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Decoding spatial location of perceived pain
to acupuncture needle using multivoxel
pattern analysis
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Abstract

The present study applied multivoxel pattern analysis to decode spatial discrimination in pain perception to acupuncture

needle from brain functional magnetic resonance image. Fourteen participants were stimulated by acupuncture needles at

two adjacent body parts on their left forearm (PC6 vs. HT7). We trained support vector machines on the spatial information

from the whole-brain functional magnetic resonance imaging data and projected the support vector machine weight to the

brain image space to represent the effect of each voxel on the classifier output. Using region-of-interest masks in individual

brains, we trained and tested a linear support vector machine classifier on the accuracy of spatial discrimination in trial-wise

functional magnetic resonance imaging data. A classical univariate general linear model analysis testing for differences

between the two different locations did not reveal any significant differences. Multivoxel pattern analysis revealed that

the brain regions for the prediction of sensory discrimination in pain perceptions to two different points were in the primary

somatosensory cortex, primary motor cortex, and supramarginal gyrus, anterior and posterior insula, anterior and poste-

rior cingulate cortex, ventromedial prefrontal cortex, and inferior parietal lobule. Our findings suggest that spatial local-

izations of pain perceptions to acupuncture needle can be predicted by the neural response patterns in the somatosensory

areas and the frontoparietal areas.
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Introduction

The central mechanisms associated with somatic locali-

zation of tactile stimuli are well established in the field of

neuroscience.1–6 The primary somatosensory cortex (SI)

is a key sensory receptive area for somatic stimuli,7 and

perceptual discrimination of somatosensory stimulation

is encoded in its neurons.8 The parietal cortex is also

involved in the neural processing of information con-

cerning the location and intensity of somatosensory

stimuli.9 A functional magnetic resonance image

(fMRI) study on a two-point discrimination task

revealed that cognitive discrimination of spatially dis-

tinct stimuli is associated with the supramarginal gyrus

(SMG) of the inferior parietal lobule (IPL).10 Recently,

using advanced machine learning techniques, multivoxel
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pattern analysis (MVPA) of fMRI data successfully
showed that brain activation in the SI contains more
distinctive spatial patterns that decode the location of
tactile stimuli placed closely together on the skin surface,
whereas secondary somatosensory cortex (SII) and SI
have equal accuracy in decoding widely spaced tactile
stimuli.2 The hierarchical view of a somatosensory
system ranging from unimodal somatosensory functions
to higher order cognitive brain areas can be applied to
understanding the process of somatosensory localization
on the body scheme.

Somatosensation includes the processing of tactile,
proprioceptive, and nociceptive information.11 Both tac-
tile and painful stimuli produce brain activation in sim-
ilar regions of the SI and SII. Painful stimuli are also
associated with the anterior insula and frontal cortices,
or regions highly linked to the limbic systems and emo-
tional processing.12–14 The distinct modules are differen-
tially engaged in discrimination of sensory features of
nociceptive information.14 Much like other sensory
modalities, intensity-related information of pain percep-
tion is preferentially processed by ventrally directed
processing stream, while spatial information of pain
perception is preferentially processed by the dorsally
directed processing stream.14,15 The somatotopic repre-
sentations of nociceptive information are useful in
explaining the behavioral effects of spatially directed
placebo analgesia.16 The site of nociceptive stimulation,
for example, arm or leg, could be decoded from brain
patterns during the anticipation and perception of pain-
ful stimulation.17

Acupuncture action is known to exert by a site-
specific action.18,19 The issue of point specificity has
been one of the critical issues in the field of acupuncture
research.20 Previous studies applied general linear model
(GLM) approach to investigate neural response to acu-
puncture stimulation using a set of predefined regressors.
On the other hand, MVPA method can be expected to
overcome a lack of sensitivity of mass-univariate
approaches, computing voxelwise statistics that have
been applied in most studies of acupuncture.17,21 Since
acupuncture needle stimulations can be applied to two
adjacent sites, it would be more important to distinguish
the brain patterns to needle stimulations at different
acupoints. Despite the importance of understanding dis-
crete spatial information of the source of pain, the cen-
tral mechanism that allows spatial discrimination of
painful sensations is not fully understood.

Here, two adjacent body parts on the left forearm
(median vs. ulnar nerve) were stimulated by acupuncture
needle during fMRI scanning. The MVPA methods
could provide considerable increases in the amount of
information than the traditional univariate methods.22

Prior to the multivariate analyses, we performed univar-
iate analyses for comparison purposes. We applied

MVPA to decode spatial discrimination of painful stim-
ulations on two discrete locations on the forearm from
human brain signals.

Methods

Participants

Fourteen right-handed male participants (mean age 22.1
� 1.1 years) took part in the study. They had no known
history of neurological, psychiatric or visual disorders.
Participants were prohibited from drinking alcohol or
caffeine and from taking any drugs or medications on
the day of the experiment. After informing them the
nature of the experiment, they provided full written con-
sent. The study was conducted in accordance with the
Declaration of Helsinki and was approved by the
Institutional Review Board at Korea University.

Experimental design

Using a multivariate method, we revisited a data set
from a previous study.23 The previous study dealt with
commonalities and differences in brain responses to
enhanced bodily attention around acupuncture points
with and without stimulation.23 In the present study,
however, we used MVPA and revealed brain activity
patterns encoding spatial discrimination in the forearm
in pain perceptions. MVPA has increased sensitivity for
the detection of cognitive states, compared with the uni-
variate method.24 On the other hand, the target of the
previous study was not the location of painful stimula-
tion. Therefore, points A and B were not distinguished
from each other, but rather grouped as stimulation in
the analysis. In addition, the previous study had two
sessions: the first session provided actual stimulation,
while the second session induced attention without
actual stimulation. However, this study employed only
the data of the first session. Here, we provide a summary
of the experimental design, focusing on aspects relevant
to the question being addressed in the present study
(Figure 1).

During the fMRI scanning, participants were asked
to focus on the stimulated area on their left forearm. The
whole session of the experiment consisted of 20 trials.
Each discrimination trial started with a 16-s rest period,
during which participants were told to fixate on a red
cross, followed by a 6-s acupuncture stimulation period
at either location A or B (PC6: median nerve innerva-
tion; HT7: ulnar nerve innervation, respectively). During
this period, a blue fixation cross was shown as the visual
stimulus. The order of locations within each session was
counter-balanced and randomized among the partici-
pants. Following the stimulus, participants were
required to identify the stimulated locations by pressing
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one of two buttons representing points A and B on a

four-button MRI-compatible button-box (current

design) and then to rate the intensity of the sensation

by pressing one of the same button-box, which was

held in the right hand during the session. Each rating

screen appeared for 4 s, and participants were instructed

to make their decision before the end of this period. The

overall time duration of each trial was 30 s. The perfor-

mance data of the discrimination task by participant

were included in our previous study.23 Among 14 par-

ticipants, 11 participants were 100% accurate, and the

other 3 participants were 90%–95% accurate. There

were only four wrong responses. Since this study

aimed to decode the physically stimulated location, we

did not exclude wrong responses from the data samples.
For the fMRI acquisition series, participants’ discrim-

ination responses were recorded using Matlab

Psychtoolbox. Data were processed using customized

programs within the R software package. The detailed

design is fully described in our previous paper.23

Data acquisition and preprocessing

The fMRI scans were acquired using a 3T Siemens Tim

Trio magnetic resonance device, with a head coil

attached. To minimize movement artifacts, the head of

each subject was stabilized using a head holder, and all

images were acquired by a well-trained professional oper-

ator. In each scan session, 300 volumes of the entire brain

were collected in 37 axial slices (repetition time (TR)¼
2000ms, echo time (TE)¼ 30ms, flip angle¼90�, field of

view¼ 240� 240 mm2, voxel size¼ 3.8� 3.8� 4.0 mm3).

As an anatomical reference, a three-dimensional

T1-weighted magnetization-prepared rapid gradient

echo image data set was acquired using the following

parameters: TR¼ 2000ms, TE¼ 2.37ms, flip angle¼ 9�,

Figure 1. Experimental design. Twenty trials were conducted during the experiment. Location A (median nerve) and location B (ulnar
nerve) were located in the forearm and were separately innervated in each position. In a trial, they were randomly selected and stimulated
by rotating an acupuncture needle. Locations A and B were stimulated 10 times. In a trial, stimuli were given for 6 s after a resting period of
16 s, and then 8 s were given to report the response to the stimuli, including location and intensity. Based on the regression model for each
trial, the coefficient maps were used as samples for the SVM classifier to be trained and tested. SVM: support vector machine.
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field of view¼ 240� 240 mm2, voxel size¼ 0.9� 0.9�
1.0mm3, and 192 slices. The Echo Planar Imaging

(EPI) images were corrected for slice timing and real-

igned to the first volume using sinc interpolation. EPI

images were coregistered to the structural T1 images.
The images were transformed to a common space

(Talairach space).25 The spatial smoothing process was

applied separately between univariate analysis and mul-

tivariate analysis, and no spatial smoothing was applied

in multivariate analysis. Images showing motion or rota-

tion greater than 3mm or 3� were excluded. Excluded

images were less than two percentage of the whole

data set.

Univariate analysis

Prior to the multivariate analyses, we performed univar-

iate analyses for comparison purposes. For the univari-

ate analyses, surface-based analysis was applied.

FreeSurfer software was used to separate each anatom-

ical volume into gray and white matter structures and to

perform cortical surface reconstruction. The cortical sur-

faces in the EPI images were smoothed using a Gaussian
filter with a full width at half maximum of 6mm. For

each location-specific pain perception (locations A and

B), a boxcar function was used to represent the duration

of each event and convolved with a gamma function.

Contrast images corresponding to stimulation or

responses to “location A” and “location B” were gener-

ated by fitting “location A” and “location B” regressors

to scan time courses using the analysis of functional
neuroimages (AFNI) program 3dDeconvolve.26

A “summary statistics” procedure involving one-

sample t-tests performed across individual contrast

images was used to model group effects. Cluster thresh-

old criteria were determined using Monte Carlo simula-

tions, which resulted in a family-wise error (FWE)-

corrected significance threshold of p< 0.0527 using

AFNI AlphaSim program (http://afni.nih.gov/afni/
docpdf/AlphaSim) with voxel-wise statistical threshold

(t-score> 2; p< 0.032).

Whole-brain classifier weight analysis

To identify the brain regions responsible for discriminat-

ing two locations, we examined support vector machine

(SVM) weight values on each voxel from the whole-brain

SVM classifier. The trial-specific estimates were obtained

through a beta-series regression, which constructs an
estimation model with separate regressors.28 The trial-

wise regressors were modeled using gamma hemody-

namic response function. Separate parameter estimate

images (beta images) for each trial were obtained

through these processes, and parameter estimates were

obtained for each participant. The resulting parameter

estimates were processed further for the multivariate
analysis using Nibabel (http://nipy.org/nibabel) and
Scikit-learn software.29 First, we normalized trial-
specific parameter estimates to achieve centering relative
to the mean and unit variance. Second, voxels were
selected from a brain mask generated for the corre-
sponding participant using AFNI. To test the perfor-
mance of the classifier, we used leave-one-trial-out
cross validation. Specifically, we selected one trial from
the 20 trials in the session to omit from training. One
more trial from the class opposite to that of the omitted
trial was selected randomly and also excluded from
the training.

We explored brain regions containing information
associated with somatic discrimination in the pain per-
ception. The SVM algorithm was applied to map whole
trial-specific data without prior selection of features. By
treating the whole brain as a point in a high-dimensional
space, the SVM linearly could classify trial-specific beta
images into two classes (perceptions of stimulation at
location A and location B) by finding an optimally sep-
arating hyperplane, which is determined by applying a
linear function separating the training data with maxi-
mal margin. The optimal hyperplane is trained with a
weight vector that indicates the direction of perceptions
from which the two stimulated locations differ. The
weight vector represents a pattern of the most discrimi-
nating voxels.30

Apart from the cross validation for the accuracy eval-
uation, SVM weights were extracted from the classifiers
which were trained using all data sets without distinction
between training set and validation set. The whole-brain
data were used to train the SVM classifier and extract
the weights for each subject. Each element of the SVM
weight vector corresponds to voxels of the whole brain.
The SVM weight vector encodes the contributions of all
voxels to the classifier. The absolute size of the SVM
weight relative to other voxels gives an indication of
how important the feature was for classification.
Before evaluating statistical significance of the weight
of each voxel, we took the absolute value of the weights.

We aimed to evaluate significantly influencing brain
areas on the classification of stimulated location across
participants. We conducted two permutation tests: one
for accuracy (trained using leave on trial out) and one
for weight (using all data). Group mean of each voxel
weight was evaluated using one sample t-test against null
distribution of weights sampled during the permutation
test for the whole-brain classification accuracy. In our
study, null distribution of SVM weight in each voxel was
estimated as a Student’s t-distribution calculated from
the sample mean and sample variance of the group mean
weights obtained from the 1000 permutations. The
Student’s t-distribution was calculated with N� 1
degrees of freedom where N is the number of
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participants.31 To obtain null distribution of group
mean accuracy, we first obtained all required null accu-
racies (14,000 null accuracies¼ 14 participants� 1000
iteration) and calculated 1000 group mean accuracies
by averaging across participants. Then, we probed
where the “real” weight t-value falls on this null distri-
bution. While other studies employ the average across
participants per iteration, we considered that the order
of averaging process was of less importance since the aim
of this procedure was to generate a distribution under
the null hypothesis. We conducted the same procedures
for permutation test for the region of interest (ROI)
analysis and the weight analysis.

Cluster threshold criteria were determined using
Monte Carlo simulations, which resulted in a FWE-
corrected significance threshold of p< 0.0527 using
AFNI AlphaSim program (http://afni.nih.gov/afni/
docpdf/AlphaSim) with voxel-wise statistical threshold
(t-score> 2; p< 0.017). Estimation of spatial smoothness
of the data and followed iterative t-statistic map simu-
lations were processed on 3D whole-brain data not on
the surface. The resulted statistical map in Talairach
space was projected to a surface (3dVol2Surf) and visu-
alized in an inflated surface using AFNI SUMA.

ROI classification analysis

To assess and compare the degree of contribution of the
brain regions to the process of encoding the localization
of painful stimuli, further analysis was performed using
ROIs. The ROIs used for MVPA were brain regions
parcellated according to Desikan–Killiany–Tourville
protocol.32,33 These regions were defined on the basis
of anatomical landmarks, independently from the results
of the above whole-brain analysis. Desikan–Killiany–
Tourville protocol distinguishes cortex into 32 areas
for each hemisphere.33 Automatically assigned neuroan-
atomical labels for each location on the cortical surface
were used to define ROIs. The reconstructed surface of
each participant was resampled from FreeSurfer to
AFNI SUMA’s standard mesh topology using
MapIcosehedron (200,000 triangles; 100,002 nodes),
and voxels corresponding to FreeSurfer’s cortical parcel-
lation (Desikan–Killiany–Tourville Atlas) were
extracted using ROI masking.32,33 In contrast to the
first multivariate analysis using whole-brain images, we
applied the SVM algorithm to each ROI in the second
analysis. We evaluated performance accuracy using the
same leave-one-trial-out cross validation paradigm used
in the whole-brain analysis. The process was repeated for
every participant, and mean classification accuracies
were calculated among participants for each ROI.

We used a permutation test to examine whether or
not classification accuracy exceeds the accuracy attribut-
ed to chance (50%). The statistical significance of the

classification accuracy from each ROI was evaluated
through nonparametric permutation test. The acupunc-
ture stimulation labels were randomly shuffled for each
ROI. Predicting stimulated labels using SVM classifier
trained with the permutated data sets was repeated 1000
times. The statistical significance of group mean accura-
cy obtained from each ROI was evaluated by comparing
with null distribution of group mean accuracies accumu-
lated from 1000 permutations. The null distribution of
group mean accuracies for each ROI was estimated in
the same way with whole-brain classifier. Since multiple
ROIs were analyzed, multiple comparisons correction
with false discovery rate <0.05 was performed using
the Benjamini–Hochberg method.

Results

Behavioral results

In pain perception, there were no significant differences
between location A (2.50� 0.89) and location B (2.65
� 0.94) (t¼ 0.701, p¼ 0.496). The other behavioral
results were of no interest in the present analysis (see a
previous study for a full description23). The correct rates
were up to 98.6%.

Univariate analysis

A classical univariate GLM analysis testing for differ-
ences between the two different locations (location A vs.
location B) did not reveal any significant differences at a
threshold of p< 0.001 (uncorrected for multiple compar-
isons). Univariate analysis revealed that stimulation of
both the location A and location B produced brain acti-
vation in the bilateral insula, operculum, inferior frontal
gyrus, supplementary motor area (SMA), SI and SMG,
and deactivation in the default mode network (DMN)
consisting of the ventromedial prefrontal cortex
(vmPFC), PCC, IPL, medial temporal gyrus (MTG),
and parahippocampus at an FWE-corrected significance
threshold of p< 0.05 (Figure 2).

Whole-brain classifier weight analysis

To map the discriminative information for spatial loca-
tions stimulated by noxious stimuli (a rotating acupunc-
tured needle), we trained and tested a linear SVM
classifier on trial-by-trial correlates of whole-brain
fMRI data when location A or B was stimulated. We
found that monitoring whole-brain activity during the
pain perception (58.6%) enabled statistically significant
predictions (p< 0.001; nonparametric permutation test
using N¼ 1000 permutations). One sample t-test of
SVM weight map against null distribution sampled
from permutation test revealed that SI, primary motor
cortex (MI), paracentral cortex, anterior and posterior
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insula, SMG, anterior cingulate cortex (ACC), vmPFC,

PPC, and IPL were significantly important regions that

allowed statistically significant predictions of the two

stimulated sites at a FWE-corrected significance thresh-

old of p< 0.05 (Figure 3).

ROI classification analysis

All cortical ROIs were selected based on Desikan–

Killiany–Tourville protocol.32,33 Our analysis generated

a ranked order of brain regions showing significantly

higher accuracy than chance-level (50%) on spatial dis-

crimination. Among them, the MI (contralateral to stim-

ulation site; 65%), SMA (contralateral to stimulation

site; 64%), SMG (contralateral to stimulation site;

62%), SI (contralateral to stimulation site; 62%), and

dorsolateral prefrontal cortex (dlPFC; contralateral to

stimulation site; 62%) showed accurate trial-by-trial dis-

crimination in terms of pain perception (Figure 4).

Discussion

The present study statistically assessed each set of multi-

voxel patterns in terms of the perception of spatial infor-

mation of pain in the two adjacent body parts. Our

MVPA-based approach in the current study revealed

distinguishable brain activation patterns during spatial

discrimination in pain perception with significantly

higher accuracy than chance level. According to the clas-

sification performances for each brain region, the

somatosensory processing regions, such as the SI, and

frontoparietal brain areas, including the SMG and

Figure 3. Whole-brain classifier weight analysis. In the multivariate analysis, the SI, MI, paracentral cortex, anterior and posterior insula,
SMG, ACC, vmPFC, PPC, and IPL allowed for statistically significant discrimination between the two stimulated sites. The percentages on
the right indicate the resulting classification accuracies for each session (p< 0.001). FWE: family-wise error; MI: primary motor cortex;
SMG: supramarginal gyrus; SI: primary somatosensory cortex; ACC: anterior cingulate cortex; vmPFC: ventromedial prefrontal cortex;
PPC: posterior parietal cortex; IPL: inferior parietal lobe.

Figure 2. Univariate analysis. In the univariate analysis, stimulation of both locations (location A and location B) produced brain
activations in the bilateral insula, operculum, inferior frontal gyrus, supplementary motor area, primary somatosensory cortex and
supramarginal gyrus and deactivations in the default mode network, consisting of the ventromedial prefrontal cortex, posterior cingulate
cortex, inferior parietal lobe, medial temporal gyrus, and parahippocampus. FWE: family-wise error.
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dlPFC, were main regions featuring distinctive brain

activation patterns in the discrimination of two different

stimulated locations.
Our study applied MVPA methods and revealed that

spatial information of pain perception could be decoded

from neural activation patterns in brain areas including

SI, dlPFC, and SMG. These neural patterns in the cur-

rent study were consistent with the pain perception sug-

gested by the following previous studies. Localization of

somatosensory stimulation extending far beyond SI

involves higher level somatosensory processing areas

including the SII, SMG, IPL, and PPC in the hierarchi-

cal processing scheme.1,2,5,6 Similar to the processing of

visual and auditory, and other innocuous somatosensory

information, frontoparietal interactions were critically

involved in the discrimination of spatial features of

pain.15 The two different sensory features of noxious

stimuli (intensity and location) are preferentially proc-

essed by distinct neural system. Ventrally located mod-

ules, such as insula cortex and cingulate cortex, are much

associated with intensity-related information of pain

perception, whereas a dorsally located module, just as

PPC and right dlPFC, is much associated with spatial

information of pain perception.14 In this study, fronto-

parietal areas, including SMG and dlPFC, were also

preferentially prominent during spatial discrimination

of needles at two adjacent acupoints. Frontoparietal

areas beyond the somatosensory areas contribute to spa-

tial discrimination of noxious needle stimuli. Ritter et al.

reported that the spatial information associated with

painful stimuli was decodable from brain patterns of

the prefrontal cortex, rostral ACC, and parietal opercu-

lum.17 Although the two discriminated locations in the

current study were very close to each other on the fore-

arm (median vs. ulnar nerve stimulation) compared with

other previous studies (arm or leg), nociceptive location

could be predicted successfully from a broad network of

sensorimotor processing regions.15,17

The somatosensory system is composed of hierarchi-

cal structures such as thalamus, SI, and SII, and it is

Figure 4. ROI classification analysis. Brain regions which have significantly higher classification accuracies are shown with null simulated
distribution. The MI (contralateral to stimulation site; 0.646), SMA (contralateral to stimulation site; 0.643), SMG (contralateral to
stimulation site; 0.621), SI (contralateral to stimulation site; 0.621), and dlPFC (contralateral to stimulation site; 0.621) showed accurate
trial-by-trial discrimination in terms of pain perception. dlPFC: dorsolateral prefrontal cortex; MI: primary motor cortex; SMA: supple-
mentary motor area; SMG: supramarginal gyrus; SI: primary somatosensory cortex.
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known that discriminative somatosensory information is
distributed in various brain regions.6 The somatosensory
processing regions, which are responsible for the locali-
zation of nonpainful tactile stimulation in previous stud-
ies, were common to brain regions involved in the
localization of acupuncture stimulation in this study.
Motor areas including MI and SMA were detected for
the spatial information regarding the site of needle stim-
ulation. Although no actual movements were needed
during needle stimulation, and discrimination-related
brain patterns were analyzed before subjects’ response,
someone might raise the concerns about which motor
areas’ activations might be associated with motor-
related processing, such as motor planning for pushing
the switch to indicate a choice. However, most of brain
regions that we found from ROI analysis were more
dominant in contralateral to the stimulation sites (i.e.,
ipsilateral to the response site). Although ipsilateral sig-
nals also reflect an efference copy of a contralateral
motor command and facilitate coordination between
both limbs in bimanual behavior, brain patterns within
frontoparietal areas are mainly implicated in contralat-
eral movement planning.22,34 Thus, it is more likely that
different brain activity patterns in our study may be
related to the spatial discrimination of pain perception.

The whole-brain accuracy, including all the informa-
tion of these regions, was not greater than the accuracy
of the individual ROIs in the current study. One of the
reasons seems to be due to the limitation known as
“curse of dimensionality.” The voxel number of whole-
brain data is estimated about 35,000. When the dimen-
sionality of feature space increases, the volume of the
space increases so fast that the useful data might
become sparse. The other reason might be derived
from redundant information of the brain regions includ-
ed in the whole-brain analysis, which do not have rele-
vant activities to decode the painful stimulation site. To
obtain higher accuracy of whole-brain data in this study,
therefore, additional feature extraction method should
be considered in the future studies.

The traditional univariate GLM methods are known
for insufficient sensitivity for more complex processes
such as discrimination of stimulus locations, which
often involves widely distributed neuronal activities. In
contrast, multivariate analysis could detect different
brain patterns to stimulus parameters and accumulate
the weak information available at each brain area in
an efficient way.35 Similarly, we could not identify dis-
tinct brain regions to two adjacent body parts (median
vs. ulnar nerve; PC6 vs. HT7 acupoints) by using the
conventional GLM methods. Using the more sensitive
approach of the MVPA method, we were successful in
decoding brain regions that showed predictable activity
patterns in spatial information of pain perception to
acupuncture needle stimulation of two different sites.

A previous study rigorously employed the conventional
univariate GLM methods to demonstrate that acupunc-
ture at vision-related acupoints (such as BL60 and
GB37) specifically produced brain activation in the
occipital cortex, of which the results however were
unsuccessful.36 It is believed that the brain activation
and deactivation patterns in response to acupuncture
needle stimulation reflect the sensory, cognitive, and
affective dimensions of pain.20 Conversely, Li et al.
applied MVPA and was able to classify brain activity
patterns that differed between a vision-related acupoint
and a nearby nonacupoint.21 The debate concerning the
existence of acupoint specificity continues to be solved in
future research.

Brain activations to acupuncture stimulations reflect
not only the pain perception to the stimuli but also var-
ious cognitive and emotional responses to the stimuli,
expectations to the treatment, and physiological actions
of the treatment. The previous studies demonstrated that
acupuncture stimulations bilaterally produced activa-
tions in sensorimotor cortical network such as insula
and ACC and deactivations in DMN, such as medial
prefrontal cortex and parahippocampus.20,23 In the cur-
rent study, a classical univariate GLM analysis showed
bilateral activations in the sensorimotor cortex and deac-
tivations in the DMN in both of the acupuncture stim-
ulated locations (Figure 2). On the other hand, ROI
classification analysis revealed that spatial discrimina-
tions are mainly involved in the contralateral frontopar-
ietal brain regions (Figure 4). Since decoding accuracy
represents the degree to which a condition is represented
in the pattern of activity distributed across a region’s
multiple voxels, the MVPA can provide sensitivity to
information that cannot be detected in mean activation
levels alone.37 A recent study demonstrated that the mul-
tivariate measure successfully detected the lateralization
of orthographic processing in the visual word form
area.38 It is assumed that our analysis on the spatial
discriminations of pain using MVPA reflects lateraliza-
tion of brain function, that is, predominant in the con-
tralateral side than GLM analysis. Speculatively, we
propose that multivariate techniques can be more
useful to understand how the lateralized and bilateral
brain achieves pain perception. However, further work
is required which relates other behavior measures to
multivariate laterality.

Several limitations should be noted in this study.
Although there were no significant differences of subjec-
tive pain ratings between the two locations in the fore-
arm, we could not rule out the possibilities of the
involvement of different intensities of pain perception
to decode spatial discrimination of painful stimulations
from the two different points. The classifier implemented
in this study was purposed to predict stimulated location
by acupuncture. No control condition was required to
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reveal whether a brain region contains a neural response
discriminating the stimulated location. However, com-
paring with tactile stimuli would benefit to find more
specific brain regions for acupuncture stimulation. We
did not include the tactile stimuli as a control. Thus, it
will be necessary to further explore the prediction
performance of spatial patterns of brain activity during
tactile stimulation in the future study. The somatosensa-
tions from acupuncture needling include a constellation
of sensations experienced by patients such as heaviness,
soreness, numbness, and distension and may have affec-
tive connotations such as feeling refreshed or
relieved.39,40 The main manifestations of deqi sensations
are in general separated from the acute pain at the site of
the needling, especially in the case of sharp pain.41 Since
we did not identify the characteristics of deqi sensations
from the participants’ responses in this study, we were
not able to clearly differentiate the brain patterns of pain
perceptions from other kinds of somatosensations to
acupuncture needle. Further study is necessary to char-
acterize the complex sensations of acupuncture needling.
Furthermore, MVPA analyses in the current study were
applied using only activation patterns estimated from
single trials within the same run. Inflated false positives
can be minimized when the testing and training sets in
cross validation do not contain patterns estimated from
the same run.42 Last but not least, we used a less con-
servative t value for voxel-wise statistical threshold and
it might be susceptible to false positives.43

In summary, our results show that the site of nocicep-
tive information from the two nerve innervations in the
forearm can be successfully decoded from spatial pat-
terns of brain activity during needle stimulation. Our
findings suggest that spatial information of pain percep-
tions to acupuncture needle is represented in the somato-
sensory processing regions as well as frontoparietal brain
areas, such as SMG and dlPFC. We strongly believe that
these findings could offer new insights into understand-
ing brain processing of spatial information contained in
human pain perception.
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