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Abstract

Understanding of phenotypes and their genetic basis is a major focus in current plant biol-

ogy. Large amounts of phenotype data are being generated, both for macroscopic pheno-

types such as size or yield, and for molecular phenotypes such as expression levels and

metabolite levels. More insight in the underlying genetic and molecular mechanisms that

influence phenotypes will enable a better understanding of how various phenotypes are

related to each other. This will be a major step forward in understanding plant biology, with

immediate value for plant breeding and academic plant research. Currently the genetic

basis of most phenotypes remains however to be discovered, and the relatedness of differ-

ent traits is unclear. We here present a novel approach to connect phenotypes to underlying

biological processes and molecular functions. These connections define similarities

between different types of phenotypes. The approach starts by using Quantitative Trait

Locus (QTL) data, which are abundantly available for many phenotypes of interest. Overrep-

resentation analysis of gene functions based on Gene Ontology term enrichment across

multiple QTL regions for a given phenotype, be it macroscopic or molecular, results in a

small set of biological processes and molecular functions for each phenotype. Subse-

quently, similarity between different phenotypes can be defined in terms of these gene func-

tions. Using publicly available rice data as example, a close relationship with defined

molecular phenotypes is demonstrated for many macroscopic phenotypes. This includes for

example a link between ‘leaf senescence’ and ‘aspartic acid’, as well as between ‘days to

maturity’ and ‘choline’. Relationships between macroscopic and molecular phenotypes may

result in more efficient marker-assisted breeding and are likely to direct future research

aimed at a better understanding of plant phenotypes.

PLOS ONE | https://doi.org/10.1371/journal.pone.0182097 August 10, 2017 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Nap J-P, Sanchez-Perez GF, van Dijk ADJ

(2017) Similarities between plant traits based on

their connection to underlying gene functions.

PLoS ONE 12(8): e0182097. https://doi.org/

10.1371/journal.pone.0182097

Editor: Lewis Lukens, University of Guelph,

CANADA

Received: January 18, 2017

Accepted: July 12, 2017

Published: August 10, 2017

Copyright: © 2017 Nap et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the FP7

“Infrastructures” project transPLANT Award

283496. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0182097
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182097&domain=pdf&date_stamp=2017-08-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182097&domain=pdf&date_stamp=2017-08-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182097&domain=pdf&date_stamp=2017-08-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182097&domain=pdf&date_stamp=2017-08-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182097&domain=pdf&date_stamp=2017-08-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182097&domain=pdf&date_stamp=2017-08-10
https://doi.org/10.1371/journal.pone.0182097
https://doi.org/10.1371/journal.pone.0182097
http://creativecommons.org/licenses/by/4.0/


Introduction

A major issue in current biological research is to translate differences in phenotype to variation

in genotype. Detailed knowledge of phenotypes and their underlying genetics is necessary, for

example for plant breeding to meet its future challenges with respect to yield, quality and pro-

duction in suboptimal environmental conditions [1]. High-throughput ‘omics’ approaches

generate large amounts of molecular phenotypes (transcriptome, proteome, metabolome) and

new developments in high-throughput phenotyping [2, 3] are now generating increasingly

large datasets of macroscopic phenotypes. Both molecular and macroscopic phenotypes are

combined with genetic data using the approaches of quantitative genetics [4], resulting in a

variety of quantitative trait loci (QTLs) [5–9]: eQTLs (gene expression data), mQTLs (metabo-

lite data), and phQTLs (macroscopic data). The respective QTL types describe traits (here

defined as variation in phenotype) at different levels of biological integration and complexity.

A molecular phenotype can be considered to be an intermediate between the genotype and a

macroscopic phenotype. The ability to reliably connect molecular traits to macroscopic traits

of agronomic and/or academic interest, such as yield, heterosis or flowering time, is a next step

towards better understanding and potential future use of such a trait. In maize, metabolic

information helps predicting complex traits [10], and in Arabidopsis, yield, defined as bio-

mass, is linked to specific metabolites and gene expression levels [11]. Related approaches have

also been applied to study genetic correlations between human gene expression and traits [12].

Such results hold the promise of defining a molecular trait, or a combination of molecular

traits, as a biomarker for a given macroscopic trait, equivalent to the use of bio(chemical)-

markers for disease traits in human health research [13]. Therefore, a better connection

between macroscopic traits and molecular traits is warranted.

We here present a next level analysis of the information contained in QTL regions aiming

at establishing such connections. The gene information contained in QTL regions is converted

to Gene Ontology (GO) terms for gene function, notably the molecular function and biological

process sub-ontologies [14]. Molecular function (MF) defines the biochemical activity of a

gene product, without specifying where or when the activity actually occurs. An example of an

MF term is ‘adenylate cyclase’. Biological process (BP) refers to a biological concept to which a

gene product contributes, usually via one or more ordered assemblies of molecular functions.

An example of a BP term is ‘floral organ development’. We previously demonstrated how mac-

roscopic traits can be linked to underlying BP ontology terms with overrepresentation analysis

using QTL data [15]. The approach combined information from multiple QTL regions for the

same trait and resulted in a statistically significant set of connections between traits and gene

functions. This enabled prediction of QTL candidate genes which were validated by compari-

son with known causal genes underlying QTLs [15].

Here, we investigate and show how to compare and integrate macroscopic and molecular

traits. To do so, we make use of semantic similarity [16], which is a powerful method to quan-

tify the similarity between different sets of gene functions. The semantic similarity of lists of

gene function (GO) terms that are enriched across multiple QTL regions for each trait, indi-

cates similarity between different traits. This way, connections between traits are established.

Some connections confirm or validate existing biological knowledge, whereas other connec-

tions reveal novel relationships between different (types of) traits. Such novel relationships will

guide future research into understanding and exploiting macroscopic traits. Moreover, they

are likely to help defining molecular traits as future proxies or markers for macroscopic traits

of interest in either plant research or plant breeding.

Plant trait similarities
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Results

General approach

The analysis requires QTL data for different types of traits (Fig 1). QTLs associate each trait to

one or more genomic regions of the crop of interest. We here focus on traits with more than

one QTL region. Given multiple QTL regions for a given trait, the assumption of our approach

is that there might be functional similarity between underlying causal genes for that trait in its

Fig 1. Flowchart of comparative trait analysis. Any trait of interest that is associated with multiple QTL

regions, be it molecular or macroscopic in nature, is converted to a list of (overrepresented) GO terms for both

biological processes (BP) and molecular functions (MF). The gene lists in the respective QTL regions are used for

the prediction of GO terms and subsequent overrepresentation analysis relative to the occurrence of GO terms in

the whole genome. The resulting lists of overrepresented GO terms enable comparing different traits for (dis)

similarity. The formal specification of traits in GO terms allows comparison of any trait to any other trait. The figure

emphasizes the comparison of molecular with macroscopic traits.

https://doi.org/10.1371/journal.pone.0182097.g001
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different QTL regions. In other words, related gene functions are assumed to play a role in

multiple different QTL regions for any given trait. To analyze this, the genes present in the set

of QTL regions for a trait are extracted from the available structural annotation of the genome.

For all these genes, the associated biological process (BP) and molecular function (MF) terms

are predicted (see Methods). Overrepresentation analysis of these gene function terms charac-

terizes the trait and establishes a connection between gene function terms and traits. Impor-

tantly, this approach combines information from multiple QTL regions for a given trait.

Connections between BP terms and macroscopic traits were previously successfully used as a

step to prioritize candidate genes in QTL regions [6]. Here, we establish connections between

traits and gene function terms (either BP or MF). These connections allow to compare traits

on the basis of the semantic similarity of their associated gene function terms.

Connecting different traits with GO terms using public rice data

To demonstrate the novelty and added value of the approach, we used public domain data for

rice (Oryza sativa) for macroscopic phenotype (phQTL) [17, 18], metabolite (mQTL) [19] and

expression (eQTL) [5] traits. For inclusion in the analysis, it is required that a trait is associated

with at least two (phQTL, mQTL) or three (eQTL) QTL regions. The latter requirement reduced

the number of traits in the eQTL dataset from 2,113 to a better manageable 418. The phQTL

data set contains 148 traits and the mQTL dataset 623. For all traits, the genes in the associated

QTL regions were extracted from the rice genome. Various descriptive statistics of the three

datasets are summarized in Table 1. The average number of QTL regions per trait, given the

threshold used, ranges from 3 to 11. The average number of genes per QTL region ranges from

140 to 191, and the average number of genes associated with each trait ranges from 477 to 1,248.

For all genes, biological process (BP) terms and molecular function (MF) terms were pre-

dicted using BMRF [20–22] for BP terms and Argot2 [23] for MF terms. The average number

of BP terms per trait ranges from 958 to 1,106, and that of MF terms from 162 to 259; the aver-

age number per QTL region ranges from 494 to 632 for BP and from 70 to 92 for MF

(Table 1). The fact that the number of BP terms is several times larger than the number of MF

terms is in line with what is observed for the whole genome: when considering all genes, the

number of gene-GO associations is roughly four times higher for BP than for MF (S1 Table).

As previously demonstrated for BP terms in the context of QTL candidate gene prioritiza-

tion for macroscopic traits, overrepresentation analysis of gene function terms allows detailed

Table 1. Descriptive statistics of datasets useda.

Number of: Macroscopic

traits

Metabolite traits Expression traits

- traits 148 623 418

- QTL regions per trait 11 (14) 3 (1) 3 (1)

- genes per trait 1,248 (1,869) 570 (271) 477 (183)

- genes per QTL region 140 (121) 191 (99) 146 (91)

- BP terms per trait 1,106 (513) 958 (326) 1,079 (201)

- BP terms per QTL region 494 (344) 632 (242) 580 (255)

- MF terms per trait 259 (220) 162 (72) 172 (46)

- MF terms per QTL region 70 (49) 92 (35) 77 (36)

aThree different rice QTL datasets were used, containing macroscopic traits (phQTL), metabolic traits (mQTL) and expression traits (eQTL). For genes in

the QTL regions for these traits, gene function terms were predicted, defined as biological process (BP) or molecular function (MF) terms. Values represent

the total number or average (standard deviation).

https://doi.org/10.1371/journal.pone.0182097.t001

Plant trait similarities

PLOS ONE | https://doi.org/10.1371/journal.pone.0182097 August 10, 2017 4 / 20

https://doi.org/10.1371/journal.pone.0182097.t001
https://doi.org/10.1371/journal.pone.0182097


characterization of traits [6]. This procedure combines information from multiple QTL

regions by requiring that an overrepresented gene function occurs in the majority of these

regions. For example, the trait ‘root volume’ in the macroscopic trait dataset is associated with

5 QTL regions, in which 1,084 genes are annotated. These 1,084 genes give rise to the predic-

tion of 1,543 BP terms, of which 17 are overrepresented and pass the threshold on occurrence

in at least 3 QTL regions. This establishes the link between the trait ‘root volume’ and 17 gene

function terms. This way, 130 traits in the macroscopic trait (phQTL) dataset are associated

with on average 16 BP terms per trait, involving 830 unique BP terms; 102 traits are associated

with on average 11 MF terms per trait, involving 560 unique MF terms (Table 2). For the mac-

roscopic traits, this results in 2,047 links between traits and BP terms, and 1,141 links between

traits and MF terms. For the other two datasets, the equivalent numbers are given in Table 2.

All links established between traits and BP or MF terms are given in S2 Table.

Biological interpretation of gene functions linked to traits

In all three datasets, many of the links between gene function terms and traits confirm and/or

strengthen prior understanding of the molecular basis of traits. For three traits in the phQTL

dataset, ‘days to heading’, ‘days to maturity’ and ‘root volume’, examples of links with BP

terms are shown in Fig 2. In this plot, for each BP term, its position is chosen such that more

similar terms are more close.

Links with the developmental trait ‘days to heading’ were presented previously [6]: the BP

term ‘regulation of flower development’ is clearly part of current knowledge with respect to

this trait. For the anatomical trait ‘root volume’ links with terms such as ‘DNA packaging’,

‘DNA-dependent DNA replication’ and ‘nucleosome assembly’ confirm the known connec-

tion between nuclear ploidy level and cell-size control [24]. It is also not surprising that the

term ‘cell maturation’ is linked to the trait ‘days to maturity’.

Although fewer connections with MF terms are found for the traits from the phQTL data-

set, also here known connections between macroscopic traits and MF terms are apparent. For

example, the abiotic stress trait ‘relative shoot elongation under submergence’ is linked to two

MF terms, both describing ‘DNA topoisomerase activity’. The role of topoisomerase in plant

growth and development, including cell elongation, is well established [25].

Table 2. Number of links between traits and gene function termsa.

Number of: Macroscopic

traits

Metabolite traits Expression traits

- traits 148 623 418

- links per trait with BP 16 (14) 17 (15) 20 (17)

- traits involved 130 620 406

- BPs involved 830 1,278 1,093

- trait-BP links 2,047 10,760 8,242

- links per trait with MF 11 (14) 23 (19) 8 (5)

- traits involved 102 619 399

- MFs involved 560 1,392 208

- trait-MF links 1,141 14,285 3,091

aTraits were linked to gene function terms on the basis of overrepresentation of biological process (BP) terms or molecular function (MF) terms for genes

associated with the trait using multiple QTL regions for a given trait. Values represent the total number or average (standard deviation). The trait-gene

function links themselves are presented in S2 Table.

https://doi.org/10.1371/journal.pone.0182097.t002
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In the mQTL dataset, ‘succinate, malate and citrate transport’ terms are linked to the amino

acid traits ‘glutamine’ and ‘leucine’. The connection between such transporters and amino

acids agrees with the knowledge that amino acid biosynthesis uses intermediates from the cit-

ric acid cycle [26]. The MF term ‘sodium:dicarboxylate symporter’ is linked to two amino

acids (glutamate and leucine) and two metabolites with unknown identity. Such a symporter is

known to be involved in amino acid transport [27].

The BP terms overrepresented in the eQTL regions for the expression of the gene

LOC_Os01g10504 (OsMADS3) in the eQTL dataset include ‘regulation of post-embryonic

development’ and ‘regulation of multicellular organismal development’ (Fig 2). OsMADS3 is a

transcription factor involved in regulating processes such as flower development. For the trait

LOC_Os04g30210, two of the BP terms obtained via overrepresentation analysis of its eQTL

regions are related with auxin (Fig 2). The gene encodes an F-box protein, and F-box proteins

are known to be involved in auxin signalling [28].

Comparison between different traits: numbers of links with BP and MF

The results presented in Table 2 and details given in S2 Table show marked differences for dif-

ferent types of traits. For the macroscopic traits, the average number of links obtained with BP

Fig 2. Connections with different biological process terms for three macroscopic traits (red) and two

expression traits (green). Macroscopic traits included are ‘root volume’ (red triangles), ‘days to heading’ (red

circles) and ‘days to maturity’ (red star). Expression traits are LOC_Os01g10504 (green circles) and

LOC_Os04g30210 (green triangles). At each symbol, the biological process (BP) term connected to that trait

is given. REVIGO [44] was applied to obtain a plot in which the distance between symbols indicates

dissimilarity between BP terms. In this plot, the x- and y-axis do not have a direct meaning, but for each point,

the x- and y-coordinates are chosen so that terms with a high semantic similarity are close to each other in the

plot.

https://doi.org/10.1371/journal.pone.0182097.g002
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terms is higher than the average number of links obtained with MF terms (16 for BP, 11 for

MF). For expression traits, this difference is even higher (20 for BP, 8 for MF). In contrast, for

metabolite traits more links with MF terms than with BP terms are obtained (23 for MF, 17 for

BP). To further investigate this difference, the distribution of the number of links over the dif-

ferent traits was analyzed. This confirmed the difference between in particular expression traits

and metabolite traits with respect to MF (Fig 3A and 3B). For further analysis, we defined the

fraction of BP term links per trait (fBP): fBP equals the number of links with BP terms obtained

for a given trait, divided by the total number of links with both BP and MF terms obtained for

that trait. Traits with mainly BP term links will have fBP close to 1, whereas traits with mainly

MF links will have values close to zero; a value of fBP = 0.5 indicates that a trait has the same

number of links with BP terms as with MF terms. Whereas the fBP for metabolite traits is dis-

tributed over the whole range of values (Fig 3C, blue line), the traits in both the expression

(green line) and macroscopic (red line) datasets tend to be more connected to BP terms: the

distributions are shifted to the right in Fig 3C. A Kolmogorov-Smirnov test confirms that the

three distributions are significantly different from each other.

Comparison between different traits: semantic similarity

To assess similarity of traits, semantic similarity [16] between sets of overrepresented GO

terms obtained for individual traits was calculated. This analysis was performed separately for

BP and MF terms. The complete list of semantic similarities of traits based on the overrepre-

sented GO terms they are connected with is presented in S3 Table.

A first assessment of the semantic similarities between traits focuses on cases where the

semantic similarity equals one: the list of gene function terms (either BP or MF) for two differ-

ent traits is identical. In total, 69 such cases were obtained (Table 3; S4 Table). For example, for

each pair of five pairs of metabolite traits, the same MF terms were obtained. For three of these

pairs, the identity of both metabolites in the trait is known, and in two cases these are biochem-

ically closely related: the phospholipids LPC(1-acyl 18:1) and LPC(1-acyl 18:2), and the two fla-

vonoids C-pentosyl-apigenin O-rutinoside and 3’, 4’, 5’-dihydrotricetin O-hexosyl-O-

hexoside. The third pair consists of 1-O-palmitoylhexitol and pregna-5,20-dien-3-ol, which

are both classified as “other” in the metabolite trait dataset. Because similar metabolites are

associated with identical sets of GO terms, the approach here presented may aid in the identifi-

cation of metabolites. For two of the metabolite pairs with semantic similarity equal to one,

only one of the metabolites has a known identity, in both cases a terpene (Phytocassane A, and

Ephemeranthoside). The GO term similarity analysis as here presented suggests that the paired

metabolites with unknown identity (m0323-S and m0615-L) are terpenes as well.

If two traits have similar QTL regions, they are more likely to be associated with the same

GO terms. However, 21 of the 69 trait pairs with identical GO terms have completely different

QTL regions associated with the two traits in a pair. An additional 20 cases have only one QTL

region which overlaps between the two traits in a pair. Because many pairs of traits have no or

only limited similarity between their QTL regions, analyses of semantic similarity allow to

integrate and compare traits at a higher level than just the similarity of their QTL regions. This

also holds true for these five metabolite pairs with semantic similarity one mentioned above:

for three of the five pairs of metabolite traits, there is no overlap or only a very limited overlap

between the QTL regions. One example is the above mentioned pair of flavonoids, C-pentosyl-

apigenin O-rutinoside and 3’, 4’, 5’-dihydrotricetin O-hexosyl-O-hexoside (Fig 4). Both are

associated by overrepresentation analysis with exactly the same two MFs that both describe

serine type (endo)peptidase activity. Proteolysis by the ubiquitin/proteasome system is known

to regulate flavonoids [29, 30]. The five QTL regions for C-pentosyl-apigenin O-rutinoside are

Plant trait similarities
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Fig 3. Distribution of the number of connections between traits and gene function terms. (A-B) The number of links with GO terms for different traits.

Macroscopic traits (red), metabolite traits (blue) and expression traits (green) are placed consecutively along the horizontal axis. Within each category, traits

were ordered (left to right, low to high) based on the number of connections with BP terms (A) or MF terms (B). (C) Distribution of the fraction of BP

connections (number of BP connections/(number of BP connections + number of MF connections), for macroscopic traits (red), expression traits (green),

and metabolic traits (blue). As indicated with the grey legend in the figure, a fraction of BP connections of 0 corresponds with only MF connections, and a

fraction of BP connections of 1 corresponds with only BP connections.

https://doi.org/10.1371/journal.pone.0182097.g003
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completely different from the five QTL regions for 3’, 4’, 5’-Dihydrotricetin O-hexosyl-O-

hexoside (Fig 4A). Nevertheless, the fact that they are associated to exactly the same MFs indi-

cates their relatedness, which as indicated above is in line with the chemical similarity between

these compounds.

The significance of the similarities obtained between traits was analyzed with a permuta-

tion test. As mentioned above, 69 pairs of traits were obtained with a similarity of 1; accord-

ing to the permutation analysis this was significant with p = 0.002. Similarly, the number of

trait pairs with a semantic similarity of at least 0.95 or 0.9 was also found to be significant

(p = 0.001 in both cases).

Table 3. Semantic similarity between different types of traitsa.

Semantic similarity = 1b Significant

linksc

Trait type combination BP MF BP MF

Macroscopic–Macroscopic 1 9 79 73

Macroscopic–Metabolic 0 10 532 608

Macroscopic–Expression 0 14 368 444

Metabolic–Metabolic 6 5 493 488

Metabolic–Expression 1 6 847 892

Expression–Expression 3 14 312 330

Total 11 58 2,631 2,835

aFor each trait, semantic similarity was calculated with other traits, using either biological process (BP) terms

or molecular function (MF) terms, associated with these traits.
bSemantic similarity = 1 implies identical sets of gene function terms associated with both traits.
cFor each trait, the trait with maximum semantic similarity was identified over all macroscopic, metabolic and

expression traits separately. Based on randomization, the significance of the link was assessed. Values

represent the total number of significant trait-trait links per category.

https://doi.org/10.1371/journal.pone.0182097.t003

Fig 4. Metabolite traits with different QTL regions are associated with the same two MF terms. (A) QTL

regions of metabolite traits C-pentosyl-apigenin O-rutinoside (red) and 3’,4’,5’-Dihydrotricetin O-hexosyl-O-

hexoside (green). It is clear that the QTL regions are completely different. Both traits are however predicted to

be connected to the same MFs. (B) Chemical structures of scaffold of the two metabolites, apigenin and

dihydrotricetin. The scaffold of both compounds is very similar.

https://doi.org/10.1371/journal.pone.0182097.g004
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Linking traits to each other: maximum semantic similarity

For any given trait, its semantic similarity with other traits displays a range of values. The

semantic similarity values based on overrepresented BP terms for the trait ‘days to maturity’

relative to all macroscopic traits, metabolite traits and expression traits are plotted in Fig 5A. It

shows that most traits have a relatively low semantic similarity to ‘days to maturity’. Ordering

traits based on semantic similarity allows identification of the trait with the maximum seman-

tic similarity to ‘days to maturity’. In this case the macroscopic trait with maximum semantic

similarity (of 0.34) is ‘seed length’, the metabolic trait with maximum semantic similarity (of

0.43) is a metabolite of unknown identity and the expression trait with maximum semantic

similarity (of 0.26) is LOC_Os02g56320.

This way, for each trait, the maximum semantic similarity with all other traits was obtained-

separately for macroscopic, metabolic and expression traits. The distribution of the maximum

semantic similarity between each macroscopic trait and all other traits based on BP terms dis-

plays a range of values from ~ 0.25–1.0. This indicates that some macroscopic traits have a

high semantic similarity with another macroscopic, metabolite or expression trait, whereas for

other macroscopic traits, no such high semantic similarity with any macroscopic, metabolic or

expression trait is observed (Fig 5B). Similar analyses based on MF and for other trait-trait

combinations are presented in S1 Fig.

To analyze the significance of the maximum semantic similarity of a trait with another trait, ran-

domized trait-GO connections were used as input to generate expected values of maximum seman-

tic similarity between traits. All trait-trait links were filtered based on significance using a stringent

multiple testing correction (see Methods for details). For example, for the three links with days-to-

maturity based on BP terms mentioned above, only the link with the metabolic trait was significant.

The total number of significant links between traits is given in Table 3. All links between traits

based on maximum semantic similarity both for BP and MF terms are detailed in S5 Table. A

Cytoscape [31] network visualization of the links between traits is provided in S1 Dataset.

Clustering traits based on semantic similarity

The analysis described above was based on maximum semantic similarity to obtain pairwise

links between traits (S5 Table, S1 Dataset). A more detailed view of trait-trait similarity is

Fig 5. Semantic similarity allows comparisons of traits. (A) Semantic similarity based on BP terms for the

macroscopic trait ‘days to maturity’ with other macroscopic traits (red), metabolite traits (blue) and expression

traits (green). Traits are ordered based on their semantic similarity to ‘days to maturity’ (left to right, low to

high). For each category of traits, the name of the trait with maximum semantic similarity to ‘days to maturity’

is given. (B) Distribution of maximum semantic similarity based on BP terms for macroscopic traits with other

macroscopic traits (red), metabolic traits (blue), and expression traits (green).

https://doi.org/10.1371/journal.pone.0182097.g005
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obtained by clustering traits based on their semantic similarity values. This allows visualizing

and analyzing the similarity of several traits with respect to each other simultaneously. The

resulting dendrograms contain clusters of traits at different levels of granularity (small or large

clusters). Dendrograms are available in S2 Dataset, and can be visualized via http://itol.embl.

de/tree/7716210613417711454683547 (BP terms) and http://itol.embl.de/tree/7716210613125

231454685700 (MF terms). Three specific examples of small clusters (Fig 6) are here discussed

in more detail.

(i) The macroscopic traits ‘leaf senescence’ and ‘chlorophyll content’ cluster with the metabo-

lite trait ‘aspartic acid’ and three expression traits on the basis of semantic similarity in their BP

terms (Fig 6A). For some of the relationships in this cluster, evidence exists. Both chlorophyll deg-

radation and aspartic proteases play a role in leaf senescence [32]. The gene LOC_Os06g02490, is

an acyl CoA binding protein, also a type of protein known to function in leaf senescence [33].

Other relationships indicate connections between traits that are less obvious and may point to

hitherto unknown involvement of genes in these macroscopic traits. The gene LOC_Os07g05390

is a putative myosin heavy chain protein, and LOC_Os01g11120 is a putative RNA-binding pro-

tein. The semantic similarity relationships here identified suggest that these genes are involved in

leaf senescence.

(ii) The macroscopic trait ‘days to maturity’ clusters with the two metabolite traits ‘tricin

derivative’ and ‘choline’ (Fig 6B) on the basis of semantic similarity in their MF terms. These

three traits share the MF term ‘peroxidase activity’ according to the overrepresentation analy-

sis (S2 Table). Peroxidases are known to be involved in ‘days to maturity’ [34, 35] and the over-

representation analysis suggests that they may be relevant for these two metabolites as well.

We are not aware of any hint to a relationship between the metabolites ‘tricin derivative’ and

‘choline’ and the macroscopic trait ‘days to maturity’ in the scientific literature. Such novel

relationships warrant future investigations and may shed new light on the mechanisms under-

lying ‘days to maturity’.

(iii) The macroscopic trait ‘root length’ clusters with the metabolite trait kaempferol and

four other metabolite traits (Fig 6C) on the basis of semantic similarity in their BP terms.

Kaempferol is known to influence auxin transport in roots [36] which could explain the con-

nection between this metabolite and root length. For the other metabolites, involvement in

root length is a novel prediction. Other traits clustering with these metabolites are ‘grain belly

percentage white’ and ‘grain weight’ as well as the expression of four genes (Fig 6C).

Fig 6. Parts of dendrograms based on semantic similarity between different traits. All dendrograms show semantic similarity relationships for different

macroscopic traits (red), metabolite traits (blue) and expression traits (green). Unidentified metabolites are indicated by ‘M’. (A) Semantic similarity

relationships for the traits ‘leaf senescence’ and ‘chlorophyll content’, based on associations with BP terms. (B) Semantic similarity relationships for the trait

‘days to maturity’, based on associations with MF terms. (C) Semantic similarity relationships for the trait ‘root length’, based on associations with BP terms.

https://doi.org/10.1371/journal.pone.0182097.g006
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These examples demonstrate that in addition to similarity relationships that confirm and/

or validate biological knowledge, other similarity relationships are new or unexpected and

may point to potentially new biological insights. Such new relationships illustrate how analyses

on the basis of semantic similarity can provide potential molecular biomarkers for macro-

scopic traits and are likely to improve the understanding of the biological mechanism of the

traits.

Discussion

The basis assumption underlying the overrepresentation approach is that in several of multiple

QTL regions for a given trait, a causal gene is present, and that several causal genes have related

or similar gene functions. We have demonstrated that macroscopic, metabolite and expression

traits with multiple QTL regions in the crop rice can all be analyzed for enrichment of GO

terms and all result in lists of significantly overrepresented GO terms.

GO terms are an abstract representation of gene function, either in terms of a biological

process (BP) or a molecular function (MF). The different trait types differ considerably in the

number of overrepresented terms they link to. The number of links between metabolite traits

and MF terms was larger than with BP terms, whereas the macroscopic traits linked more with

BP terms. This difference may indicate that variation in macroscopic traits is predominantly

influenced by biological processes (i.e. biological concepts to which various molecular func-

tions contribute), whereas variation in metabolite levels is largely influenced by well-defined

biochemical (molecular) functions such as enzymatic reactions or transport. Such activities

on, or resulting in, a given metabolite, may have a direct impact on metabolite level. Expres-

sion traits are more similar to macroscopic traits: more links were obtained with BP terms.

This may seem a bit surprising at first, as expression traits are also molecular traits. However,

it indicates that expression traits are much more complex than the term ‘molecular trait’ may

suggests. Many more processes and factors establish the variation in expression than well-

defined molecular functions can describe.

The GO term overrepresentation analysis combines information from multiple QTL

regions for a given trait to obtain links between trait and gene function terms. Traits with only

one QTL region are not included in the analysis. It would however be straightforward to

improve on the analysis by incorporating additional QTL data. With data from additional pop-

ulations and/or different species, more traits can be included, and more accurate GO term lists

will be obtained to connect and compare different traits to generate leads for future use or

research.

Overrepresented GO terms for the various traits create a common ground for comparison

of heterogeneous trait types. For example, a link is predicted between the metabolite ‘choline’

and ‘days to maturity’. Such a relationship may result in a biomarker at the metabolite or gene

expression level. To assess the predictive value of this potential biomarker, one could e.g. mea-

sure choline metabolite levels during growth and establish whether these are correlated to the

trait of ‘days to maturity’. When validated, choline may be easier and cheaper to measure than

‘days to maturity’. The determination of a macroscopic trait is generally most time- and

resources consuming. Therefore translation of such a trait into an easier-to-determine molecu-

lar trait is worthwhile even without full understanding of the underlying biology. This set-up is

similar to the application of molecular biomarkers for disease traits in human health [13]. In

plants, the added value of the use of molecular traits as marker for macroscopic traits is being

explored [10, 37, 38]. An important advantage of such new molecular markers arises if they are

measured earlier than the macroscopic phenotype. This would speed up the process of selec-

tion and breeding.
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The metabolite QTLs were measured in flag leafs and in seeds. Any prediction about metab-

olite traits is therefore restricted to their role in these tissues. More generally, the experimental

conditions that were applied during the experiments to obtain the QTL regions could influ-

ence our results. Given the lack of standardized descriptions of experimental conditions [3], it

is currently not possible to analyze the influence of experimental conditions in more detail.

Notably the macroscopic phenotypic QTL regions are derived from a variety of sources that

lack standardized metadata.

Semantic similarity based on overrepresented GO terms as here presented provides a new

way of obtaining connections between different types of traits that may define novel markers

for traits. The very many trait-trait relationships that do not yet translate easily in current bio-

logical models or knowledge could help direct or focus future academic or applied research.

Similarity with other traits may generate hypotheses about their identity that can be experi-

mentally investigated. For example, given that only 272 out of the 623 traits in the mQTL data-

set have a known identity (characterized metabolites), the possibility to characterize unknown

metabolites in terms of their similarity to known metabolites, is one of the attractive applica-

tions of the GO-term based method of linking traits here presented.

This approach is complementary to the approach of finding direct correlation between

macroscopic traits measurements and metabolite levels. Such approaches have been demon-

strated for various plant systems [39, 40]. Direct correlation can only be demonstrated when

macroscopic traits and metabolite traits are measured in the same plant population. The large

set of macroscopic trait QTL data here used comes from various populations, impeding the

use of correlation to generate trait similarity networks. Moreover, the use of semantic similar-

ity focuses on gene function terms that define similarity between traits. For example, the

semantic similarity between ‘days to maturity’ and ‘choline’ was among others based on the

mutual term ‘peroxidase activity’. Such information cannot be obtained with only the correla-

tion between traits.

Overlap between QTL regions associated with gene expression and QTL regions associated

with trait values has been analyzed previously as an alternative approach to assess similarity

between traits [7, 41]. The focus on gene function terms allows the analysis of similarities

between traits which are linked to different QTL regions. The large set of macroscopic trait

data used as input originates from a set of populations. Given differences between such popu-

lations, direct overlap between QTL regions is not necessarily expected for similar traits. Even

for traits with a semantic similarity of one (i.e. traits connected to the same set of gene function

terms) the vast majority does not have any, or just one, overlapping QTL region.

Semantic similarity of traits does not necessarily imply causation between the molecular

and macroscopic traits involved, nor does it give information about the direction of possible

causality. The direction of causality and whether there is a direct or an indirect influence of

one trait on another are all issues for further study. For better understanding of the underlying

biology, the direction of causality is relevant. Experiments are conceivable in which metabolite

levels are altered to study the effect on the macroscopic trait, or conversely, in which the mac-

roscopic trait is perturbed for example via mutation of a relevant gene, and the effect on

metabolite levels is assessed. No such detailed biological insight is necessary for the use of

molecular traits as easy biomarker for macroscopic traits.

Conclusions

By connecting gene functions to different types of traits, different biological levels can be inte-

grated and compared on a level that was not yet possible. This approach helps to disentangle

the underlying mechanisms of traits and compare different traits with each other. It will help
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to direct future research aimed at better understanding and use of plant phenotypes in the con-

text of plant genotypes, and ultimately enable more efficient marker-assisted breeding pro-

grams in next-generation ‘breeding by design’ [42, 43].

Material and methods

QTL datasets, retrieval of QTL regions and genes

The phQTL dataset contains QTL regions for macroscopic phenotypes from various studies

assembled by Gramene [17, 18]. The mQTL dataset contains QTL regions for metabolite con-

centrations in flag leaf at the heading date and seeds 72h after germination, from offspring of a

cross between two elite indica varieties of rice, ZS97 and MH63 [19]. The eQTL dataset pres-

ents QTL regions for gene expression from leaf material from offspring from a cross between

the same two indica varieties [5].

QTL intervals reported as significant in the respective publications [5, 17, 19] were used as

starting point. Genes in these QTL intervals were obtained from the rice 2009-01-MSU

genome build downloaded from Gramene [18]. To prevent too large regions to be used, a cut-

off on the maximum number of genes for a QTL interval was set to 450 genes as previously dis-

cussed [15]. As second threshold it was required that a trait connects to at least two (phQTL,

mQTL), or three, QTL regions (eQTL).

Analysis of overrepresentation of GO terms

To predict the biological process (BP) terms for each gene, BMRF was applied as described

[20–22]. Predictions of molecular function (MF) terms were obtained with argot2 [23], using

default settings. For the sets of genes contained in QTL regions associated with a particular

trait, the occurrence of BP or MF terms was compared with the overall occurrence of these

terms in the genome. Statistical significance was assessed with Fisher exact tests and Benja-

mini-Hochberg multiple testing correction (FDR = 0.1) using the method presented previously

[15]. To prevent the use of statistically overrepresented terms present only in a small number

of QTL regions, the minimum fraction of QTL regions in which the BP or MF term should at

least occur was set to 0.5. To prevent the use of terms which are overrepresented in the QTL

regions for a trait but which are very general (high-level) only BP or MF terms were included

which were not annotated for more than 1% of all the genes in the genome. These threshold

values were optimized previously [15]. To visualize sets of GO terms, REVIGO [44] was

applied.

Semantic similarity of traits based on GO terms

Semantic similarity between traits was calculated trait-by-trait with the Gossto tool [16]. With

the Integrated Similarity Measure (ISM) approach applied to the Lin semantic similarity mea-

sure [45], similarity values were obtained between pairs of GO terms. These GO-term-wise

similarities were subsequently converted into trait-wise similarities in the following way.

When comparing trait X with trait Y, each GO term associated with X was compared with all

GO terms associated with Y, and the best match (highest similarity) was obtained. The values

of all the best matches between X and Y were subsequently averaged to obtain the ‘best match

average’ [46]. Significance of the similarity values was assessed using a permutation approach.

All trait-GO connections were shuffled by randomly assigning GO terms to traits (keeping the

same total number of traits, the same total number of GO terms, and the same number of GO

connections per trait). This was repeated 1,000 times, and for each of these randomized sets of

trait-GO connections, the trait-trait similarity values were calculated as above. Significance
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was calculated by assessing how often the experimental similarity value was higher than the

values obtained in the randomization, followed by Benjamini-Hochberg multiple testing cor-

rection (FDR = 0.05).

To cluster traits based on semantic similarity values, similarity values were converted to dis-

tances by applying a linear transformation: distance = simmax-sim where sim is the semantic

similarity value and simmax the maximum observed value over all pairs of traits. Clustering

based on distance between traits was performed using the R-function hclust using complete

linkage [47]. Kernel density estimation was performed using the R-function density [47]. Trait

networks were generated and visualized using Cytoscape [31]. Traits were connected in the

network if there was a statistically significant link between them based on maximum semantic

similarity. Nodes in the network were colored by trait type (expression, metabolite or macro-

scopic) and the network layout was set to spring embedded. Visualization of QTL regions was

performed using the R-package circlize [48].

Statistical significance of the similarities between traits

The significance of the similarities obtained between traits was analyzed with two different

types of permutation tests. (i) Use of randomly chosen genome regions as input for each trait,

instead of QTL regions. The number of randomized regions and their length was identical to

that of the QTL regions, and 1,000 of such randomized input sets were used. The exact same

procedure and settings as described above were applied to these regions to obtain trait-trait

similarities: overrepresentation analysis, filtering on the minimum fraction of QTL regions in

which a GO term should at least occur (0.5), filtering on the number of genes to which a GO

term was annotated (not more than 1%), and semantic similarity calculation. The p-value was

calculated as the number of times (out of 1,000) for which the permutated dataset resulted in

at least a similar number of trait-trait pairs with a given value of semantic similarity. (ii) To

analyze the significance of the trait-trait links obtained based on maximum semantic similarity

of a trait with other traits, randomized trait-GO connections were used as input to generate

expected values of maximum semantic similarity between traits. The p-value was calculated as

the number of times (out of 1,000) for which the permutated dataset resulted in at least the

same value of semantic similarity for the trait-trait connection. This was followed by Benja-

mini-Hochberg multiple testing correction (FDR 0.05).

Supporting information

S1 Table. Characteristics of rice gene function annotation. Rice gene function terms were

predicted using BMRF for biological process (BP) terms and Argot2 for molecular function

(MF) terms. The total number of annotations, the number of genes with at least one annota-

tion, and the unique number of gene function terms involved is shown.

(DOCX)

S2 Table. Links between traits and biological process (BP) and molecular function (MF)

terms. The following sheets are provided:

phQTL–BP

phQTL–MF

mQTL–BP

mQTL–MF

eQTL–BP

eQTL–MF

In each sheet, links between traits and biological process (BP) terms or molecular function
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(MF) terms are presented. phQTL indicates macroscopic traits; mQTL indicates metabolite

traits; eQTL indicates expression traits. For macroscopic traits, the corresponding Trait Ontol-

ogy (TO) identifier is given. For metabolite traits, the identifier is given, and for metabolites

with known identity, also the metabolite name is given. For expression traits, gene names are

given.

(XLSX)

S3 Table. Similarity values between all trait-trait pairs. This file contains one sheet for the

semantic similarity based on BP terms, and one sheet for semantic similarity based on MF

terms. Pairs of traits are ordered based on the level of semantic similarity.

(XLSX)

S4 Table. Pairs of traits with semantic similarity = 1. Traits associated with exactly the same

set of overrepresented BP or MF terms. Each row indicates a pair of such traits. For macro-

scopic traits, the Trait Ontology identifier and the trait name is given; for metabolites, the

metabolite identifier is given, and for characterized metabolites, the metabolite name.

(DOCX)

S5 Table. Connections between traits based on significant maximum similarity. This file

contains the following sheets, presenting the most similar trait for each trait in the other set of

traits:

ph–ph (BP): for each macroscopic trait, the most similar macroscopic trait, based on BP terms

ph–m (BP): for each macroscopic trait, the most similar metabolite trait, based on BP terms

ph–e (BP): for each macroscopic trait, the most similar expression trait, based on BP terms

m–ph (BP): for each metabolite trait, the most similar macroscopic trait, based on BP terms

m–m (BP): for each metabolite trait, the most similar metabolite trait, based on BP terms

m–e (BP): for each metabolite trait, the most similar expression trait, based on BP terms

e–ph (BP): for each expression trait, the most similar macroscopic trait, based on BP terms

e–m (BP): for each expression trait, the most similar metabolite trait, based on BP terms

e–e (BP): for each expression trait, the most similar expression trait, based on BP terms

ph–ph (MF): for each macroscopic trait, the most similar macroscopic trait, based on MF

terms

ph–m (MF): for each macroscopic trait, the most similar metabolite trait, based on MF terms

ph–e (MF): for each macroscopic trait, the most similar expression trait, based on MF terms

m–ph (MF): for each metabolite trait, the most similar macroscopic trait, based on MF terms

m–m (MF): for each metabolite trait, the most similar metabolite trait, based on MF terms

m–e (MF): for each metabolite trait, the most similar expression trait, based on MF terms

e–ph (MF): for each expression trait, the most similar macroscopic trait, based on MF terms

e–m (MF): for each expression trait, the most similar metabolite trait, based on MF terms

e–e (MF): for each expression trait, the most similar expression trait, based on MF terms

In each of these sheets, for a given trait, the most similar trait is listed, followed by the p-value

(after multiple testing correction).

(XLSX)

S1 Fig. Semantic similarity between traits. Histograms of the maximum semantic similarity

for each trait with any other trait of either the same type or of different type, based on either

BP or MF terms. (A) Macroscopic traits, based on BP. (B) Metabolic traits, based on BP. (C)

Expression traits, based on BP. (D) Macroscopic traits, based on MF. (E) Metabolic traits,

based on MF. (F) Expression traits, based on MF. In all panels, red indicates maximum simi-

larity to macroscopic traits, blue maximum similarity to metabolic traits, and green maximum
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similarity to expression traits.

(PNG)

S1 Dataset. Networks connecting traits based on BP and on MF. In these networks, each

node represents a trait, and a connection between nodes indicates a significant similarity

between the two traits. The following files are provided:

NetworkBP.sif, networkMF.sif (networks based on BP and on MF, respectively, in sif format)

NodeattributesBP.out, nodeattributesMF.out (Cytoscape attributes files for nodes in the net-

work; this describes the type of trait for each node).

These files can be used to visualize the network in Cytoscape. Two Cytoscape session files are

also provided which directly provide a view of the network using a spring-embedded layout,

and coloring the nodes based on the type of trait: networkBP_colorednodes.cys and net-

workMF_colorednodes.cys.

(ZIP)

S2 Dataset. Dendrograms representing results of clustering of traits based on BP and on

MF. Two files are provided: hclustBP_exported_tree.newick and hclustMF_exported_tree.

newick. These can be visualized in various tree/phylogeny software tools, e.g. in figtree http://

tree.bio.ed.ac.uk/software/figtree/.

A visualization of these trees is also provided via http://itol.embl.de/tree/771621061341771145

4683547 (BP) and http://itol.embl.de/tree/7716210613125231454685700 (MF).

To briefly explain the use of iTOL, we will focus on reproducing Fig 6C:

1. Open the BP based trait clustering tree by pasting http://itol.embl.de/tree/

7716210613417711454683547 in a web-browser

2. Change the display mode from Circular to Normal (via the top right hand control)

Note that trait names are now visible; green indicate expression traits, blue metabolite traits

and red macroscopic traits. For macroscopic traits, hovering over the trait ontology identi-

fier displays the trait name. Similarly, for metabolite traits with known identity, the metabo-

lite name, the way in which the metabolite was identified, and the compound class, are

indicated.

3. Use the Tree search tool (available at the top left hand side): type 0000227, the TO identifier

for root length.

The result displays the part of the tree around the trait root length. Similar to Fig 6C, three

gene expression traits are most closely clustered with root length. Two additional macro-

scopic traits (grain belly percentage white, TO 0000383 and grain weight, TO 0000589), one

additional expression trait and five additional metabolite traits form a second group of

closely related traits. Note that the vertical ordering of these traits can deviate from the

ordering in Fig 6C; the relationships indicated by the tree are however identical.

(ZIP)
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