
ARTICLE

Predicting fault slip via transfer learning
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Data-driven machine-learning for predicting instantaneous and future fault-slip in laboratory

experiments has recently progressed markedly, primarily due to large training data sets. In

Earth however, earthquake interevent times range from 10’s-100’s of years and geophysical

data typically exist for only a portion of an earthquake cycle. Sparse data presents a serious

challenge to training machine learning models for predicting fault slip in Earth. Here we

describe a transfer learning approach using numerical simulations to train a convolutional

encoder-decoder that predicts fault-slip behavior in laboratory experiments. The model learns

a mapping between acoustic emission and fault friction histories from numerical simulations,

and generalizes to produce accurate predictions of laboratory fault friction. Notably, the

predictions improve by further training the model latent space using only a portion of data

from a single laboratory earthquake-cycle. The transfer learning results elucidate the

potential of using models trained on numerical simulations and fine-tuned with small geo-

physical data sets for potential applications to faults in Earth.
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In Earth, predicting instantaneous and future characteristics of
fault slip has long been a fundamental goal of geoscientists
from an earthquake hazards perspective, but also to improve

the basic understanding of fault mechanics1. Recent progress
towards these goals has been achieved by applying a variety of
machine learning (ML) approaches2–4 in the laboratory using
shear experimental data to describe physical properties5–11 and in
the Earth using geophysical data to characterize episodic slow-slip
that occurs in subduction zones8,12, as well as transform faults13.
In shear experiments, earthquakes or “labquakes”, generated
during a single experiment produce a sufficiently large data set for
training ML models. However, on natural faults the repeat cycles
for all but the smallest earthquakes can span timescales on the
order of 10’s-100’s of years. Thus, in-situ geophysical measure-
ments as input for data-driven ML models are generally not
available or sufficiently complete for more than a portion of a
single earthquake cycle. In particular this problem exists for large
magnitude (M > 7) earthquakes that produce strong, damaging
ground motions. This conundrum presents a serious challenge if
the goal is to use data-driven modeling techniques to characterize
the physics of fault slip throughout the complete earthquake cycle
and to advance earthquake hazards assessment.

Our group’s first work in this subject area5 showed that seismic
signals emanating from a laboratory fault experiment were rich
with information regarding the physics of slip, gleaned from
machine learning analysis of the continuous waveform. This led
to a large number of complementary efforts by others applying
similar approaches to laboratory data, as well as a Kaggle com-
petition on the topic of laboratory earthquake prediction4. Sub-
sequently, we showed the same machine learning approach could
identify slip characteristics in the Earth using seismic signals
broadcast by the slowly-slipping subduction fault in Cascadia12

and the San Andreas Fault13. The methodology worked for slow
slip in Earth because that process exhibits relatively noisy tectonic
tremor associated with slip deep on the fault. We have been
working on the problem of applying similar approaches to
characterize the physics of seismogenic fault slip. To date, these
approaches have been challenging, and provide insight regarding
how to transition from the laboratory to the Earth. Our belief is
that slip rates on natural faults in Earth are so slow that an
emitted signal, if it exists, is hidden within cultural and Earth
noise that is inherent to continuous seismic recordings. A suite of
data-driven models, as applied to Earth, have been unable to tease
out a characteristic signal or pattern in the seismic noise. Devising
a new approach to characterize fault-slip is the logical next step to
overcome these obstacles.

A type of model generalization known as transfer learning14,15

is one potential solution to overcome the problem of data spar-
sity. Generalizing ML models using transfer learning has been
applied in a number of areas in geophysics; for instance in seis-
mology applications, transfer learning has been used to improve
nonlinear and ill-posed inverse problems associated with seismic
imaging, subsurface feature classification, and fault
detection16–20. We postulate that transfer learning may provide a
tractable means of bringing the success of data-driven approaches
for predicting fault-slip characteristics in the laboratory to Earth.
To our knowledge, no attempt has been made to apply transfer
learning using data from numerical simulations to make quan-
titative predictions of fault slip in laboratory experiments or Earth
observations. Herein, we examine the application of such a
transfer learning approach to laboratory experiments, which we
posit as an important first step in elucidating and laying the
foundation for the potential success of applications to Earth.

In this work, we develop a deep learning convolutional encoder-
decoder (CED) model that employs a time-frequency representation
of acoustic emissions (AE) from numerical simulations and from

laboratory shearing experiments. The model has a U-net architecture
that encodes the salient features to a latent space that is then decoded
to estimate the instantaneous friction coefficient that evolves through
the slip cycle, as measured in the experiment. In brief, the model is
initially trained using numerical fault-slip simulation data to learn the
mapping between the AE and the friction coefficient. The latent space
is then trained using only a small fraction of the laboratory experi-
mental data, and the resulting cross-trained CED model is applied to
unseen laboratory experimental data (Fig. 1). If such a procedure
works at the laboratory scale, a next step is evaluating a similar
approach in Earth, by conducting and applying fault simulations at
scale in combination with data from seismogenic faults. In the fol-
lowing, we describe results from the CED model transfer learning
and show the successful application of this technique for multiple
data sets.

Results
Transfer learning from numerical simulations to laboratory
shear experiments. The laboratory data10,21 is from a bi-axial shear
device that consists of a slider-block bounded by fault gouge and
external blocks through which a confining load is applied (Fig. 1). A
constant shear velocity is applied and when the system approaches
steady state conditions, repetitive stick-slip motion occurs (see
“Methods” section and Fig. 2b). The bi-axial device set-up simulta-
neously measures acoustic emission (AE) and the normal and shear
stresses required to calculate the bulk friction coefficient.

The numerical simulation22 applies a combined finite-discrete
element method (FDEM) model of a fault-shear apparatus
resembling the bi-axial device used in the laboratory experiments
described here23 (see “Methods” section and Fig. 1). The input
training data to the CED model from simulation is the kinetic
energy, which is a proxy for the measured continuous AE signal
in the bi-axial shear experiment. Changes in seismic moment are
reflected in variations observed in the kinetic energy; therefore,
the kinetic energy represents the kinematic behavior of the
granular fault system (see “Methods” section). The CED label
data is the bulk friction coefficient between the sliding blocks.

Data from the numerical simulation and laboratory experiment
(Fig. 2) are used by the CED model (Fig. 3) that is fully described
in the Methods section. The supervised learning approach is a
regression procedure, using the AE from experiment or the
kinetic energy from simulation to predict the instantaneous
characteristics of slip, specifically the coefficient of friction. As a
point of reference for the transfer learning approach, the results
shown in Fig. 4 are produced by training, validating, and testing
entirely on the numerical simulation data. The predicted friction
coefficient captures the general slip trends including many
frictional failures. However, the prediction results are modest as
reported by the mean absolute percentage error (MAPE) of
4.237% for the numerical simulation data.

As a second point of reference, the same procedure is followed
using only the laboratory AE and friction data to train a separate
CED model. The first 20% of the AE signal (0–60 s) is used for
training data. The friction predictions from the testing data
produce a MAPE of 1.137% (Fig. 5a). The model performs very
well for estimating the variations in friction coefficients and
capturing the frictional failures associated with slip events.

For the first transfer learning exercise, we use the model trained
on simulation data and apply it to predict the friction in the
laboratory experiment—the trained model uses the experiment
AE as input and the label is the friction from experiment. We
emphasize that the CED model never sees experimental data
during training with the simulation data. The predictions show a
decrease in performance with a MAPE of 4.232% (Fig. 5b) when
compared to the model trained solely on the laboratory data. The
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Fig. 1 Workflow with numerical simulation (subfigure adapted from ref. 22) and experimental configurations (subfigure adapted from ref. 6) for the
transfer learning analysis. See Methods section for full details about the simulation and experimental data. From the simulation and experiment,
characteristics are obtained that include the shear displacement, shear stress, normal stress, bulk friction, kinetic energy (simulation), and acoustic
emission (experiment). The simulation kinetic energy is used as a proxy for acoustic emission to train the model to predict the instantaneous bulk friction
coefficient at all times throughout the slip cycle. Only the model latent space is then further trained using limited acoustic emission data from the
laboratory experiment (number p4677). The simulation-trained encoder and decoder are left unchanged. The new model is used to predict the
instantaneous friction for experimental data the model has not previously seen, from a different laboratory experiment (p4581). FDEM finite-discrete
element method, CED convolutional encoder-decoder.

Fig. 2 Numerical simulation and experimental data used in the transfer learning analysis. The top row shows the deep learning model input signal as the
kinetic energy and acoustic emissions, respectively, and the bottom row shows the target friction coefficient. a Finite-discrete element method (FDEM)
time series are split into training/validation/testing segments (60/20/20%) shown in green, blue, and pink shades, respectively. The convolutional
encoder-decoder is fully trained and tested using these data. b The experimental data (p4677) are split into training/validation/testing segments (20/20/
60%) to include six cycles of stick-slip events for training the model latent space.
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maximum friction drop, which has an equivalence to event
moment (moment = GAu; where G is the gouge shear modulus,
A is slip area and u is the fault displacement), is consistently less
than that measured from the experiment. Under-prediction of the
event moment is a common problem with many ML models
when applied to the bi-axial shear data8,13, without considering
transfer learning. Nonetheless, we find the timing and scale of the
predictions are surprisingly good considering the significant
differences between the FDEM numerical simulation and the
laboratory shear experiment.

With an eye to faults in Earth where obtaining sufficient
training data is a challenge, we introduce transfer learning by
cross-training the model. Here, we allow the latent space of the
CED to be trained on limited laboratory data, while fixing the
encoder and decoder layers that are trained using only the
simulation. This approach is an extension of an established
transfer learning technique used in image classification tasks, see
e.g.,24,25. As applied to image classification, the convolutional
layers of a model are pre-trained on a large database, e.g.,
ImageNet26,27, and then specific convolutional layers are
extracted and held constant, then merged with an additional
fully-connected classification layer that is trained with data
specific to the problem of interest.

Here, we apply a transfer learning approach in this same spirit.
We emphasize that alternatively here, though analogously, it is
the encoder and decoder layers that are directly extracted, and
only the latent space weights are updated. For the ML models
previously trained on the numerical simulation data, all the
parameters in the encoder and decoder are rendered non-
trainable, while the parameters in the latent space are updated
and fit to the training data from laboratory experiments.

The resulting predictions shown in Fig. 5c and are very good
with MAPE= 1.650%, which is a significant improvement from
the MAPE of 4.232% before cross-training. The model

Fig. 3 The convolutional encoder-decoder (CED) model for predicting fault friction from scalograms, obtained from kinetic energy (simulation) and
acoustic emission (experiment). a CED model architecture. The encoder branch contains a b Preprocessing block and c four DownSampling 2D blocks
that populate the d latent space. The decoder branch reverses the procedure using e four UpSampling 2D blocks and a f Postprocessing block. The encoder
and decoder models are connected by skip connections (red dashed lines) between the downsampling and upsampling blocks as shown in a. The number
of filters (f) for each block are shown in a. The image size after each layer block are provided in parentheses. The blue dashed lines indicate the sub-models
used when computing the hierarchical components39 and the associated training loss function to obtain the total loss (Ltotal). The model layer notations are
Conv (convolutional layer), ConvT (convolutional transpose layer), BatchNorm (batch normalization layer), linear (linear connected layer), and ReLU
(rectified linear unit).

Fig. 4 Instantaneous frictional coefficient prediction from the
convolutional encoder-decoder (CED) model trained on Finite-discrete
element method (FDEM) simulation data. The a input and b predicted
scalograms are shown, with the color bar indicating the continuous wavelet
transform (CWT) real coefficients. The cross-hatched region in b indicates
the cone of influence where edge effects are important. The predictions
from the CED are made applying sliding windows with 2 s length and step
size of 0.2 s. The predicted scalogram is the average of all sliding windows.
c The numerical simulation data (black line) and model-predicted friction
coefficient μ from the inverse of the scalogram is shown in red with the blue
region indicating 1-standard deviation for the predictions in the overlapping
windows. The mean absolute percentage error (MAPE) is listed for the
numerical simulation and predicted values.
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predictions are now comparable to the MAPE of 1.137% obtained
when training directly on p4677 laboratory data.

As a more rigorous test on how well the cross-trained CED
model predicts the laboratory experiments, we apply the identical
model to a different laboratory experiment conducted in the bi-
axial apparatus. These experimental data are never seen during
training of the latent space. This second experiment was
conducted over a range of confining loads (normal stress) from
3 to 8 MPa (Fig. 6). The only information applied from the
different confining load levels are the mean and standard
deviation statistics used to normalize the AE and μ signals when

producing the input scalograms to the model and when
reconstructing the output scalograms (see “Methods” section).

The predictions applying the cross-trained model to the second
experiment are shown in (Fig. 7). The results are remarkably good
as indicated by the MAPE’s. The 3 MPa data exhibits the best
MAPE, presumably because the confining load is close to the 2.5
MPa stress in the p4677 experiment that was used to train the
latent space (Fig. 7a). The model predictions as manifest by the
MAPE increase with increasing normal loads. The prediction
errors appear to be due primarily to the poor predictions of the
frictional failure magnitudes. Nonetheless, the instantaneous slip-

Fig. 5 Evolving friction time series predictions from convolutional encoder–decoder (CED) models. a Model trained and tested on the laboratory data. b
Model trained on simulations and tested on laboratory data. The first 20% of the acoustic emission (AE) signal (0–60 s) was used for training to construct
the model. c Cross-trained model. Model trained on the simulations, then fixing the encoder and decoder layers, with the model then additionally trained on
the bottleneck (latent space) applying a portion of the laboratory (experiment p4677) data. The mean absolute percentage error (MAPE) is listed for each
prediction. See “Methods” section for details.

Fig. 6 Convolutional encoder-decoder (CED) model generalization. The cross-trained model is rigorously validated using a second laboratory experiment
(p4581) as an independent data set. The input signal is the acoustic emission (AE in red, left axis) and the target signal is the friction derived from the shear
stress (σs in blue, right axis) at progressively increasing applied normal loads (3–8 MPa), shown in sequence and delineated by different shading.
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event times are captured at all load levels, as are the stress
buildups during inter-event periods.

Transfer learning with extremely limited data in laboratory
experiments. Because slip cycles in Earth are so long (decades to
100’s of years) and we rarely have more than a portion of asso-
ciated seismicity within a full seismic cycle, we conduct a cross
training exercise that mimics this data-poor circumstance. We do
so by using only limited portions of a single slip cycle from the
laboratory experiment for training the model latent space. Spe-
cifically, we train the latent space by applying only the post-failure
or the pre-failure μ signals from experiment p4677 data (Fig. 8).
The post-failure comprises the time-period when the shear stress
is increasing relatively rapidly following the previous slip event.
The pre-failure period comprises the period when the fault is late
in the cycle, near-critical state, and beginning to nucleate21. The
model encoder and decoder trained with the simulation data
again remain unchanged. The model is trained and validated
using 90% and 10% of the data, respectively, for the pre-failure
and post-failure analysis. Because the available data only spans a

short time interval, the size of the sliding windows is reduced
from 2 to 0.4 s and the step size is reduced from 0.2 to 0.1 s (the
sizes have no significant impact on the model performances, see
Methods). To prevent over-fitting, the training is terminated
when the validation does not reduce for 100 epochs.

After cross-training the latent space using the two data sets
from experiment p4677 (post-failure and pre-failure) to produce
two separate CED models, the models are used to predict the
friction in the second experiment, p4581, for 3, 5, and 7MPa
applied load levels, on the post-failure and pre-failure signals. The
results are shown in Fig. 9. As before, the magnitude of the
frictional failures are not well predicted—otherwise the trained
models perform surprisingly well in both cases. The procedure is
repeated using the laboratory data, without transfer learning, to
show the improvements in the forward predictions when data is
extremely limited (Fig. S1). The results applying the post-failure
data are slightly better than that from the pre-failure training
data, suggesting the model has learned more frictional states
during latent-space training. As anticipated, the model using
experiment p4677 and trained applying six full cycles provides

Fig. 7 Transfer learning applied to an independent experiment. Shown are predictions from the cross-trained convolutional encoder-decoder (CED)
model (experiment p4581) with normal loads that progressively increase from 3 to 8MPa (see Fig. 6, (a-f), respectively). Each load level is predicted
independently using the cross-trained model from simulation (the encoder and decoder) and data from experiment (p4677) conducted at 2.5 MPa. The
predictions as manifest by the mean absolute percentage error (MAPE) progressively decrease with increasing load level. Nevertheless, the results show
that the transfer learning approach with cross-training of the latent space, which accounts for only 20% of the total CED model parameters, is a powerful
approach to predicting the frictional state of the experimental fault.
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the most robust result; however, the model results with extremely
limited training cross-training data are very encouraging.

Transfer learning predicting time to failure in laboratory
experiments. Transfer learning can also be applied to predicting
other output time series (see e.g.,4,6). Here we showcase the
predictions on the signals of time-to-failure (TTF). Failure times
are defined as when the time derivative of the μ signal is below
−10/s. The raw AE signal is used as input, just as for the
instantaneous predictions of the friction coefficient. The encoder
and decoder models are again directly applied from the CED
model trained on the numerical simulation data for the task of
predicting the μ signal. Next, the latent space is trained to fit the
TTF training data from experiment p4677 (the first 20% of the
signal, from 0 to 60 s, including six stick-slip cycles). Data from
p4581 are again used for testing purposes only. The predictions
are illustrated in Fig. 10 for 3, 5, and 7MPa load levels. The
predictions are good, if not perfect considering the task, as
underscored by their respective MAPE scores. Indeed they are
notable considering the they are obtained from cross-training and
transfer learning. Repeating this procedure using only laboratory
data, without transfer learning, indicates the model can better
estimate the full cycle with values extending to zero seconds
(Fig. S2) and agrees with initial studies extracting information
from the continuous waveforms5.

Discussion
The predictions of the instantaneous friction obtained applying
transfer learning from FDEM simulations to laboratory data from
the bi-axial shear device are surprisingly good. When model
cross-training of the latent space is then applied, the predictions
improve significantly. Further, when we apply the same cross-
trained model to the second experiment conducted at multiple
applied loads, the model predictions are still surprisingly good—
there exists a larger misfit with increasing load, but the timing of
the event is accurate regardless of the under-prediction in friction
failure magnitude. The results are even more remarkable con-
sidering the FDEM simulation was not meant to directly simulate
the experiment—material properties and dimensions of the fault
gouge and shear-blocks were considerably different. Indeed, the
results indicate the simulations contain an AE (kinectic energy)
evolution captured in the spectral characteristics that can predict
the actual AE in experiment. The results suggest the simulations,
despite the differences, provide a sufficient distribution of beha-
viors for the models to learn and reproduce the laboratory
behavior—the FDEM simulation exhibits more complex slip
behaviors than the experiments in regards to the range of

interevent times. Consequently, the trained model is able to
predict the simpler behavior with more quasi-periodic interevent
times exhibited by the experimental data. The slip frictional-
failure magnitude predictions are less accurate than the timing—
the full range of frictional failures observed during sliding is
under-predicted. Knowing this, one could conduct simulations
that produce larger frictional failures to determine if this
improves the laboratory failure predictions. It is also interesting
that the latent space trained on the post-failure laboratory data
produces better predictions than pre-failure training. This may
give us clues in Earth regarding where we might anticipate better
predictions.

The transfer learning and cross-training results are encoura-
ging. As previously noted, for real-world seismic applications
stick-slip repeat cycles can be on timescales ranging from several
decades to centuries. Thus in general, available geophysical
recordings only include a partial earthquake cycle. Based on the
work presented here, we imagine the following as one potential
scenario for addressing the sparse data problem. After selecting a
fault in Earth to be characterized, numerical simulations of
numerous earthquake cycles will be conducted. A deep learning
model is then developed applying simulation results, where
continuous AE data are used as model input and fault displace-
ment is used as target. Once the model is trained applying
simulation results, we cross-train the model latent space with
continuous seismic data recorded from the actual fault. This
model can then be tested using continuous seismic data not used
during the training (e.g., a different time period), to determine if
the model can predict geodetic measured surface displacement for
that time period. This is one potential approach however there
exist parallel approaches one could imagine and test as well. The
general transfer learning and cross-training approach may be of
great value as we address evolving fault slip and earthquake
hazards in the real Earth.

Methods
Numerical simulation and laboratory experiments. Numerical simulations of a
laboratory experiment performed by our group (Gao et al.22) were obtained by
applying the combined finite-discrete element method (FDEM) using the Hybrid
Optimization Software Suite package (HOSS)28 (Fig. 1). The FDEM used in this
study was originally developed to simulate continuum to discontinuum transitional
material behavior29. FDEM combines the algorithmic advantages of the discrete
element method with those of the finite element method. In FDEM, each discrete
element is comprised of a subset of finite elements that are allowed to deform
according to the applied load, which is particularly useful in capturing deforma-
tions in the fault gouge material as well as at the gouge particle–plate boundary.

The FDEM model was applied to simulate a two-dimensional, photoelastic
shear laboratory experiment conducted by Geller and others23. Two-dimensional
plane stress conditions were assumed and the model comprised 2817 circular

Fig. 8 Testing the limits of the transfer learning: convolutional encoder-decoder (CED) model with cross-training of the latent space applying limited
portions of acoustic emission (AE) data from a single slip cycle. The model input signal is acoustic emission (AE in red, left axis), and the output signal is
the friction coefficient (μ in blue, right axis). The portion of the time series shaded light green shows the post-failure data used for the transfer learning
exercise and shaded light blue shows the pre-failure data.
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particles confined between two identical plates. Three thousand bi-dimensional
particles with diameters of 1.2 and 1.6 mm were used, respectively (1500 of each).
The plates had dimensions of 570 × 250 mm. At the plate interfaces semi-circular
shaped “teeth” were placed to increase friction between plates. The particles had
Young’s modulus and Poisson’s coefficient of 0.4 GPa and 0.4, respectively, while
the plates had Young’s modulus and Poisson’s coefficient of 2.5 MPa and 0.49,
respectively, far smaller than those used in the bi-axial shear experiment described
below. Shearing velocity was 0.5 mm/s.

The laboratory data21,30–33 were obtained applying a bi-axial shear apparatus
(Fig. 1). Laboratory experiments fail in quasi-periodic cycles of stick and slip that
mimic to some degree the seismic cycle of loading and failure on tectonic faults.
The apparatus comprises a central steel block that is driven at fixed loading velocity
of 10 μm/s for the experiment. This loading imparts shear stresses within two
gouge layers that are 100 mm square with an initial thickness of 5 mm. The gouge
layers are located on either side of the central driving block and confined by a
second steel layer of 20 mm thickness. The gouge consists of monodisperse glass
beads of 104–149 μm diameter with Young’s modulus of 70 GPa and Poisson

coefficient of 0.3; the steel blocks have Young’s modulus of approximately 180 GPa
and Poisson’s coefficient of approximately 0.29. A load-feedback servo control
system maintains a fixed normal stress of 2.5 MPa for experiment p4677, while
measuring shear stress throughout the experiment. For experiment p4581,
progressively larger loads were applied, and at each load level, steady state was
achieved before a change to the successive load level. The shearing speed was 5
mm/s for both experiments. Mechanical data measured on the apparatus
throughout the experiments included the shearing block velocity, the applied load,
the gouge layer thickness, the shear stress, and the coefficient of friction.
Continuous AE emissions from the fault zone seismic wave radiation were
recorded with piezo-ceramics embedded inside blocks of the shear assembly34.

We note that the AEs from the FDEM simulations were not propagated as
elastic waves in the model. We assume the kinetic energy obtained from the fault
simulations as being equivalent to the AEs recorded on the experimental shear
apparatus based on previous analysis22. Used here as an equivalent quantity to the
AE is the kinetic energy (Ek) summed from the entire system. Since the plates and
particles work together as an ensemble, it is the aggregate energy evolution that

Fig. 9 Model cross-training applying limited portions of the experimental slip cycle. Two models are trained and in both cases only the latent space is
trained using data from experiment p4677 applying the following criteria. One model is trained applying acoustic emission (AE) data from the post-failure
portion of the slip cycle, comprising the time-period when the shear stress is increasing relatively rapidly. The second model is trained applying AE data
from the pre-failure period comprising the period the fault is in a critical state and nucleating. The model encoder and decoder trained applying the
simulation data remain unchanged. Friction predictions on data from the experiment p4581 testing data set for pre-failure at applied loads of 3, 5, and
7MPa are shown in each top row of (a–c) shown in light blue and post-failure in each bottom row of (a, b, c) shown in light green. The shading of the
panels correspond to the portion of training data highlighted in Fig. 8. The mean absolute percentage error (MAPE) is shown for each respective load level
and model.
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governs the stick-slip behavior in granular fault gouge. In the bi-axial experiment,
the source of the AE signal is at the grain contact level35. Fault gouge contacts
broadcast AE independently and/or simultaneously35, and displace the sideblocks
equivalently along the dimensions of the block due to the extreme stiffness of the
steel, in analogy to the Ek behavior in the simulation. Thus, the Ek is approximately
equivalent to the magnitude of the continuous AE time series (norm of the acoustic
emission recorded by the two channels of the lab experiments), which is the source
of elastic waves. We say approximately because there is a modest amount of wave
dissipation and wave scattering during wave propagation in the experiment from
the fault gouge layer through the steel plates to the detectors.

The density distributions of the normalized inputs and outputs for the two data
sets vary the most in the output friction values (Fig. S3). The input data show quite
similar distributions, suggesting the model can extract the needed features from the
simulation to make a prediction on the experiment. The friction values show much
wider distribution in the simulation data compared to an apparent concentration
around a peak from the laboratory data. The two-sample Kolmogorov–Smirnov
(KS) test shows that the distributions of the FDEM and Lab friction data are
statistically different (KS statistic = 0.258 and p-value = 0.0). This inconsistency
helps validate our choice to use the transfer learning for adjusting the weights in
the latent space to account for this out-of-distribution of lab data from
simulation data.

Training, validation, and testing data. The continuous time series signals (AE,
kinetic energy, and friction coefficient) from the experiment and FDEM simulation
are converted into scalograms using the Continuous Wavelet Transform (CWT; see
ref. 36 for a comprehensive description of the method) to utilize the time-frequency
signal strength in the CED models. We adopt the real Ricker (Mexican-hat, DOG
(m= 2)) wavelet for the CWT, which is commonly used in analyzing seismic
data37. For comparison we also tested the Morlet wavelet and found the Ricker to
produce improved MAPE results. The reconstruction of the signal from the sca-
lograms (inverse CWT) is the sum of the real part of the wavelet transform over all
scales.

For the FDEM simulation, the CWT is performed on the training/validation/
testing (60/20/20% split) segments of the kinetic energy (Ek) and friction (μ) time
series. Scalograms are calculated using moving windows with a size of 2 s and step
of 0.2 s. The sliding window size does not impact the accuracy of the CED model,
see “Methods” section Testing model design and training procedure. For a
sampling frequency of fs= 1000 Hz, each scalogram is 128 × 2000. The procedure
produces 73 and 19 pairs of input Ek and output μ scalograms for the training and
validation, respectively.

The training data is augmented by producing additional noisy Ek input signals.
The procedure is as follows: (1) take the Fast Fourier Transform (FFT) of the
original signal data, (2) shuffle the positive-frequency terms of the imaginary
coefficients, (3) set the negative-frequency terms to the opposite of the shuffled
terms, (4) and perform the inverse FFT to produce a new Ek signal with the same
amplitude spectrum and random phase. The procedure is repeated three times for
the training signal and the final training data contains 292 scalogram pairs.

The CWT transform procedure is applied to the laboratory experiment p4677
acoustic emission (AE) and friction (μ) time series to produce training/validation/
testing (20/20/60% split) data. The scalogram dimensions are the same as the
numerical simulations. The final data set contains 292 pairs of input AEnorm and
output μ scalograms for the training and validation data. Scalograms are calculated
for the laboratory experiment p4581 and only used as testing data for experiments
conducted at different normal stresses.

Before applying the CWT, all input and output signals are normalized by
subtracting the mean and dividing by the standard deviation using the statistics
extracted from the training signal data. For FDEM data, the statistics are 3.28E
−4 ± 5.00E−4 for the input Ek signals and 4.23E−1 ± 2.52E−2 for the output μ
signals. For transfer learning on the p4677 data, the statistics from the training
signals (0–60 s, including six stick-slip cycles) are 8.932 ± 14.900 for the input AE
signals and 0.657 ± 0.0382 for the output μ. In the cases of limited sub-cycle data,
the post-failure training signal has statistics of 7.712 ± 10.667 for AE and
0.641 ± 0.0440 for μ, and the pre-failure training signal has statistics of
10.205 ± 20.137 for AE and 0.667 ± 0.0377 for μ. When making predictions using
the laboratory p4581 data with increasing normal loads, the statistics are extracted
from the first 20% of the 3MPa signal (from 0 to 40 s, including five stick-slip
cycles) to obtain 17.776 ± 46.700 for AE and 0.433 ± 0.0230 for μ. For the TTF
statistics the values are 4.816 ± 3.257 on the p4677 data and 4.817 ± 2.873 on the
p4581 data, extracted from the same aforementioned signal segments.

Convolutional encoder-decoder model and transfer learning. The CED archi-
tecture is composed of an encoder branch containing the salient features that feed
to a latent space, and a decoder branch to construct the output variable. The input
signal is passed to an encoding branch with a preprocessing block containing two
convolutional layers and a rectified linear unit (ReLU) activation function (Fig. 3).
Preprocessing is used to reduce the image size in the time dimension by a factor of
25. This is passed through four downsampling blocks containing three convolu-
tional layers, each with batch normalization, ReLU activation, and a skip con-
nection. The latent space contains two convolutions and a ReLU activation. The
decoding branch reverses the encoding using convolutional transpose layers. The

Fig. 10 Predictions of time-to-failure (TTF) applying the transfer learning, cross-trained model. Predictions of TTF for laboratory p4581 data at a 3 MPa,
b 5 MPa, and c 7 MPa confining loads using transfer learning of the convolutional encoder-decoder (CED) model trained on finite-discrete element method
(FDEM) data. Only the latent space is trained on laboratory p4677 data for the TTF predictions. The black dashed line shows the ground truth TTF derived
from the experiment. The red curve shows the model predicted TTF with 1-standard deviation shown in blue. The mean absolute percentage error (MAPE)
is shown for each load level.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27553-5 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7319 | https://doi.org/10.1038/s41467-021-27553-5 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


postprocessing contains two convolutional transpose layers to obtain the original
dimensions. The dimension of each layer, i.e., the filter size, depth, and skip
connections are labeled in Fig. 3. The model contains five “skip” connections38 that
directly link the weights from the downsample blocks in the encoder to the
upsample blocks in the decoder at each level. The trainable weights are initialized
using glorot_uniform and the biases are nontrainable and set to zero. The CED
model contains 363,696 trainable parameters, with 73,984 in the latent space.

The model design utilizing the CWT images with skip-connections yields improved
prediction accuracy over simpler more-standard approaches, such as alternatively
directly inputting the waveform data and using 1D convolutions. As a point of
comparison, a convolutional encoder model followed by a set of fully connected layers
has 1–2 orders of magnitude more trainable parameters and does not outperform the
adopted design. The number of filters and layers of the CED model (see Fig. 3) have
been reduced and the performance was compared to validate the final model selection
(Table S5). The adopted design produces the best overall performance.

Loss functions are calculated hierarchically for each pair of encoder/decoder
blocks. This type of hierarchical regularization was recently introduced by Wang
et al.39 to provide better interpretability and generalizability of CED models for
learning fluid-flow patterns in complex rock pore-structures. This regularization is
found to improve the MAPE accuracy in predicting FDEM test data by 1% and
provides a similar level of MAPE for the transfer learning. The total loss is
calculated as Ltotal ¼ L0hier þ L1hier þ L2hier þ L3hier þ L4hier þ Lreconstr þ Ll2.

Where Lihier is the mean square error (MSE) between the target and predicted

values for each sub-model linked with a “skip” connection (Fig. 3a). Lreconstr is the
reconstruction loss using the entire CED model. And Ll2 is the loss associated to
the L2 regularization using a penalty multiplier40 set to 1E−5. After the initial
training, the “skip” connections are deactivated so that information only passes
down the encoder, through the latent space, and up the decoder for a prediction.

The model is trained with a NVIDIA Tesla P100 GPU using 292 pairs of
scalograms with a batch size of 8, the Adam optimizer, and a learning rate of 1E−3.
Validation is performed with 19 pairs of scalograms. The training is terminated
when the reconstruction loss on the training data is below 0.1 and the validation
reconstruction loss does not diminish for 100 epochs. The model with the lowest
validation loss is used as the final CED model. Transfer learning is applied using
the laboratory p4677 data. A new CED model is created with the weights from the
final model trained on the FDEM simulation data. All trainable weights, except the
latent space, are rendered non-trainable and held constant while the latent space is
further trained with the laboratory data. Since the encoder and decoder branches
are non-trainable layers, the total loss is Ltotal= Lreconstr+ Ll2 and the early
stopping is the same. The initial training on the FDEM simulation data takes
approximately 15 min and the latent space cross-training on the laboratory data
takes about 10 min for full convergence.

Testing model design and training procedure. Due to random variable initi-
alization and the stochastic nature of training a neural network, repeating the
training procedure gives different results and variations in the overall performance.
We performed multiple runs of the same transfer learning workflow to assess the
average performance of the trained CED models to assess these expected variations.
(1) Five runs are performed starting from the same initialized model weights and
no noisy data augmentation is added (Table S1). (2) Five runs are performed
starting from the same initialized model weights and including the noisy data
augmentation (Table S2). (3) Ten runs are performed starting randomly initialized
model weights and including the noisy data augmentation (Table S3). The process
is then repeated using laboratory data obtained at different confining stress
(Fig. S4). The results of these tests show the random initialization and shuffling of
the batches produce discrepancies between the model predictions, and increasing
the noise through data augmentation reduces the variance and improves accuracy.
The main results presented come from the CED model trained in Run No. 8
(Table S3) with an overall accuracy nearest to the mean performance of the ten
separate runs with random initial weights and random noisy data augmentation.

The input data length is tested to evaluate the effect of the size of the sliding
window on the model predictions. We performed six runs with randomly
initialized model weights and noisy data augmentation, using different sizes of the
sliding windows 0.4, 0.8, 1, 3, 4, and 5 s (Table S4). These tests indicate the window
size produces little variation in the final results shown using a 2 s sliding window
(Table S3). The transfer learning approach is robust to the hyperparameter of
sliding window size.

Data availability
The numerical FDEM data used in this study are publicly available at https://doi.org/
10.5281/zenodo.1248174. The experimental used in this study from experiments p4677
and p4581 are hosted by Chris Marone at the Pennsylvania State University, available at
https://sites.psu.edu/chasbolton/.

Code availability
This study was performed using the Python package NumPy, TensorFlow and PyCWT.
The Python code is under restricted access and is not available for public release due to
institutional regulations at Los Alamos National Laboratory.
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