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It is always a challenge to realize extreme and unusual values of refractive index for a broad range of frequencies.
We show that when water is covered by a thick, rigid and unmovable plate, it behaves like a medium with zero
refractive index for water waves at any frequency. Hence, by covering water with a plate of a concave or
rectangular shape, water waves can be focused or collimated in a broad range of frequencies. Experiments were
conducted to demonstrate these effects and results are in excellent agreement with numerical simulations.

Z
ero index of refraction is a useful concept for wave manipulation and has recently attracted much atten-
tion1–20. In a zero-index medium, waves possess infinite phase velocity, infinite wavelength, and do not
experience any spatial phase change. Thus, the shape of the wavefronts leaving a zero-index medium

depends only on that of the exit surface of the medium, which gives high flexibility in controlling the wavefronts
of outgoing beams1–4. By filling waveguides with zero-index media, more exotic phenomena such as tunneling and
superscattering can be observed11–20.

The zero refractive index has been initially pursued for electromagnetic waves1–20 and realized within the
framework of effective medium theory1,4–8,15,16. By employing artificial periodic structures such as metamater-
ials1,15,16 and photonic crystals4–8, a zero refractive index can be achieved near some resonant frequencies.
However, such zero-index media are constructed mainly for electromagnetic waves1–20, and partially for acous-
tic/elastic waves21–25. It remains unknown whether and how a zero index can be realized in water waves.

Unlike electromagnetic and acoustic/elastic waves, water waves are mechanical waves that propagate along the
water surface and with the restoring force provided by gravity26,27. For a constant water depth h, the dispersion of
linear water waves is given by

v2~gk tanh khð Þ ð1Þ

where v is the angular frequency, k is the wavenumber and g is the gravitational acceleration26–42. In this paper, we
theoretically and experimentally show that by covering water with a rigid and unmovable plate, a zero wavenumber
and zero refractive index can be created for water waves at any frequency. As a result, interesting phenomena such as
focusing and collimation of broadband water waves can be further realized by using different shapes of plates.

Results
System description, water wave equation and zero refractive index. We consider linear, inviscid and
irrotational water waves in infinite extent of water as shown in Fig. 1. Set the x-y plane horizontal, the z-axis
positive upward and the bottom of water in the z 5 0 plane. The water depth is h1 in both region I with x , 0 and
region III with x . L. In region II with 0ƒxƒL, the water is covered by a thick, unmovable and rigid plate and has
a depth of h2. For harmonic water waves, the velocity of water v is related to a potential W by v(x, y, z, t) 5 =W(x, y,
z)e2ivt 26,27. W satisfies the following equations

+2W~0 for 0vzvhl, ð2Þ

vz:
LW
Lz

~0 at z~0, ð3Þ

where the subscript l in hl is 1 and 2 in regions I/III and II, respectively. At the upper surfaces (z 5 hl) of regions I/

III and II, the boundary conditions are
LW
Lz

~
v2

g
W and vz:

LW
Lz

~0, respectively, which can be written in a
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unified form,
LW
Lz

~
v2

gl
W at z~hl: ð4Þ

Here, gl 5 g1 5 g in region I and gl 5 g2 R ‘ in region II.
Hence, the solution of Eqs. (2) – (4) is W~e+iklxjxeiky y cos ikljz

� �
,

where k2
lxjzk2

y~k2
lj, v2 5 glklj tanh(kljhl) and j~1, 2, 3, � � � . In

regions I and III, the wavenumber k1j is real (k11 . 0) for the
fundamental mode (j 5 1) and imaginary (k1j/i . 0) for higher-
order modes (j§2). In region II, the fundamental mode has zero
wavenumber (k21 5 0) and higher-order modes have imaginary
wavenumber (k2j 5 i(j 2 1)p/h2 for j§2). Hence, for phenomena
dominated by the fundamental mode, region II can be regarded as a
medium with zero refractive index (n ; k21/k11 5 0) for water waves.

Coupled mode theory. The field W~Qeikyy and Q in regions I, II, III
can be written respectively as

QI~
X

j

Aje
ik1xjxzBje

{ik1xjx
� �

cos ik1jz
� �

,

QII~
X

j

Cje
ik2xjxzDje

{ik2xjx
� �

cos ik2jz
� �

~
X

j

Eje
ik2xjx’zFje

{ik2xjx’
� �

cos ik2jz
� �

,

QIII~
X

j

Gje
ik1xjx’zHje

{ik1xjx’
� �

cos ik1jz
� �

,

where ky 5 k11 sin h, h is the incident angle, x9 5 x 2 L and (A, C, E,
G) and (B, D, F, H) are the amplitudes of leftgoing and rightgoing
waves, respectively. At the interface (x 5 0) between regions I and II,
the potential and velocity should be continuous [QI 5 QII and
LQI

Lx
~

LQII

Lx
for 0ƒzƒh2 and

LQI

Lx
~0 for h2vzƒh1]. Thus, we haveX

j

AjzBj
� �

cos ik1jz
� �

~
X

j

CjzDj

� �
cos ik2jz
� �

for 0ƒzƒh2,
ð5Þ

X
j

Aj{Bj
� �

k1xj cos ik1jz
� �

~

P
j Cj{Dj
� �

k2xj cos ik1jz
� �

for 0ƒzƒh2

0 for h2vzƒh1

:

( ð6Þ

By multiplying Eq. (5) with
ðh2

0
cos ik1mzð Þdz and Eq. (6) withðh1

0
cos ik1mzð Þdz, we can have

X
j

U1,mj AjzBj

� �
~
X

j

U2,mj CjzDj

� �
, ð7Þ

X
j

U3,mj Aj{Bj
� �

~
X

j

U4,mj Cj{Dj
� �

, ð8Þ

where U1,mj~

ðh2

0
cos ik1mzð Þcos ik1jz

� �
dz, U2,mj~

ðh2

0
cos ik1mzð Þ

cos ik2jz
� �

dz, U3,mj~k1xj

ðh1

0
cos ik1mzð Þcos ik1jz

� �
dz and U4,mj~

k2xj

ðh2

0
cos ik1mzð Þcos ik2jz

� �
dz [see Methods].

Transfer matrix formalism. Eqs. (7) and (8) can be rewritten as

U1 U1

U3 {U3

� �
A

B

� �
~

U2 U2

U4 {U4

� �
C

D

� �
: ð9Þ

From Eq. (9), we have

C

D

� �
~T1

A

B

� �
, T1~

V1 V2

V2 V1

� �
, ð10Þ

where V1~ U{1
2 U1zU{1

4 U3
� ��

2 and V2~ U{1
2 U1{U{1

4 U3
� ��

2.
In region II, we have

E

F

� �
~T2

C

D

� �
, T2~

P 0

0 P{1

� �
ð11Þ

where Pmj~dmje
ik2xjL. At the interface between regions II and III, we

can also obtain

G

H

� �
~T3

E

F

� �
, T3~

V ’1 V ’2
V ’2 V ’1

� �
ð12Þ

where V ’1~ U{1
1 U2zU{1

3 U4
� ��

2 and V ’2~ U{1
1 U2{U{1

3 U4
� ��

2
[see Supplementary information for derivations].

From Eqs. (10) – (12), we have

G

H

� �
~T3T2T1

A

B

� �
: ð13Þ

For incident waves from the left (Aj 5 d1j and Hj 5 0), the transmis-
sion t 5 jG1/A1j2 and reflection r 5 jB1/A1j2 can then be calculated by
Eq. (13). We note that Eqs. (10) – (13) represent the transfer matrix

Figure 1 | Schematic diagrams of a thick, rigid, and unmovable plate that
is covered on the surface of water. (a) and (b) are the side and top views,

respectively. The water has a depth h1 (h2) in the region without (with) the

plate, and does not exist on the plate. The plate has a width L in the x

direction and is infinitely long in the y direction. Water waves are incident

onto the region with plate from the left and at angle h.

Figure 2 | Transmission spectra for water waves through the water
covered by a plate as shown in Fig. 1. The parameters are h1 5 h2 5 6 mm

and L 5 5h1 5 30 mm. (a) Transmission as a function of reduced

frequency L/l at incident angle h 5 00, 200, and 400. (b) Transmission as a

function of angle h at L/l 5 1, 2, and 3.
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scheme for transmission calculations and can be rewritten as alterna-
tive forms of scattering matrix, which have higher stability in numer-
ical calculations [see Supplementary information for details].

A finite number of plane waves (jƒN) are adopted in numerical
calculations. When pL/h2 . 1, the evanescent waves (with j§2) can
be neglected (i.e. N 5 1 is used) so that an analytic formula can be
obtained for the transmission at normal incidence (h 5 0),

t~1
�

1zq2
� �

, ð14Þ

where q~
1
2

k11L sinh 2k11h1ð Þz2k11h1½ �= sinh 2k11h2ð Þz2k11h2½ � [see

Supplementary information for derivations].

Calculated transmission through water covered by a long
rectangular plate. The above theory shows that water covered by a
plate can be regarded as a zero-index medium (k21 5 0) for water
waves and exhibit a relatively high transmission for long wavelengths
(L/l , 1). As an example, the transmission spectra are calculated for
the case with h1 5 h2 5 6 mm and L 5 30 mm, as shown in Fig. 2a.
To obtain convergent results, 5 plane waves (N 5 5) have been
adopted. It can be seen that for normal incidence (h 5 0), the
accurate results can be well described by Eq. (14). A high
transmission occurs for low frequencies (L/l , 1). For oblique
incidence, all the waves become evanescent (Im(k2xj) 5 k11 sin h .
0) in region II, so that the transmission decays almost exponentially

with increasing frequency [Fig. 2a]. As a result, at a given frequency, a
relatively large transmission occurs only when the incident angle is
around zero, and this phenomenon becomes more apparent with
increasing the frequency [Fig. 2b].

Eqs. (2) – (4) are an accurate 3D theory for linearized water waves
and can be approximately replaced by a 2D equation31,37,

+ u+yð Þz v2

gl
y~0, ð15Þ

where y(x, y) is the potential W at the water surface (z 5 hl) and u 5

tanh(kh)/k is the effective depth. In Fig. 2a, we also show the results at
normal incidence by Eq. (15). It can be seen that Eq. (15) can present
almost the same results as those by Eq. (14).

Experimental observations and numerical simulations of focusing
effect. The zero-index media can be applied to refract and focus
waves3,4. For instance, one can focus plane waves with a concave
lens made of a zero-index medium. Here, we conduct a water-
wave experiment to demonstrate such a focusing effect. Our
experimental setup is sketched in Fig. 3a. Water is placed in a
vessel and partially covered by a concave, rigid and unmovable
plate, which is obtained by cutting a half circle with radius of
20 cm on a 40 3 20.5 cm2 rectangular plate [Fig. 3b]. The water
depths are 6 mm and 5 mm in the regions without and with the
plate, respectively. The plate is impinged by a Gaussian water-wave
beam with width of 28 cm. Since the vessel has a transparent bottom,
patterns of water waves can be projected onto a screen and then
recorded by a digital camera32,35. On the other hand, we also apply
a finite-element method to simulate the experiment.

Figures 4(a) –4(h) show the simulated and observed wave patterns
for different frequencies. Good agreement is found between the the-
ory and experiment. Here, water waves are normally incident on the
flat side of the focusing lens (i.e. water covered by the concave plate),
so that they do not refract at the entrance side. But when water waves
leave the lens, they do refract at the exit side with a concave shape
[Figs. 4a–4d]. All the outgoing waves are perpendicular to the exit
side and thus directed to the focus of lens (i.e. the center of the half
circle) [Figs. 4e–4h]. Since our zero index is independent on fre-
quency, the focusing effect can be observed in a broad band of
frequencies.

Experimental observations and numerical simulations of
collimation effect. In addition to focusing external water waves,
the plate-covered water can also be applied to modify the emission

Figure 3 | Schematic diagram of the experimental setup. (a) Water is

placed in a vessel with a transparent bottom and partially covered by a rigid

and unmovable plate. The vessel has slanted sides that do not reflect water

waves. By using a mirror and collimated light, patterns of water waves can

be projected onto a screen and recorded by a digital camera. (b) A concave

plate and (c) a rectangular plate that are used to cover the water in (a).

Figure 4 | Wave patterns for impinging a Gaussian beam of water waves upon a water covered by a thick, rigid, unmovable, and concave plate.
The plate is obtained by cutting a half circle with radius of 20 cm on a 40 3 20.5 cm2 rectangular plate. The water depths are 6 mm and 5 mm in the

regions without and with the plate, respectively. (a) – (d) Simulated results at f 5 4, 6, 8, 10 Hz. Black and white represent the upward and downward

movement of water surface, respectively. The yellow lines outline the plates and the lines with arrows are analyses of refraction. (e) – (h) Experimental

results at f 5 4, 6, 8, 10 Hz.

www.nature.com/scientificreports
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property of an inner source, as shown in Fig. 5. Here, water is
partially covered by a 32 3 7 cm2 rectangular plate that is drilled
with a small hole. The hole is connected to an air tube with
oscillating pressure, so that a point source of water waves can
be generated in the plate. At the exit side of the plate, the
emergence angle of water waves are always zero for arbitrary
incident angle. As a result, a collimated beam can be observed
in the water region without plate [Figs. 5a–5d]. Again, the
experimental results are well described by the theory, showing
that the water covered by the unmovable plate indeed possesses
a zero index for water waves.

Discussion
In the above experiments, the focusing and collimation effects were
demonstrated by using a plates with size larger than the water depth.
We note that the effects can also be realized by using a plate that has a
size smaller than the water depth but larger than the wavelength.
When the water depth is much larger than the wavelength (h1?l),
the velocity of water is almost zero near the bottom (z , h1 2 20l).
Hence, in numerical simulations, h1 and h2 can be replaced by h1 2

hd and h2 2 hd, respectively, where hd 5 h1 2min(h1, 20l). By using
five wave modes (N 5 5), transmission spectra (similar to the curves
in Fig. 2) can also be obtained.

Region II in our water-wave system, exhibiting an infinite effective
gravitational acceleration (g2 5 0) and normal depth (h2 5 h1), has
its optical analogue that is a medium with zero magnetic permeability
(m 5 0) and normal dielectric constant (e 5 1). Such a single zero (m
5 0) medium can be realized by using a photonic crystal with a
square lattice of dielectric cylinders in air43. Near a particular fre-
quency, the focusing and collimation effects have also been observed
for electromagnetic waves. In contrast, since our infinite effective
gravity is valid for water waves at any frequency, our effects can occur
in a broad range of frequencies.

In summary, we have shown theoretically and experimentally that
by covering water with a rigid and unmovable plate, a zero wave-
number and zero refractive index can be achieved for water waves in
a broad range of frequency. By using plates with different shapes,
interesting phenomena including focusing and collimation have
been demonstrated in water waves. The results suggest a new mech-
anism for controlling the propagation of water waves and may find
applications in wave energy focusing and extraction.

Methods
Calculations of U1, U2, U3 and U4. The matrices U1, U2, U3 and U4 can be calculated
by using cos(ik1z) cos(ik2z) 5 [cos[i(k1 1 k2)z] 1 cos[i(k1 2 k2)z]]/2,

ðh

0
cos ikzð Þdz~sin ikhð Þ= ikð Þ for k ? 0, and

ðh

0
cos ikzð Þdz~h for k 5 0.

Simulations of focusing and collimation effects. Either Eqs. (2) – (4) or Eq. (15) can
be simulated by using a finite-element method, so that Figs. 4a–4d and Figs. 5a–5d
can be obtained.
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