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Mast cells are well known to be activated via cross-linking of immunoglobulins bound to
surface receptors. They are also recognized as key initiators and regulators of both innate
and adaptive immune responses against pathogens, especially in the skin and mucosal
surfaces. Substantial attention has been given to the role of mast cells in regulating T cell
function either directly or indirectly through actions on dendritic cells. In contrast, the ability
of mast cells to modify B cell responses has been less explored. Several lines of evidence
suggest that mast cells can greatly modify B cell generation and activities. Mast cells co-
localise with B cells in many tissue settings and produce substantial amounts of cytokines,
such as IL-6, with profound impacts on B cell development, class-switch recombination
events, and subsequent antibody production. Mast cells have also been suggested to
modulate the development and functions of regulatory B cells. In this review, we discuss
the critical impacts of mast cells on B cells using information from both clinical and
laboratory studies and consider the implications of these findings on the host response
to infections.
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INTRODUCTION

The ability of mast cells to aid in the initiation and regulation of acquired immune responses has
been demonstrated by multiple authors (1–6). As key resident sentinel cells in the skin and at
mucosal surfaces, capable of detecting pathogens and tissue damage, mast cells are often one of the
first cell types to be activated on pathogen invasion, tissue damage, or infection. Initial responses to
bacterial pathogens often result in the production of an NF-kB-dependent cytokine cascade that
includes the production of TNF-a, IL-1b and IL-6, as well as other cytokines and regulatory factors.
The balance of mediators produced varies considerably depending on the tissue site and stimulus (2,
7–10). These can include immunomodulatory cytokines such as IL-10, as well as IL-1RA and a wide
variety of potent chemokines which recruit appropriate effector cells. In response to several viral
infections the production of chemokines, along with type 1 interferons (IFN) represent the
predominant mast cell response and leads to the recruitment of NK cells and CD56+ T cells
(11–20). Mast cells also respond to tissue damage via responses to alarmins, such as IL-33,
subsequently giving rise to a further unique pattern of mediators including IL-13 and IL-5 (21–23).
While degranulation is induced by certain stimuli, such as nematode parasites and select bacteria,
mediator production often occurs in its absence. Lipid mediators are also selectively produced in
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response to many infections and contribute to cell recruitment
and vascular changes. This highly regulated and co-ordinated
mast cell response can aid in the mobilisation of dendritic cells
that subsequently migrate to draining lymph nodes (2, 7, 24–27),
the recruitment of effector cells, and the initiation of an optimal
acquired immune response including the production of
neutralising antibodies.

In many cases it has been assumed that the interaction of
mast cells and B cells is important, but not co-ordinated at the
tissue level. Mast cells promote the overall initiation of antibody
responses and at the same time mast cells are guided and
enhanced in their responses by IgE or IgG subclasses bound to
Fc receptors on their surface. However, increasing evidence
suggests that the relationship between mast cells and B cells is
much deeper and more complex, providing potential
opportunities for therapeutic intervention. In this review we
have selected just some of these proven and potential interactions
to highlight and illustrate the complexity and importance of the
mast cell-B cell relationship.
RECEPTOR-LIGAND INTERACTIONS
BETWEEN MAST CELLS AND B CELLS

The potential and proven interactions between mast cells and B
cells are complex and multifaceted. In considering these, it is
Frontiers in Immunology | www.frontiersin.org 2
important to distinguish between evidence obtained from human
studies and those observed in rodent models. The use of mast cell
lines without confirmation using primary mast cells in some
studies also means that findings need to be interpreted with
caution. Interactions between mast cells and B cells are
summarised in Figure 1, including the important cell contact-
dependent and mediator-dependent interactions.

CD40/CD40L
The CD40/CD40L interaction is pivotal to the regulation of
antigen presentation, T cell-dependent class-switching, memory
B cell development, and germinal centre formation (28). The
early recognition that mast cells express CD40L suggested
additional roles for mast cells in modifying B cell functions.
This included the demonstration that mast cells can promote B
cell class-switch to IgE production via a CD40/CD40L-
dependent mechanism in the presence of IL-4 (29).

Signalling through CD40 was also shown to increase B cell
proliferation by physical cellular contact (30). CD40L-expressing
mast cells can enhance CD40/CD40L communication by
promoting CD40-expression on B cells (30). Moreover, CD40L
can be upregulated on mast cells through the actions of invariant
NKT (iNKT) cells. iNKT cells recognise CD1d on the surface of
murine mast cells and trigger the upregulation of CD40L, which
can subsequently stimulate IgE class-switch by B cells to enhance
allergic airways responses (31).
FIGURE 1 | Major pathways of communication between mast cells and B cells. Evidence of cytokine and receptor-ligand interaction between mast cells and B cells
has been depicted according to the following color scheme: red for evidence found in rodents, blue for evidence found in humans, and green for rodents and
humans. Interaction between mast cells and B cells can occur at mucosal sites as well as at lymphoid and vascular tissues (although less frequently than at the
mucosa). This is achieved by a broad array of cytokines (mainly type 2 cytokines, IL-10, IL-6, and IL-33), membrane-bound receptors and ligands (e.g., CD40/
CD40L), and granule products such as histamine and proteases. These interactions can promote B cell proliferation, survival, class-switch to IgA or IgE, among other
impacts. In addition, exosomes from both mast cells and B cells may be involved in communication between these cells. (Figure was prepared using BioRender).
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The CD40/CD40L-axis seems to play a role in local
immunosuppression and immune tolerance, as it is implicated
in the generation of IL-10 secreting B cells, as shown by Mion
et al. (32). Indeed, the presence of mast cells enhances the
development of B cells capable of producing IL-10 when
appropriately stimulated, known as “IL-10 competent B cells”.
Mast cells do not selectively enhance IL-10 production, on a per
cell basis, but have a key role in enhancing expansion of
regulatory B cell (Breg) subsets producing this anti-
inflammatory mediator (32). Breg cell generation could be
enhanced without direct cell contact, as exosomes from mast
cells contain CD40L.

The ability of mast cells to enhance Breg development via a
CD40-dependent mechanism also appears to be dependent on
the anatomical site or other microenvironmental factors. In
mice, the presence of mast cells does not enhance Breg
differentiation in the spleen or peritoneal cavity but is
important in the colon (32). This may be related to the
presence of microbial factors in the intestine that are known to
activate mast cells (33–35). This type of mast cell-B cell cross-talk
may be more important in reducing local inflammatory
responses at sites of microbial challenge and ensuring
appropriate responses to damage or infection. In the context of
allergic disease, mast cells and B cells have also been shown to co-
localise in the airway epithelium of ovalbumin (OVA) challenged
mice. Both CD40 and CD40L expression were upregulated in this
setting possibly due to upregulation of Transglutaminase 2
triggered by antibody-antigen stimulation of mast cells (36).
CD40 has also been shown to be expressed by airway epithelial
cells (37), where it has been implicated in promoting T cell
activation. These observations suggest that blockade of CD40/
CD40L interactions in the allergic airways might have multiple
consequences for local immune and inflammatory regulation.
Notably, mast cells do not appear to have a key role in the
development of mucosal tolerance, at least in adult animals (38).

OX40/OX40L
Human mast cells from several tissues including the airways
express OX40L (39), and this has been shown to provide a
mechanism whereby mast cells may promote T cell responses. As
mentioned previously, Hong et al. (40) have demonstrated that
mast cells and B cells co-localise in the lung epithelium of OVA-
sensitised mice. Moreover, expression levels of OX40/OX40L
and CD40/CD40L were elevated. Inhibition of these pathways
decreases the levels of OVA-specific IgA and IgE and reduces
antigen-dependent mediator-release by mast cells. This model
shows how B cells are activated by mast cells through the CD40/
CD40L pathway as well as the OX40/OX40L-axis, in the presence
of appropriate cytokines such as IL-4, IL-13, IL-6, and TGF-b.
These signal through the TRAF2-MEKK1 and TRAF60-TAK1
signalling pathways, respectively, to induce B cell class-switch
into IgA and IgE secreting cells. Enhanced IgE could provide
positive feedback by stimulation of FcϵRI in mast cells, which in
turn would increase mediator production and release. In
addition to these more direct interactions between mast cells
and B cells through OX40-dependent mechanisms there are a
host of impacts that may result from mast cell-T cell interactions
Frontiers in Immunology | www.frontiersin.org 3
through either cell-cell contact or exosomes. For example, it has
been clearly demonstrated that mast cells can limit the actions of
regulatory T cells (Tregs) and promote Th17 production via an
OX40/OX40L and IL-6-dependent mechanism (41).

CD30/CD30L
Mast cells can express both CD30 and CD30L. CD30 expression
on mast cells is often associated with mastocytosis or chronic
inflammation. In contrast, CD30L expression by mast cells is
more consistently observed in a variety of tumours and tumour-
draining lymph nodes (42). Molin et al. 74 demonstrated that
human mast cells interact with Reed-Sternberg lymphoma cells
through the CD30/CD30L axis in Hodgkin’s Lymphoma, leading
to an increase in proliferation of the latter. It has also been shown
that CD30L-signalling induces mast cells to produce chemokines
such as CXCL8 without evidence of degranulation or lipid
mediator production (43). However, the ability of this
interaction to induce chemokines that would induce B cell
migration has not been directly examined. Only very specific
subsets of B cells in the germinal centre and extrafollicular
environment normally express CD30. Notably, the human
CD30+ extrafollicular B cells are a subset of active memory
B cells (44). It is plausible that mast cells also interact with
these B cell populations to promote proliferation under
some circumstances.

CD27 and CD52
Early mast cell progenitors have been described as CD27+ (45)
and mast cells ex vivo have also been described to express CD70.
This was particularly studied in patients with Waldenström
macroglobulinemia, a form of lymphoplasmacytic lymphoma.
In this setting, soluble CD27 produced by lymphoplasmacytic
cells upregulated CD40L on mast cells (30). CD40/CD40L
interactions can promote the proliferation of malignant cells
and have therefore been implicated as a negative factor in disease
progression. It is plausible that this mechanism may extend
outside of malignancy, perhaps to a subset of antibody-
producing cells.

Both mast cells and B cells express the 12-amino acid GPI
linked peptide CD52 (46), which is thought to have a role in
retaining cell mobility. CD52 can ligate with Siglec-10 found on
mast cells in addition to sialic acid. However, the precise role of
this interaction is unknown. Siglec-10-signalling via CD24 can
reduce responses to DAMPs and inhibit responses to tissue
injury in humans (47). This may provide a mechanism
whereby local inhibition of inflammation may result from mast
cell-B cell cross-talk. However, given the wide range of cell types
expressing these molecules it may be a more general method to
regulate immune responses in certain tissues.
MAST CELL MEDIATOR IMPACTS ON
B CELLS

In response to a variety of stimuli including pathogen-associated
molecular patterns (PAMPs) or damage-associated patterns
September 2021 | Volume 12 | Article 718499
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(DAMPs), mast cells selectively produce a subset of their wide
array of potential mediators. These include preformed granule-
associated products such as proteases and histamine, newly
formed lipid mediators such as LTC4 and PGD2, and over 40
different cytokines and chemokines. The combinations, timing
and range of such mediator production is dependent on the
nature of the acute stimulation, the microenvironment, and the
mast cell subpopulation. Many mast cell mediators can directly
or indirectly modify B cell recruitment, function, or
differentiation. The following section will outline mediators
important in the setting of acute or chronic infection.

Histamine
Histamine is a biogenic amine released by mast cell granules
during allergic reactions and in response to multiple other
stimuli that induce mast cell degranulation such as tissue
injury, and responses to certain pathogen products. The impact
of histamine on immunity has been extensively studied as
reviewed by Akdis and Blaser (48). In mice, deletion of H1R
resulted in suppression of IFN-g and enhanced secretion of the
type 2 cytokines, IL-4 and IL-13, with subsequent impacts on B
cell responses (49). B cells express both H1 and H2 receptors that
impact cellular functions. Early reports demonstrated that H1-
signalling with IgM/antigen-stimulation enhanced splenic B cell
proliferation (50). Kimata et al. (51) showed that B cells from
healthy donors treated with anti-CD58 plus IL-4 or IL-13
enhanced IL-6 and IL-10 production when concurrently
treated with histamine. This in turn, selectively increased IgE
and IgG4 secretion. However, as reviewed by Merluzzi et al. (52)
the impact of adding histamine in B cell culture systems has
reportedly been variable, possibly due to its short half-life and the
presence of histamine degrading enzymes.

H2 receptors on human cells including B cells are
endogenously active, so while histamine can enhance their
activity, important clues to their regulatory function can often
be best obtained by using H2 antagonists or through studies of
receptor-deficient cells or animals. Notably, the widely used H2
antagonists, ranitidine and famotidine have been shown to have
some significant impacts on B cell activity. For example,
ranitidine reduced tumor growth via a B cell-dependent
mechanism in murine models of breast cancer (53). More
recently, Meghnem et al. (54) showed that high dose ranitidine
inhibited the number of circulating CD19+ B cells in 29 healthy
human subjects. It is not known if chronic histamine stimulation
in the context of allergic disease enhances such B cell populations.

Proteases
Mast cell proteases are released in large amounts from activated
mature and immature mast cells, particularly during
degranulation. They have a wide variety of important functions
in aiding host defence and enhancing the function of numerous
cytokines through protease-mediated activation during infection,
especially at mucosal surfaces. These include TGF-b family
members that play key roles in regulating B cell development
and in promoting IgA class-switch essential for the appropriate
immune protection of mucosal surfaces [reviewed in (55)] as well
as impacts on the activity of other inflammatory cytokines such as
Frontiers in Immunology | www.frontiersin.org 4
IL-33 (56–58). Chymase enzymes from mast cells have also been
shown to induce B cell secretion of IgG1 and IgE as shown by
Yoshikawa et al. (59) using rat mast cell protease II, although the
mechanism for this is unclear.

Tryptase production by mast cells can also influence local
mediator production and the cellular microenvironment.
Moreover, tryptase can activate several protease-activated
receptors such as protease activated receptor 2 (PAR2). Xue
et al. (60) showed that B cells constitutively express PAR2, with
levels increasing in allergic rhinitis. After PAR-2 activation,
signalling through Bcl2L12 leads to IL-10 transcription
repression and reduced IL-10-expression by B cells from
patients with allergic rhinitis. The fact that tryptase is an
important activator of PAR2 adds to the important role of
mast cells in an allergic setting and raises the possibility of
reduced tolerogenic responses following mast cell degranulation
through inhibition of IL-10 production by B cells. It remains to
be discovered if this mechanism occurs in other tissue settings
where mast cells and B cells co-localise such as the gut.

IL-6
Mast cells can be a rich source of IL-6 in response to certain
infections. For example, when activated with high doses of
Escherichia coli lipopolysaccharides (LPS), rodent mast cells
have been reported to produce more IL-6 on a per cell basis
than similarly treated macrophages. IL-6 has several roles in
regulating B cell and plasma cell development and was originally
described as a B cell differentiation factor. IL-6 is crucial for
development of immunoglobulin-producing plasma cells and in
some cases, class-switching. Merluzzi et al. (30) have shown that
mast cells promote B cells differentiation into plasma cells with
an IgA isotype through IL-6 secretion, which suggests that B cells
can class-switch to IgA without T cell help. This process may be
particularly important in the context of mucosal infections and
host defence in airways. Another IL-6 family member, leukemia
inhibitory factor, produced by mast cells (61), has been shown to
selectively activate B1a cells in mice (62). It has also been
suggested that in the presence of microbial stimulation IL-6
can promote the generation of Bregs (63). This adds to the
complexity of the potential impact of mast cell IL-6 production
following microbial breach of the epithelial barrier or mast cell
contact with bacterial products.

Mast cells can also impact tissue remodelling events through
IL-6. As described by Breitling et al. (64) in a murine pulmonary
hypertension model, mast cells promoted vascular remodelling
of the pulmonary artery of rats. A genetic analysis of lung
samples from these rats revealed increased immunoglobulin
gene products relative to controls, indicating a link between
mast cells and immunoglobulin production. Upon further
investigation, mast cell-derived IL-6 proved important.
Pulmonary hypertension was improved by IL-6 inhibition,
although increased mast cell density persisted when IL-6 was
diminished. The depletion of B cells with anti-CD20 as well as
the use of B cell-deficient mice also improved pulmonary
hypertension. Along those lines, autoantibody levels as well as
vascular remodeling decreased after oral ketotifen treatment, a
mast cell stabiliser. Further information on mast cell/B cell
September 2021 | Volume 12 | Article 718499
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communication will be crucial for devising novel strategies to
treat pulmonary hypertension.

Interferons and B Cell Chemoattractants
Mast cells are not thought to be a significant source of type 2
IFNs (e.g., IFN-g), although they can produce it under some
circumstances (65). Mast cells are, however, an important source
of type 1 IFNs following viral infection (11, 12, 18). The IFN
response of human mast cells to viral infection can be enhanced
by IL-4 (66) with potential to modify B cell activity. It has been
demonstrated that type 1 IFN-signalling in B cells can lead to the
loss of tolerance and the development of autoreactive B cells (67).
Type 1 IFN responses by mast cells are only one of a number of
possible routes by which they may enhance antibody generation
in autoimmune disease, such as their enhancement of anti-
citrullinated protein antibodies in rheumatoid arthritis (68).
This role for IFNs is best studied in the context of systemic
lupus but could potentially also enhance responses to
environmental allergens at sites such as the nasal mucosa or
intestine which are prone to viral infection.

Human mast cells are also an important source of type 3 IFNs
such as IL-29 during select viral infections and upon activation
by specific viral-associated products such as double stranded
RNA. IFN-l has been demonstrated to enhance the
differentiation of naïve B cells into plasmablasts via the
mTORC1 pathway (69). While the contribution of mast cells
to this and other IFN-dependent modulation activities on B cells
is likely small within classical draining lymph node sites, it may
be of greater importance at sites of mast cell-B cell co-localisation
and viral exposure, such as the nasal mucosa, intestinal lamina
propria, or inflamed skin.

In environments with high levels of IFNs such as sites of viral
infections, mast cells can produce large amounts of several
lymphocyte chemoattractants (70). Indeed, mast cells can
produce CXCL10 in the context of reovirus, dengue virus,
influenza, and RSV infection (71). CXCL10 has B cell and T
cell chemoattractant abilities in addition to multiple other
impacts. CXCL13 is also recognised as a critical B cell
chemoattractant and although not widely studied from mast
cells has also been reported to be produced following reovirus
infection of human cord blood-derived mast cells (13).

IL-33 and Type 2 Cytokines
Mast cells can be a significant source of type 2 cytokines that
impact B cell development and function. For example, the
production of IL-4 by mucosal mast cells in allergic rhinitis
may enhance IgE class-switch by B cells, albeit to a lesser degree
than IL-13 (72). Local microbial stimulation likely contributes to
such mast cell activation at mucosal settings. IL-33, a member of
the IL-1 receptor family, has also been reported to strongly
influence B cells. IL-33 has been reported to induce activation of
murine B1 cells through the ST2 receptor and drive the
production of CCL2 and CCL3, chemokines involved in the
trafficking of monocytes, macrophages, and other effector cells.
Stimulation of B1 cells with IL-33 also generates the production
of angiogenic factors such as VEGF and GM-CSF (73). IL-33 also
stimulates IL-5 production and secretion in both mast cells and B
Frontiers in Immunology | www.frontiersin.org 5
cells, which leads to paracrine and autocrine stimulation through
the IL-5 receptor to promote B cell proliferation, maintenance of
Bregs, and antibody production (52). Overall, mast cells both
produce IL-33 and respond to this alarmin through the
production of similar mediators. Therefore, it possible that
mast cell/B cell interaction at mucosal sites can perpetuate
local inflammatory responses in specific settings through
production of cytokines and angiogenic factors.

BAFF and APRIL
Mast cells not only influence B cells in terms of class-switching
and differentiation but also produce soluble mediators from the
TNF ligand family that enhance B cell survival and limit
apoptosis. As shown by Wang et al. (74), among many cell
types, mast cells produce B cell activating factor (BAFF) in the
ectopic lymphoid tissue of nasal polyps. Increased BAFF
production may promote B cell survival to potentially promote
ectopic lymphoid tissue formation. In support of this, another
related member of the TNF ligand family, A Proliferation-
Inducing Ligand (APRIL) along with B-Lymphocyte Stimulator
factor (BLYS) can promote the survival of lymphoplasmacytic
cells in Waldenström macroglobulinemia (75). Mast cells
produced APRIL in response to CD70 stimulation through
CD27 (75). The activities of these molecules, together with
CD40/CD40L interactions support the importance of a range
of TNF family members in mast cell/B cell interaction.

Exosomes
Mast cells may also modulate B cells through transfer of
exosomes. Mast cell-derived exosomes can harbour multiple
molecules highlighted herein (e.g., CD40 and CD40L) and
others such as CD86, MHC II, LFA-1, and ICAM-1 (76).
Exosome secretion may be dependent on IL-4 and mast cell
maturity. Paradoxically, exosomes from mast cells have been
shown to induce secretion of IL-2, IFN-g and IL-12, skewing the
immune response to type 1 cytokine polarisation. This indicates
that mast cells can broadly shape immune responses (e.g., allergic
reactions) including the intensity through their exosome
contents. Despite strong evidence of exosome importance for
modifying B and T cell activities in vitro (77–79), the role of mast
cell exosomes has yet to be conclusively demonstrated in vivo,
particularly in settings of infection.
MAST CELL/B CELL INTERACTION AND
CO-LOCALISATION

Mast cells are resident tissue cells observed in high density at
mucosal surfaces and in the skin. However, they are also found
throughout the body, mainly in association with blood vessels.
Mast cells are present in lymphoid tissue, but usually not as a
major resident population. However, mast cell migration to
inguinal lymph nodes has been reported in the context of early
inflammatory responses (e.g., following UV exposure) (80–82).
Mast cells are also found in close-proximity to B cells in tonsil
and Peyer’s patches (81–83) (Figure 2). At sites of ectopic
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lymphoid tissue development, such as in the airways during
chronic allergic disease (84) and in the joints during rheumatoid
arthritis (68, 85), mast cells and B cells are also found within the
same microenvironment at high density, potentially as a result of
the disease (Table 1).

This co-localisation may be functionally important. Early
studies demonstrated that mast cells could effectively promote
B cell function and proliferation (86, 87). There is evidence for
interaction between mast cells and B cells at the nasal mucosa of
patients with allergic rhinitis. Mast cells have been shown to
induce IgE synthesis by purified tonsillar B cells in response to
antigens without the need for exogenous IL-4 or IL-13. Mast cells
in this context were reported to have enhanced expression of
FcϵR1, CD40L, IL-4, and IL-13 (72). In vitro, Palm et al. (88)
Frontiers in Immunology | www.frontiersin.org 6
demonstrated in mice that degranulated (and to some extent
resting) mast cells enhanced B cell activation including elevated
expression of CD19, MHC II, CD86, and L-selectin. Such
activated B cells also secreted greater amounts of IgG and IgM.
In the intestine, a different impact of mast cell-B cell interaction
has been suggested. Mast cells and B cells co-localise in the
lamina propria of the intestine of individuals with inflammatory
bowel disease and an association has been reported between the
presence of mast cells and elevated IgA secretion (30). These
authors also clearly demonstrated the presence of mast cells and
B cells in human lymph nodes undergoing reactive hyperplasia.
Mast cells were particularly localised surrounding follicles and in
the paracortical and medullary regions of the lymph nodes,
raising the possibility of interaction with recirculating naïve B
FIGURE 2 | Extensive mast cell/B cell co-localisation within lymphoid tissue. Multiplex immunostaining using Opal™ technology (Akoya Biosciences) identified
CD20+CD79a+ B cells (green and cyan), tryptase+CD117+ mast cells (magenta and white), and CD20-CD3+ T cells (red) within formalin-fixed, paraffin-embedded 5

µm-thick human tonsil sections. The 6-plex panel (including DAPI counterstaining) scans were acquired on the Mantra 2™ Quantitative Pathology Workstation using
pre-defined parameters at 20x original magnification and spectrally unmixed using inForm® software (Akoya Biosciences). Representative image illustrating close-
proximity between mast cells and B cells within tonsil architecture. Mast cells appear less in T cell dense areas.
September 2021 | Volume 12 | Article 718499
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cells and activated post germinal centre B cells. Using a co-
culture of primary mast cells and B cells, the presence of mast
cells promoted the survival and proliferation of B cells through
an IL-6-dependent mechanism which also required cell-cell
interactions such as CD40/CD40L (30). In contrast to these
findings, it has also been suggested that mast cells within lymph
nodes may have more suppressive immunomodulatory functions
which limit B cell responses. For example, Chacon Salinas et al.
(89) have demonstrated that the production of IL-10 by mast
cells can indirectly disrupt germinal centre formation via
impacts on T follicular helper cells. The production of IL-10
and IgA by B cells has also been implicated in reducing
neuroinflammation (90) and inflammatory responses at
mucosal surfaces (91). Thus, any impact of mast cells in
modifying such responses could have critical downstream
impacts on the mucosal immune environment.

Outside of secondary and ectopic lymphoid tissues there are
other environments where mast cells and B cells may be
concentrated. These include the previously mentioned lamina
propria of the intestine as well as several tumour settings. Bone
marrow studies in patients with Waldenströmmacroglobulinemia
have shown an increased number of mast cells, where they are
thought to contribute to tumour growth as well as angiogenesis, as
shown by Ahn et al. (92). In addition to an increase in mast cell
density, the proportion of CD40L+ mast cells correlated with poor
tumour prognosis, illustrating the potential cross-talk between B
cells (albeit abnormal ones) and mast cells through the CD40/
CD40L axis. A similar link has been suggested in the setting of
multiple myeloma as shown by Pappa et al. (93). Neoplastic B cells
may also modify the activities of mast cells such as recruitment
and activation. This is in addition to a multitude of less B cell
specific interactions between mast cells and tumours that occur in
tumour settings (94–97). For example, Fischer et al. (98) have
shown that neoplastic cells from Hodgkin’s Lymphoma secrete
CCL5 at sites of infiltration to recruit mast cells. Mast cells may
also impact other aspects of the tumour microenvironment. For
example, increased numbers of mast cells are found in nodular
sclerosing forms of Hodgkin’s lymphoma, associated with tissue
fibrosis and the presence of IL-13 expressing Reed Sternberg cells.
Moreover, mast cells were associated with greater disease
progression and increased micro-vessel density in primary
cutaneous B cell lymphomas and have potential as a prognostic
marker (99).
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Parasite Infections
Mast cells have important roles in many globally important
parasite infections, although their contribution differs with the
infecting microorganism. Helminth gastrointestinal infections
are associated with increased mast cell density and activation at
the site of infection, which contributes to epithelial sloughing
and increased motility (100–102). Mast cells may also contribute
to tissue repair through impacts on fibroblast activation and
tissue remodeling. Mast cell proteases are directly toxic to many
helminths (103) and the granule product chondroitin-sulphate
has also been reported to be active (104) in preventing nematode
adhesion and penetration of the intestinal mucosa. Helminth
infection-associated mast cell activation likely also modifies the
responses of local B cells and plasma cells through mediator
impacts, some of which are detailed below.

Mast cells participate in shaping type 2 immune responses to
many nematodes through the release of IL-33, IL-25, and thymic
stromal lymphopoietin. As shown also by Hepworth et al. (100,
105, 106), mast cell-deficient mice had an impaired type 2
immune response against helminths. Enhanced type 2 immune
responses could indirectly alter B cell responses and contribute to
the high IgE levels observed in many such infections. In
secondary infections, the presence of specific IgE may enhance
local mast cell responses enabling more rapid infection clearance
(100, 106).

Infections by Schistosoma mansoni, a parasite mainly found
in Africa and South America, are known to induce polyclonal B
cell responses. S. mansoni produces glycoproteins recognised by
galectin-3 that induce strong antibody responses. In a chronic
schistosomiasis murine model developed by Oliveira et al. (107),
mast cell degranulation was suggested to be one of the drivers for
IgA class-switch and subsequent antibody production by
peritoneal B1 cells. This process was regulated by galectin-3.
Even though these findings are not yet completely understood,
they highlight complex interactions between mast cells and B
cells in parasite infections.

It is important to stress that many mast cell effector functions
in response to chronic or repeated infection require the presence
of B cells and antibodies. This was formally demonstrated by
Matsumoto et al. (108) using activation induced cytidine
deaminase (AID)-deficient mice, which despite the presence of
TABLE 1 | Sites of close-proximity between mast cells and B cells in multiple hosts.

Sites of close-proximity Mast cell identifier(s) B cell identifier(s) Host Citation(s)

Gut mucosa Tryptase+ CD20+ Human Merluzzi et al., 2010 (30)
Airway epithelia CD117 (c-Kit)+ CD23+ Mouse Hong et al., 2013 (36)
Lungs Tryptase+ CD45RA+ Rat Breitling et al., 2017 (64)
Inguinal lymph node Toluidine blue+ CD19+ Mouse Byrne et al., 2008 (80)

Tryptase+ CD20+ Human Merluzzi et al., 2010 (30)
Tonsil CD117+ CD20+ Human Rivellese et al., 2018 (68)

Alcian blue+ Human He and Xie 2005; He et al., 2005 (81, 82)
Ectopic lymphoid tissue Tryptase+ CD19+ Human Zhai et al., 2018 (84)

CD117+ CD20+ Human Rivellese et al., 2018 (68)
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intact T and mast cell compartments demonstrated delayed
elimination of Strongyloides venezuelensis. Enhanced expulsion
was restored with the addition of IgG1 and IgE to AID-deficient
mice indicating the importance of antibody production.
Antibody enhanced expulsion was shown to be mediated by
mast cells, which underscores the importance of mast cell
stimulation through their Fcg and Fcϵ receptors (108).

While the role of mast cells and B cells in helminth infections
is well established, their role in protozoan infections is less clear.
In infections by Plasmodium spp., mast cell-derived TNF-a was
shown to be important for the clearance of infection and
protection against cerebral involvement. However, mast cell
degranulation, increased concentrations of histamine and
higher levels of IgE against Plasmodium falciparum were
associated with worse outcomes. Similarly, in the setting of
cerebral malaria, mast cell degranulation involved histamine
release, increased vascular permeability, enhanced endothelial
damage, and lead to the release of VEGF, which associated with
worse outcome (109).

In infections by Leishmania spp., the participation of mast
cells seems to depend on the species of the parasite as a first line
of defence, without a clear interaction with B cells. As shown by
Naqvi et al. (110), mast cells can phagocytose L. tropica which
causes cutaneous leishmaniasis but not L. donovani, which
causes visceral leishmaniasis. Both species are susceptible to
killing by extracellular traps created by mast cells, but
L. tropica is more vulnerable. These observations highlight
differential roles for mast cells depending on the type
of leishmaniasis.

In Chagas disease, there have been descriptions of co-
existence of mast cells and B cells in heart biopsies of patients
with dilated myocardiopathy. The presence of mast cells in the
heart and intestine has been associated with worse prognosis,
possibly implying ongoing inflammation and fibrotic processes
involving mast cells (111–113).

Viral Infections
Mast cells have been implicated in the host response to multiple
viral infections. Multiple viral associated stimuli can induce the
production of type I and III IFNs, chemokines, inflammatory
cytokines as well as factors involved in tissue remodelling such as
VEGF (11, 17, 70). Such interactions occur in the absence of B
cells or antibody in many cases. For example, infections with
reovirus, respiratory syncytial virus, adenovirus, and influenza of
human mast cells have been reported, leading to substantial
mediator release (11, 13, 16, 114–116). These types of responses
are often the result of signalling through RNA or DNA sensors
such as TLR 3, 7, 8 or 9, RIG-I, MDA-5, and STING pathways
(12, 117, 118). Mediators produced can include both B cell
chemoattractants and cytokines which act on B cells, such as
IL-6. However, antibody mediated events can also play a key role
in these processes for some viruses.

Antibody-dependent enhancement occurs when sub-
neutralising levels of antibody facilitate the entry of virus into
the cell via Fc receptors. For mast cells this process has been
described for Dengue virus infection, mediated by low
Frontiers in Immunology | www.frontiersin.org 8
concentrations of IgG via FcgRII (15, 119) where it can induce
cytokine and chemokine production, and mast cell apoptosis
(120). IL-1b and TNF-a which have been implicated in vascular
damage and endothelial dysfunction (121) are also produced by
infected human mast cells. Mast cell activation in this clinical
context has been implicated in Dengue Hemorrhagic Fever and
Dengue Shock Syndrome (122–124).

Antibody-dependent enhancement of infection of mast cells
may also be a factor in response to subsequent infections with
other viruses such as Zika virus (116) and has most recently been
suggested as a factor in SARS-CoV-2 infection (125, 126). It
likely also occurs for other viruses under specific circumstances
where antibody is not sufficient for neutralisation.

Antibody-mediated processes in viral infections can also
activate mast cells via Fc receptor cross-linking leading to
degranulation, lipid mediator production, and subsequent
longer-term cytokine and chemokine production. The nature
of the responses is highly dependent on the class and subclass
profile of antibodies produced in response to infection. In many
cases the type 1 cytokine response to viruses does not support a
strong specific IgE response, but given the long half-life of such
antibodies on mast cells in sites such as the skin and airways
there is potential for IgE mediated events to enhance events such
as the mobilisation of dendritic cells (24, 26) leading to enhanced
B and T cell responses in draining lymph nodes. During HIV
infections, mast cells and their precursors may also harbour virus
which can be reactivated through either TLR- or antibody/Fc
receptor-pathways (114, 127, 128). Indirect processes such as
complement product (C3a, C5a) mediated activation of mast
cells may also occur in response to antibody complexes with
viral products.

Atopy and Bacterial Infections
Mast cells and B cells are both important players in effective
responses against bacterial pathogens. Mast cells function as
critical sentinel cells during the early stages of infection and
promote the recruitment of effector cells to sites of infection. On
the other hand, the B cell mediated antibody response is key to
combatting longer-term and secondary infections. Interplay
between these cell types can therefore generally be seen as
positive for anti-bacterial host defence. However, this is not
always the case. The skin of individuals with atopic dermatitis is
frequently colonised by Staphylococcus aureus. This suggests that
S. aureus may contribute to the pathophysiological events that
culminates in atopic dermatitis. Interestingly, mast cells and B
cells may partner in driving this disease. A report using an atopic
dermatitis mouse model showed that mast cell-deficient mice
inoculated with wild-type S. aureus and challenged with
ovalbumin had reduced skin disease and serum IgE than wild-
type mice. Mast cell contribution may be through their
degranulation products, as skin-derived murine mast cells
degranulate in response to S. aureus-derived d-toxin, which is
enhanced if mast cells are first primed with B cell-derived IgE
(129). Other Gram-positive bacterial-derived products promote
mast cell production of type 2 cytokines known to induce atopic
dermatitis features such as IL-13, as well as proinflammatory
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TNF-a and IL-6. Patients with atopic dermatitis have increased
blood IgE production signatures in blood and higher frequency
of blood and lesional B cells compared to control groups (130)
but the precise contribution of mast cells to this response
is unknown.

In related studies considering superantigens as triggers for
atopic disease, Schlievert et al. (131) analysed the response of
keratinocytes to bacterial superantigens and found an enhanced
production of chemokines and cytokines. Among them, IL-33
was notably increased. Mast cells can also respond to IL-33
producing a number of type 2 cytokines which could promote
class-switch to IgE and antibody generation. Taken together,
these studies indicate an interplay between staphylococci
colonisation, superantigen stimulation, mast cell stimulation
and therefore B cell stimulation, and production of IgE which
in turn could produce a positive feedback on mast
cell degranulation.

Hypersensitivity and Fungal Infections
Interaction between B cell and mast cells could also be an
influencing factor in immunity and inflammation in response
to several fungal infections. Histamine release frommast cells is a
frequent feature of cutaneous and mucosal fungal infections.
Allergic bronchopulmonary aspergillosis (ABPA) has been
mainly reported in patients with asthma and cystic fibrosis
where the production of IgE towards Aspergillus spp. spores by
B cells leads to the activation of mast cells (132). A. fumigatus
antigen Af1 is presented through MHC II to Th2 lymphocytes
(132) eliciting production of IL-4 and IL-13. This type 2 cytokine
rich environment promotes class-switch to IgE. As with other
pathogens, IgE bound to mast cells can mediate mast cell
activation to Aspergillus spp. antigens in secondary or chronic
infections (133). It is also worth noting that Aspergillus spp. can
induce mast cell degranulation independently of IgE in rodents,
without causing any damage to the hyphae (134) but more
damage to the airway mucosa.

While the fungus itself produces damage in the airway
epithelium, the release of mast cell proteases and the
recruitment of eosinophils contribute substantially to
remodelling of the airway in response to such infection (135).
Eosinophils release their toxic granular proteins while mast cells
release tryptase and both of them activate and promote the
production of TGF-b. This cytokine induces bronchial
fibroblasts to differentiate to myofibroblasts that directly
induce in the remodelling of the airway wall (135). Further
corroborating the involvement of mast cells driven by IgE in
ABPA, treatment with omalizumab (a monoclonal antibody
targeting the high-affinity receptor binding site on human IgE
and thereby reducing mast cell sensitisation) has been shown to
be effective for patients with severe allergic asthma and
ABPA (136).

Cross-talk between mast cells and B cells has also been shown
to be important inMalassezia spp. infections.Malassezia spp. are
a group of opportunistic fungi that grow mainly in skin areas
with abundant sebaceous glands. They have been implicated in
the pathogenesis of atopic eczema, seborrheic dermatitis and
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pityriasis versicolor (133). Selander et al. have shown, using a
rodent model, that Malassezia sympodialis can activate both
non-sensitised and IgE-sensitised mast cells (137). While IgE-
sensitised mast cells degranulate, release cysteinyl leukotrienes,
cytokines and chemokines when stimulated with extracts of M.
sympodialis, non-sensitised mast cells selectively release
leukotrienes without degranulation (137). This activation is
induced through the TLR2/Myd88 and MAPK pathway.
Although the in vivo impact of such responses is not well
studied, cysteinyl leukotrienes can act through Cys LT1
receptors on B cells to enhance immunoglobulin production in
vitro (138). Taken together, these findings support the idea of a
mast cell response toMalassezia spp. enhanced by IgE produced
by B cells in atopic dermatitis. This would be expected to both
promote local inflammation and effector cell recruitment and
potentially enhance the development and maintenance of an
acquired immune response to infection through impacts on
dendritic cells and draining lymph nodes.

Some similar mast cell responses have also been observed in
response to Candida albicans.Mast cells can respond directly to
this pathogen through both TLR and dectin-1 mediated
pathways, giving rise to both lipid mediator and cytokine
responses, often without degranulation. These responses may
promote the generation of acquired immunity. A link has
also been established between Candida spp. colonisation of
the skin and exacerbation of atopic dermatitis (139, 140).
As shown by various reports (139, 140), Candida spp.
can induce IgE-mediated mast cell degranulation and
subsequent responses in humans who have been previously
sensitised and both promote inflammation and exacerbate
histaminergic symptoms of patients. Taken together, these
findings suggest a dual role of mast cells in the interaction
with Candida spp.: they act as sentinels and first line of defence,
but their mediators can become detrimental for the host and
perpetuate inflammation.
CONCLUSION

This short description of some of the most crucial known and
potential interactions between B cells and mast cells raises many
questions. Mast cells are tissue resident cells, often in limited
numbers in lymph nodes. However, they are more prominent in
tissues such as the tonsils and Peyer’s patches where they are in
close-proximity to B cells as they are in the respiratory and
intestinal mucosa. Traditionally, B cells in the skin have often
been overlooked but both B1 and B2 cells are present and B cell
populations in these sites are increased during inflammation. It is
in the skin and other mucosal tissues where mast cells play the
most important role as sentinel cells against infection; it is also in
these sites where interaction between mast cells and B cells might
be most critical to local infection and inflammation regulation.
Given the key role of mast cells in promoting the selective
recruitment and activation of other effector cells, it seems likely
that mast cells play an early role in B cell responses. However, the
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complex interactions between mast cells and B cells persist
longer-term. Current data suggests a number of mechanisms
whereby mast cells can support or limit Breg development. Most
of these can occur without direct cell contact. Similarly, the
production of antibodies and cytokines such as IL-10 by the B
cell lineage can dramatically alter mast cell function and provide
a long-term mechanism for heightened responses to secondary
infection. There is a wide menu of potential mechanisms
whereby mast cells can modify B cell populations and function.
Each tissue site and pathogen response will likely access only a
subset of such mechanisms. Understanding and modifying these
mast cell-dependent pathways shows promise for enhancing
responses in chronic infection, limiting the development of
autoreactive B cells and combating local immune suppression
in some tumour settings. Critical to this process is direct analysis
of the nature and function of local resident B cell populations
and their resident mast cell neighbors in normal tissues and sites
of disease.
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