086E+02

Rank 2 3 1

f3 Mean 4.746E+01 4.553E+01 4.348E+01

Std 9.161E+00 1.028E+01 1.141E+01

Rank 3 2 1

f4 Mean 2.238E+00 2.506E+00 2.473E+00

Std 1.021E-00 9.659E-01 8.925E-01

Rank 1 3 2

f5 Mean 9.121E+04 8.048E+04 7.323E+04

Std 8.335E+04 7.829E+04 7.657E+04

Rank 3 2 1

f6 Mean 1.176E+01 2.218E+01 2.948E+01

Std 1.335E+01 3.763E+01 4.494E+01

Rank 1 2 3

f7 Mean 4.601E+04 3.929E+04 4.205E+04

Std 3.750E+04 2.595E+04 4.416E+04

Rank 3 1 2

f8 Mean 1.429E+03 1.219E+03 8.123E+02

Std 1.217E+03 1.085E+03 1.013E+03

Rank 3 2 1

f9 Mean 4.614E+02 4.725E+02 4.623E+02

Std 2.869E+01 2.237E+01 2.611E+01

Rank 1 3 2

f10 Mean 4.363E+02 4.317E+02 4.387E+02

Std 3.185E+01 3.263E+01 3.014E+01

Rank 2 1 3

Average Rank 2.2 2 1.8

https://doi.org/10.1371/journal.pone.0271925.t005
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