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Macrobrachium nipponense is an economically important prawn species and common
in Chinese inland capture fisheries. During aquaculture, M. nipponense can survive
under freshwater and low salinity conditions. The molecular mechanism underlying the
response to salinity acclimation remains unclear in this species; thus, in this study, we
used the Illumina RNA sequencing platform for transcriptome analyses of the gill and
hepatopancreas tissues ofM. nipponense exposed to salinity stress [0.4‰ (S0, control
group), 6‰ (S6, low salinity group), and 12‰ (S12, high salinity group)]. Differentially
expressed genes were identified, and several important salinity adaptation-related
terms and signaling pathways were found to be enriched, such as “ion transport,”
“oxidative phosphorylation,” and “glycometabolism.” Quantitative real-time PCR
demonstrated the participation of 12 key genes in osmotic pressure regulation in
M. nipponense under acute salinity stress. Further, the role of carbonic anhydrase in
response to salinity acclimation was investigated by subjecting the gill tissues of M.
nipponense to in situ hybridization. Collectively, the results reported herein enhance
our understanding of the mechanisms via which M. nipponense adapts to changes in
salinity.
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INTRODUCTION

The increase in inland salinity owing to human activities (Williams, 2001) has led tomajor economic,
social, and environmental consequences. Inland saline water and saline–alkali land can be potentially
used for aquaculture, serving as a source of revenue. Salinity is a key environmental factor in aquatic
ecosystems and is known to influence the growth performance, survival, immune system, and
respiratory and energy metabolism of crustaceans (Freire et al., 2011; Gao et al., 2016; Li et al., 2017;
Koyama et al., 2018; Chen et al., 2019). Some aquatic crustaceans can tolerate a wide range of salinity
levels; few previous studies have investigated the effects of salinity on the growth and development of
Macrobrachium nipponense (Huang Y. H. et al., 2019), M. rosenbergii (Chand et al., 2015), Penaeus
monodon (Le et al., 2009), and Nephrops norvegicus (Torres et al., 2011). It appears that aquatic
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crustaceans respond to changes in salinity via osmotic pressure
regulation to maintain the balance of water and salt.

The adaptation of aquatic crustaceans to alterations in
environmental salinity is a complex process and
predominantly involves three types of regulatory pathways.
First, osmotic pressure regulation is a pivotal process that
controls the permeability and concentration of ions, such as
Na+, K+, Ca2+, and Cl−, in plasma. Ion transporter proteins
[Na+/K+-ATPase (NKA) and carbonic anhydrase (CA)] in the
membranes of the epithelium and antennal glands are the main
sites for regulating ion permeation in crustaceans in response to
salinity acclimation (McNamara et al., 2015; Huang Y. et al.,
2019). The CA enzyme appears to be a central molecular
component in the adaptations to low salinity found in
euryhaline crustaceans (Henry, 2001; Pongsomboon et al.,
2009; Mitchell and Henry, 2014). Second, the energy
channeled by crustaceans to respond to salinity acclimation
leads to a significant reduction in growth, considering that the
energy budget for osmotic adjustment is much higher (Ye et al.,
2009; Ma et al., 2021). Therefore, fluctuations in water salinity
seem to inhibit energy metabolism, which may cause oxidative
damage (Choi et al., 2008). Finally, neuropeptides and their G
protein-coupled receptors in the central nervous system regulate
the physiological response of crustaceans to salinity acclimation
(Sun et al., 2020; Réalis-Doyelle et al., 2021; Tong et al., 2022).

Transcriptome sequencing has been widely applied to develop
molecular resources for non-model organisms with biological
and economic importance (Riesgo et al., 2012; Sun et al., 2015; Liu
et al., 2021). Transcriptome sequencing has been used to analyze
the molecular mechanisms underlying the response to changes in
salinity in many economically important species, such as Scylla
paramamosain, Litopenaeus vannamei, Eriocheir sinensis, andM.
rosenbergii (Zhang et al., 2015; Liu et al., 2016; Wang et al., 2018;
Yang et al., 2019; Sun et al., 2020). To the best of our knowledge,
although genomes information of the oriental freshwater prawn
M. nipponense has been reported (Jin et al., 2021), salinity
acclimation-related transcriptome data for gill and
hepatopancreas tissues of the M. nipponense remain to be
reported. As a member of euryhaline crustaceans, M.
nipponense is primarily distributed in freshwater and low salt
environments in Asia, and it is one of the most economically
important aquaculture species in China, with annual production
exceeding 200,000 tons and output reaching two billion RMB (Fu
et al., 2012). Previous studies on M. nipponense have mainly
focused on germplasm heredity, nutrition regulation, immunity
performance, and resistance to hypoxia stress (Fu et al., 2004; Li
et al., 2018; Sun et al., 2018; Zhao et al., 2018). To date, the
molecular mechanisms via which M. nipponense responds to
changes in salinity remain poorly understood.

Herein we performed transcriptome analysis of the
hepatopancreas and gill tissues of M. nipponense cultivated at
three different salinities using the Illumina platform to generate a
de novo assembly. Our objectives were as follows: 1) construct
hepatopancreas and gill tissue libraries of M. nipponense
cultivated at different salinities; 2) identify differentially
expressed genes (DEGs) and pathways that may play a key
role in salinity acclimation in M. nipponense; and 3) validate

target transcripts involved in osmotic pressure regulation, energy
metabolism, and antioxidant defense that might have critical
functions under conditions of acute salinity stress. The results of
this study could improve our understanding of the molecular
mechanisms used by M. nipponense to adapt to salinity
acclimation, which is bound to enhance the sustainability of
aquaculture production of M. nipponense.

MATERIALS AND METHODS

Experimental Animals and Acclimation
Juvenile prawns (M. nipponense) were obtained from a farm in
Shanghai (Qingpu) and acclimated to laboratory conditions for
14 days in freshwater (temperature, 24 ± 1°C; pH, 7.7 ± 0.6;
dissolved oxygen, 6.5 ± 0.5 mg/L). Thereafter, 360 healthy prawns
(2.15 ± 0.20 g wet weight) were randomly divided into 12 tanks
(30 prawns/tank), and the tanks were randomly assigned to three
groups (3 tanks/group). Salinity was gradually adjusted on the
same day to reach target salinity levels for each group: S0 = ~0‰
(control group), S6 = 6‰ ± 0.2‰ (low salinity), and S12 = 12‰ ±
0.2‰ (high salinity). Salinity and water quality were maintained
as previously described (Huang Y. H. et al., 2019), and prawns
were given commercial feed (Zhejiang Tongwei Feed Group CO,
Ltd.) twice a day for 1 week at a ratio of 6%–8% of their body
weight. After 4 weeks of acclimation, hepatopancreas and gill
tissues were obtained from each treatment group in triplicates,
rapidly frozen in liquid nitrogen, and stored at −80°C until
needed.

RNA Extraction, Library Construction, and
Sequencing
The gill and hepatopancreas tissues were used for total RNA
extraction. Briefly, total RNA was extracted using TRIzol
(Invitrogen, CA, United States), as per manufacturer
instructions. RNA quality and quantity were determined with
a NanoDrop 2000 (Thermo Fisher Scientific Inc, United States)
spectrophotometer; all OD260/OD280 values were in the range of
1.9–2.0. RNA integrity was assessed by 1% agarose gel
electrophoresis, and 18 cDNA libraries were prepared using
2.5 μg total RNA, following the protocol of the Illumina
TruSeq™ RNA Sample Preparation Kit. The libraries thus
obtained were sequenced on Illumina HiSeq 2500 (2 × 150 bp
read length; Illumina, Inc, San Diego, CA, United States) and
paired-end reads were finally generated (Sun et al., 2020). The raw
sequencing data have been deposited in the NCBI Sequence Read
Archive (Accession no. SRP251206).

DeNovo TranscriptomeAssembly andGene
Annotation
Raw data were processed to obtain clean reads, as follows: 1)
joint sequences in reads were removed, 2) low-quality reads
(bases with Q-value < 20) at the end of the sequence (3′-end)
were eliminated, 3) reads with an N ratio of >10% were
removed, and 4) reads containing adaptor
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sequences and sequences <75 bp after quality trimming were
discarded.

The clean reads thus obtained were used for sequence
assembly with Trinity v2.3.2 (Plymouth, MA, United States);
default parameters were used for assembly generation, and the
minimum contig length was 200 bp (Grabherr et al., 2011). All
unigenes were annotated based on the following databases with a
cut-off E-value of 10–5: NCBI non-redundant (Nr) (http://www.
ncbi.nlm.nih.gov), Swiss-Prot (http://www.expasy.ch/sprot),
Clusters of Orthologous Groups (COG) (http://www.ncbi.nlm.
nih.gov/), and Kyoto Encyclopedia of Genes and Genomes
(KEGG) (http://www.genome.jp/kegg). For Pfam domain/
family annotation, predicted protein sequences were submitted
to search against HMM profiles in the Pfam database v27.0 using
HMMER v3.0 (Finn et al., 2017). Further, Blast2GO was used for
gene ontology (GO) analysis (http://www.geneontology.org/),
and COG classification and signal pathway annotation of
unigenes were performed by conducting BLASTx searches
against the COG and KEGG databases, respectively. Assembly
metrics and annotation completeness were obtained using
BUSCO 3.0.1 (Simão et al., 2015) with the arthropoda_odb9
dataset.

Identification of DEGs and Enrichment
Analysis
The expression of all unigenes was estimated by calculating read
density as fragments per kilobase of transcript per million reads
using the RSEM program (Li and Dewey, 2011). To identify
DEGs, false discovery rate (FDR) ≤ 0.001 and two-fold change
(log2 ratio) ≥ 1 or ≤ −1 defined significant differences in gene
expression levels (Anders and Huber, 2010). Pearson correlation
coefficient was determined as per the gene expression level of
each sample, and hierarchical clustering was applied to classify
samples with high similarity levels till all DEGs were clustered.
Functional enrichment analysis of DEGs involved GO and KEGG
pathway enrichment analyses, which were performed using
Goatools (https://github.com/tanghaibao/GOatools) and
KOBAS (http://kobas.cbi.pku.edu.cn/home.do), respectively
(p ≤ 0.05).

Identification of Simple Sequence Repeat
Markers
The MIcroSAtellite search module (http://pgrc.ipk-gatersleben.
de/misa/) was used to identify SSR markers and for primer design
(Li et al., 2009). Mono-, di-, tri-, tetra-, penta-, and
hexanucleotide repeat motifs were designed using default
parameters; the minimum repeat numbers for these SSRs were
10, 6, 5, 5, 5, and 5, respectively.

Quantitative Real-Time PCR (qPCR)
In order to observe expression trends of the DEGs, 12 DEGs with
high expression levels from transcriptome were selected to
observe genes expression profile according to acute salinity
stress (18‰) using qPCR. RNA samples were extracted from
hepatopancreas and gill tissue samples, which were collected at 3,

6, 12, 24, 48, and 96 h in M. nipponense responded to acute
salinity stress. Specific primers were designed using Primer
Premier 5.0. The β-actin gene served as an internal control for
normalizing experimental results. Table 1 lists all gene primers.

First-stranded cDNA was synthesized from 1 μg RNA using
the PrimeScript® RT reagent kit (Takara, DRR037A, Dalian,
China). qPCR was performed using Platinum SYBR Green
qPCR SuperMix-UDG (Invitrogen, C11744-500, CA,
United States); the 20-μL reaction mixture consisted of 10 μL
buffer (qPCR SYBR Green Master Mix), 0.4 μL of forward and
reverse primers each, and 9.2 μL template cDNA. The
amplification cycle comprised the following steps: 40 cycles of
95°C for 30 s, 95°C for 10 s, and 60°C for 30 s β-actin served as the
internal reference. The efficiency of amplification for each primer
was estimated by constructing a standard curve using serial
dilutions of pure cDNA samples; the efficiency values ranged
from 0.9 to 1.02. The 2−ΔΔCTmethod was used to calculate relative
expression levels (Livak and Schmittgen, 2001).

In Situ Hybridization
In situ hybridization was performed to analyze the CA mRNA in
the gill, which showed the highest expression level in those two
tissues by qPCR analysis. M. nipponense gill tissue samples were
obtained as described earlier, fixed in 4% paraformaldehyde in
PBS, and incubated at 4°C overnight. The samples were then
analyzed using in situ hybridization, according to our previous
study (Sun et al., 2016). The anti-sense and sense probes of CISH
(Chromogenic in-situ hybridization) study with DIG signal were
designed by Primer 5 software, and synthesized by Shanghai
Sangon Biotech Company. In situ hybridization experiments

TABLE 1 | The specific primers used to in this study.

Primer Name Sequence (59→39)

Carbonic anhydrase F:TGGGTGTTTGACGGAGTGTTAAAGG
R:CCTCTGCGGTGACGATGTTGAC

Heat shock protein 70 F: GCCTCTGCTCAAGCTAGTGT
R: TGGTGGAACCTCCAACAAGG

Catalase F:TCGTGGCTTCGCTGTCAAGTTC
R:GGTGTGTTGCTGGATTCCTCTTCTG

copper/zinc superoxide dismutase F:GGCTCATTACAACCCAGACGGATTC
R:AGTTCCATCCTCACCGCTCTCG

manganese superoxide dismutase F:TGTGGGTGTGAAAGGTTCTGGTTG
R:GGGGTCCTGGTTTTGGCAAGTG

Glucose transporter 1 F: CCAACGGGTGTCTGACACCTCC
R: GCACCTACTGAAAATAGAGACA

glutathione peroxidase 3 F:AGAGGTTAATGGCGAGAAGGAACAC
R:AGGGCGTTTGGATCAGCGAAAG

Hexokinase F:CCACCCTCACTTCCACAATCTCATG
R:GCAACAGCAGCAACCAAAGCAG

lactate dehydrogenase F:CCAGAGGAGTGTGTATGCGGTTTC
R:GTTGGTTCTTCTCGGCGTCTGTC

6-phosphofructokinase F:GCTCACTTGCCTGTGGATCAGTTAG
R:ATCTTCGCCGTCCTCTTCCTCTG

pyruvate dehydrogenase F:ACAACAAGAGTAGCAGCAGGTCAAC
R:TTCATCCCGCTCCATTTCTTCATCC

Na+/K + ATPase F:CAGCCCAAGACGACATTCCCATC
R:GTCACCGCAAGCCAATTCAACAC

β-actin F:TATGCACTTCCTCATGCCAT
R:AGGAGGCGGCAGTGGTCAT
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were performed in triplicate for each tissue. Slides were examined
under light microscope for evaluation.

Statistical Analysis
All data are presented as means ± standard error (SM). One-way
analysis of variance (ANOVA) and Student’s t-tests were used to
determine whether data were statistically significant (p < 0.05)
between the control and the treatment groups. And the Dunn-
Bonferroni post hoc method following a significant
Kruskal–Wallis test was used when the data distribution was
skewed.

RESULTS

Transcriptome Sequencing and De Novo
Assembly
On constructing and sequencing the 18 libraries from the three
groups, we obtained approximately 790,425,774 raw reads and
118,563,866,100 raw bases, respectively. Analysis using the
BUSCO pipeline indicated that >92% arthropoda orthologs
were present in the assembled transcriptome [93.2% complete
BUSCOs (C)]. After removing adaptor sequences, ambiguous ‘N’
nucleotides, and low-quality sequences, 730,374,278 clean reads,
representing 108,911,319,233 clean nucleotides, were obtained.
The average Q30 percentage and GC content were 94.66% and
44.59%, respectively, indicating the high accuracy of our
transcriptome data (Table 2). In total, 162,250 unigenes were
obtained from the combined transcripts, with the total length
being 187,598,373 bp. Among these unigenes, 52,154 (32.14%)
were 1–600 bp, 61,901 (38.14%) were 601–1200 bp, and 48,195

(29.72%) were >1200 bp. Supplementary Tables S1, S2 provide
an overview of assembly results. Supplementary Figure S1 shows
specific fragment distribution.

Gene Annotation and COG Assignment
For the unigene sequences obtained by splicing, BLASTx
comparison (BLAST+ 2.7.1, E-value < 10–5) was used for
annotation against the COG, GO, KEGG, Swiss-Prot, and
NCBI NR databases. In total, 162,250 unigenes were searched;
of them, 51,172 (31.54%), 34,276 (21.13%), 10,002 (6.16%),
27,554 (16.98%), and 16,078 (9.89%) were annotated using the
Nr, Swiss-Prot, GO, KEGG, and COG databases, respectively
(Supplementary Table S3). On GO analysis, 10,002 unigenes
were enriched into 58 functional subgroups. Further, based on
COG analysis, 8,755 unigenes were allocated to 25 COGs
(Figure 1A, B).

DEGs
The expression levels of DEGs in the six groups were evaluated
using FPKM values: low-salinity gill tissue (LG), high-salinity gill
tissue (HG), freshwater gill tissue (FG), low-salinity
hepatopancreas tissue (LH), high-salinity hepatopancreas tissue
(HH), and freshwater hepatopancreas tissue (FH). All DEGs with
the absolute value of log2 ratio ≥1 and FDR ≤0.001 are shown in
Figure 2. Overall, 3,220 and 3,167 DEGs were detected on
comparing LG vs FG (1,913 up- and 1,307 down-regulated
genes) and HG vs FG (1,833 up- and 1,334 down-regulated
genes), respectively, and 2,405 and 2,671 DEGs were detected
on comparing LH vs FH (955 up- and 1,410 down-regulated
genes) and HH vs FH (1,145 up- and 1,526 down-regulated
genes), respectively.

TABLE 2 | Basic statistics of RNA-seq reads in M. nipponense.

Sample Raw Reads Raw Bases Clean Reads Clean Bases Q20%a Q30%b GC%c

LG-1 39,171,432 5,875,714,800 35,393,414 5,275,374,022 98.52 94.95 44.82
LG-2 46,201,618 6,930,242,700 40,744,942 6,065,221,795 98.46 94.76 44.77
LG-3 47,266,458 7,089,968,700 42,426,326 6,321,349,979 98.5 94.9 44.6
HG-1 40,253,752 6,038,062,800 37,071,372 5,531,352,170 98.57 95.01 42.04
HG-2 59,588,288 8,938,243,200 54,053,198 8,060,452,409 98.62 95.17 42.89
HG-3 41,314,824 6,197,223,600 38,706,680 5,778,650,912 98.68 95.38 44.7
FG-1 40,668,266 6,100,239,900 37,999,698 5,657,273,336 98 93.61 44.27
FG-2 53,989,276 8,098,391,400 50,753,610 7,557,280,709 98.06 93.76 44.43
FG-3 41,389,072 6,208,360,800 38,618,716 5,749,922,485 98.11 93.9 43.8
LH-1 41,580,366 6,237,054,900 38,764,410 5,786,335,185 98.35 94.48 46.32
LH-2 38,308,492 5,746,273,800 35,572,040 5,308,698,607 98.57 95.07 46.46
LH-3 40,942,340 6,141,351,000 37,801,184 5,639,162,660 98.54 94.99 46.1
HH-1 38,824,410 5,823,661,500 36,002,966 5,377,877,295 98.62 95.17 43.98
HH-2 45,160,524 6,774,078,600 42,106,088 6,290,257,258 98.7 95.41 44.46
HH-3 44,719,422 6,707,913,300 40,445,100 6,038,081,919 98.58 95.08 43.74
FH-1 37,313,474 5,597,021,100 35,177,300 5,241,056,393 98.13 93.96 44.2
FH-2 49,288,664 7,393,299,600 46,567,284 6,944,014,083 98.12 93.92 45.86
FH-3 44,445,096 6,666,764,400 42,169,950 6,288,958,016 98.28 94.36 45.09
Sum 790,425,774 118,563,866,100 730,374,278 108,911,319,233 / / /
Average 43,912,543 6,586,881,450 40,576,348 6,050,628,846 98.42 94.66 44.59

LG, low-salinity gill tissue; HG, high-salinity gill tissue; FG, freshwater gill tissue; LH: low-salinityhepatopancreas tissue; HH: high-salinity hepatopancrea tissue; FH, freshwater
hepatopancrea tissue.
aQ20%, percentage of bases with Phred value > 20.
bQ30%, percent of bases with Phred value > 30.
cGC%, percentage of G and C bases among total bases.
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Functional Annotation of DEGs
To analyze the functions of unigenes, GO assignments were made
(p < 0.05 and FDR <0.001). DEGs were subjected to GO
enrichment analyses. Of the 3,815 GO terms, 2,114 (55.41%)
terms were involved in biological processes, 543 (14.23%) in
cellular components, and 1,158 (30.35%) in molecular functions
(Supplementary Table S4). On comparing LH vs FH and HH vs
FH, the most significantly enriched GO terms were “cellular
process,” “metabolic process,” “cell,” “binding,” “transport
activity,” and “catalytic activity” (Supplementary Figure S2).
Further, on comparing LG vs FG and HG vs FG, the most

significantly enriched GO terms were “cellular process,”
“metabolic process,” “cell part,” “catalytic activity, “cell,” and
“binding” (Supplementary Figure S2). To analyze the
involvement of DEGs in various signaling pathways, unigenes
were annotated using the KEGG database. KEGG pathways are
listed in Supplementary Figure S3. In LG vs FG, the significantly
enriched pathways included “pyruvate,” “glycolysis/
gluconeogenesis,” “TCA cycle,” “ion transport,” and “AMPK
signaling pathway.” In HG vs FG, the significantly enriched
pathways included “ion transport,” “p53 signaling pathway,”
“oxidative phosphorylation,” and “apoptosis.” Similarly, in LH

FIGURE 1 | GO (A) categorization and COG (B) functional classification of assembled unigenes.
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FIGURE 2 | Analysis of DEGs. (A,B) Principal component analysis plot of transcriptome data obtained on assessing the gill and hepatopancreas tissues of M.
nipponense. Analysis of DEGs identified in the gill and hepatopancreas tissues from the control vs low salinity group (C,E) and the control vs high salinity group (D & F).
Up- and downregulated DEGs are shown in red and blue, respectively. The X- and Y-axes show the log2-fold change and log10 p-value of normalized expression level
(fragments per kilobase of transcript per million mapped reads) of a gene between the aforementioned groups, respectively.
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vs FH and HH vs FH, the significantly enriched pathways were
associated with energy metabolism (Figure 3).

Analysis of SSRs
In total, 73,804 SSRs were identified. All SSRs were identified in
194,085 unigenes, and 14,923 unigenes contained >1 SSR
(Supplementary Table S5). Of the 73,804 SSR motifs
identified in M. nipponense, the largest fraction consisted of
mononucleotides (30,063), followed by di- (28,021) and
trinucleotides (14,273). A/T (29,334) was the most common

type of mononucleotide repeat motif, followed by C/G (620),
and AG/CT (18,107) was the most common type of dinucleotide
repeat motif, followed by AT/AT (4,977) and AC/GT (4,819)
(Supplementary Figure S3).

qPCR Validation
Table S6lists DEGs identified across all comparative groups.
To investigate the gene expression profile in the gill and
hepatopancreas tissues of M. nipponense in response to 96-
h acute salinity stress (18‰), twelve salinity adaptation-

FIGURE 3 | Significant KEGG pathway classifications of DEGs in the gill and hepatopancreas tissues of M. nipponense are shown for the control vs low salinity
group (A,C) and for the control vs high salinity group (B,D).
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related genes were chosen: CA, NKA, catalase (CAT), Cu/Zn
superoxide dismutase (Cu/ZnSOD), Mn superoxide dismutase
(MnSOD), glucose transporter (GLUT1), glutathione
peroxidase 3 (GPx3), hexokinase (HK), lactate
dehydrogenase (LDH), phosphofructose kinase (PFK),
pyruvate dehydrogenase (PDH), heat shock protein 70
(HSP70). qPCR results show the effects of salinity on the
expression of these genes in the gill (Figure 4) and
hepatopancreas (Figure 5) tissues of M. nipponense,
respectively. We found that gens involved in antioxidant,

glycolysis and osmotic reglution play important role in
response acute salinity stress, especially in CA gene.

Localization of CA mRNA
To further confirm this finding, in situ hybridization was performed
using frozen gill and hepatopancreas tissues. In case of the gill tissue,
no signal was observed when the negative control sense strand probe
(Figure 6A) was hybridized with the sense CA probe; however, in
response to salinity acclimation, the antisense probe generated a
positive signal in the epithelial cell nuclei, cytoplasm, and

FIGURE 4 | Validation of the expression profiles of 12 DEGs identified in the gill tissue ofM. nipponense using qPCR. Log-fold changes are expressed as the ratio of
gene expression after normalization to β-actin expression levels. Data are shown as mean ± SE (standard error) of tissues in three separate individuals. *indicates
significant difference (p < 0.05), ppindicates extremely significant difference (p < 0.01).
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hemolymph vessel (Figure 6B). Further, in response to high salinity,
the antisense probe yielded a signal in the epithelial cell nuclei
(Figures 6C,D).

DISCUSSION

Euryhaline crustaceans are a key model organism for
investigating fundamental and evolutionarily conserved
processes. The chromosome-level genome assembly of M.

nipponense was recently reported; the total assembled
genome size was approximately 4.5 Gb, and a scaffold N50
of 86.8 Mb was produced using the Illumina platform (Jin
et al., 2021). Our previous study used the Illumina platform to
conduct gene expression profile analyses so as to identify
neuropeptides and G protein-coupled receptors from
eyestalk tissues of prawns exposed to salinity stress (Sun
et al., 2020). Further, a recent study evaluated the effects of
salinity, photoperiod, and light spectrum on larval survival,
growth, and related enzyme activities in the giant freshwater

FIGURE 5 | Validation of the expression profiles of 12 DEGs identified in the hepatopancreas tissue ofM. nipponense using qPCR. Log-fold changes are expressed
as the ratio of gene expression after normalization to β-actin expression levels. Data are shown as mean ± SE (standard error) of tissues in three separate individuals.
*indicates significant difference (p < 0.05), ppindicates extremely significant difference (p < 0.01).
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prawn M. rosenbergii (Wei et al., 2021). However, the
molecular responses in the gill and hepatopancreas tissues
of M. nipponense in response to salinity acclimation remain
unknown. Few previous studies have attempted to investigate
osmotic adaptive response of estuarine crustaceans by
mimicking salinity stress in laboratory environments (Li
et al., 2015; Hudson et al., 2018; Liu et al., 2022). In case of
the oriental river prawn, 14‰ is the tolerable salinity level for
normal physiological activities (Huang Y. H. et al., 2019), with
the gills and hepatopancreas being the core metabolic tissues
and the main sites of ion transport (Pierrot et al., 1995; Gao
et al., 2012). Thus, in this study, we identified DEGs in the gill
and hepatopancreas tissues of M. nipponense subjected to
acute salinity stress.

Enrichment Analysis to Explore Major
Biological Associations
Crustaceans tackle changes in environmental salinity, for example, via
osmotic pressure regulation, acid–base balance regulation, and
respiratory metabolism (Chen and Lin, 1995; Long et al., 2017;
Chen et al., 2019). To understand the molecular regulation
mechanism of M. nipponense in response to salinity acclimation,
transcriptome data were obtained by assessing the gill and
hepatopancreas tissues of prawns cultured under S0 (freshwater), S6
(low salinity), and S12 (high salinity) conditions. GO and KEGG
pathway enrichment analyses led to the identification of differentially
enriched pathways, such as “glycolysis/gluconeogenesis,” “TCA cycle,”

and “fatty acid metabolism.” Crustaceans, such as Chinese shrimp
Fenneropenaeus chinensis (Li et al., 2019) and Pacific white shrimp L.
vannamei (Chen et al., 2015), evidently increase their dependence on
aerobic metabolism for fueling osmoregulation. It appears that
glycolipid metabolism reduces osmotic stress in crustaceans by
supplying extra energy or adjusting the membrane structure to
facilitate osmoregulation in organs such as the gills. Other important
GO terms identified in this study included “oxidative phosphorylation”
and “peroxisome.” These findings indicated that high salinity induces
oxidative stress, maybe leading to oxidative damage and apoptosis in
crustaceans (Rivera-Ingraham et al., 2016; Huang et al., 2020).

Osmoregulation
Decapod crustaceans show variable degrees of euryhalinity and
osmoregulatory capacity, and they respond to changes in salinity
through anisosmotic extracellular regulation and/or cell volume
regulation (Cuenca et al., 2021). Osmotic pressure regulation is an
important method for crustaceans to adapt to changes in salinity
(Malik and Kim, 2021). NKA and CA are widely known ion
transporters that play a key role in osmotic pressure balance in
crustaceans. Different ions are transported through different ion
transport channels (Huang Y. et al., 2019). Herein our
transcriptome analysis revealed that in comparison to the
control groups, the mRNA expression levels of NKA and CA
were significantly up-regulated in the gill and hepatopancreas
tissues ofM. nipponense in the salinity acclimation groups (HG vs
FG, LG vs FG, HH vs FH, and LH vs FH). qPCR results indicated
that the expression levels of NKA and CA in the gill and

FIGURE 6 | Localization of CA transcripts in the gill tissue ofM. nipponense by in situ hybridization. Sense probes were used as negative controls, which generated
no signal (A). In the gill tissue, CA transcripts mainly localized to the epithelial cell nuclei and hemolymph vessel under freshwater (B), low salinity (C), and high salinity (D)
conditions. MC, marginal channel; (C) cuticle; N, epithelial cell nuclei; HV, hemolymph vessel. Scale bar: 50 μm.
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hepatopancreas tissues of M. nipponense were significantly
upregulated under acute salinity stress conditions as compared
to those under freshwater conditions. Similar expression profiles
have been reported for other crustaceans, such as E. sinensis and
L. vannamei (Mao et al., 2014; Liu et al., 2015). Collectively, these
data suggest that NKA and CA play a key role in osmotic pressure
regulation in M. nipponense under conditions of acute salinity
stress and chronic salinity acclimation. In addition, we found that
CA was mainly localized in the epithelial cell nuclei and
hemolymph vessels in the gill tissue, suggesting that Carbonic
anhydrase (CA) is a ubiquitous enzyme involved in acid-base
regulation and osmoregulation in gill tissue of crustacean, which
was similar with previous studies in fish (Gilmour, 2012; Ferreira-
Martins et al., 2016; Kumar et al., 2020). Thus, we believe that the
CA gene can serve as a molecular indicator of acute salinity stress
in M. nipponense at specific time points.

Energy Metabolism
Ion transport and ion channel proteins participate in osmotic
pressure regulation, which requires abundant energy (Tseng and
Hwang, 2008). Glucose metabolism, which involves glycolysis,
followed by the TCA cycle and electron transport chain, plays a
chief role in supplying energy for osmotic pressure regulation (De
Boeck et al., 2000). Little is known of the properties and variation
of anaerobic and aerobic metabolism in tissues during
osmoregulation. In this study, transcriptome sequencing
results indicated that the expression of HK, PFK, PK, PDH,
LDH, and GLUT1 was upregulated in the gill and hepatopancreas
tissues of M. nipponense under low salinity conditions. Under
high salinity conditions, the expression of citrate synthase and
cytochrome C oxidase was downregulated and that of other
glycolysis-related enzymes was upregulated. Moreover, our
results demonstrated that the expression of the rate-limiting
enzymes PFK and LDH was markedly upregulated under high
salinity conditions (Li et al., 2019). It appears that under
conditions of acute high salinity stress, glycolysis is the most
primitive method for organisms such as prawns and oysters to
acquire energy (Chen et al., 2022). However, osmoregulation at
high salinity levels might disrupt glucose metabolism. Therefore,
exposing prawn to very high salinity conditions, such as during
stock enhancement, should be avoided.

Antioxidant System
Changes in the water environment can induce oxidative stress and
antioxidant response in aquatic organisms (Wang et al., 2009; Wang
et al., 2020). In response to salinity stress, shrimps produce reactive
oxygen species (ROS), which can destroy cells, cause morphological
changes in the hepatopancreas, and induce the expression of
antioxidant enzymes and proteins (Paital and Chainy, 2010). ROS
are thus continuously removed by the antioxidant enzyme defense
system, which mainly comprises SOD, CAT, and GPx (Cheng and
Chen, 2000; Pan et al., 2005). The process of removing ROS is as
follows: SOD catalyzes O2

− disproportionation into H2O2 and H2O,
and CAT then decomposes H2O2 into H2O and O2, resulting in
effective detoxification (Zhang et al., 2007). In the antioxidant stress
response, HSPs catalyze the conversion of ROS by activating
endogenous peroxidase (Shi et al., 2016). In this study,

transcriptome analyses indicated that in comparison to the control
groups, the expression of SODs (Cu/ZnSOD and MnSOD) was
downregulated in the salinity acclimation groups, while that of CAT,
GPx3, andHSP70was upregulated. Further, we found that 96-h acute
salinity stress inhibited the mRNA expression of MnSOD, CAT, and
GPx3 in the gill tissue of M. nipponense; however, in the
hepatopancreas tissue, an increase followed by a decrease was
observed in the mRNA expression of CAT and GPx3. This could
have been a mechanism to activate antioxidant and heat stress
responses and to reduce oxidative damage. Altogether, these
findings suggested that salinity stress modulates oxidative stress
and antioxidant defenses in M. nipponense in a tissue-specific
manner, which is similar to the results reported for S. serrata
(Paital and Chainy, 2010).

To summarize, we performed transcriptome analyses to
investigate the molecular response of the gill and
hepatopancreas tissues of M. nipponense to salinity
acclimation. Several DEGs and core pathways involved in, for
example, osmotic pressure regulation and energy metabolism,
were identified. Further, based on CA localization results
obtained on performing in situ hybridization, we believe that
the CA gene can be used as a molecular indicator of acute salinity
stress in M. nipponense. Future studies are warranted to further
understand pertinent mechanisms so as to develop new methods
to enhance the survival rate of M. nipponense and improve
brackish water aquaculture.
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