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Abstract

Background: The initiation of translation via cellular internal ribosome entry sites plays an important role in the
stress response and certain physiological conditions in which canonical cap-dependent translation initiation is
compromised. Currently, only a limited number of these regulatory elements have been experimentally identified.
Notably, cellular internal ribosome entry sites lack conservation of both the primary sequence and mRNA secondary
structure, rendering their identification difficult. Despite their biological importance, the currently available computational
strategies to predict them have had limited success. We developed a bioinformatic method based on a support vector
machine for the prediction of internal ribosome entry sites in fungi using the 5-UTR sequences of 20 non-redundant
fungal organisms. Additionally, we performed a comparative analysis and characterization of the functional relationships
among the gene products predicted to be translated by this cap-independent mechanism.

Results: Using our method, we predicted 6,532 internal ribosome entry sites in 20 non-redundant fungal organisms.
Some orthologous groups were enriched with our positive predictions. This is the case of the HSP70 chaperone family,
which remarkably has two verified internal ribosome entry sites, one in humans and the other in flies. A second example
is the orthologous group of the elF4G repression protein Sbp1p, which has two homologous genes known to be
translated by this cap-independent mechanism, one in mice and the other in yeast. These examples emphasize
the wide conservation of these regulatory elements as a result of selective pressure. In addition, we performed a
protein-protein interaction network characterization of the gene products of our positive predictions using
Saccharomyces cerevisiae as a model, which revealed a highly connected and modular topology, suggesting a
functional association. A remarkable example of this functional association is our prediction of internal ribosome
entry sites elements in three components of the RNA polymerase Il mediator complex.

Conclusions: We developed a method for the prediction of cellular internal ribosome entry sites that may guide
experimental and bioinformatic analyses to increase our understanding of protein translation regulation. Our
analysis suggests that fungi show evolutionary conservation and functional association of proteins translated by
this cap-independent mechanism.
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Background

Eukaryotic cells regulate the synthesis of proteins using
various mechanisms. Among them, protein translation
control provides faster changes in protein levels when
compared, for example, to transcriptional responses [1].
Under stress and other physiological and physiopathologi-
cal conditions, translation is heavily repressed to conserve
cellular resources. Nevertheless, a set of proteins, mostly re-
lated to stress responses that mediate cell adaptation to di-
verse stimuli or that are necessary for the regulation of
developmental processes, are selectively synthesized. The
prevalence of translational control has been assessed in
yeast and other fungal organisms [2—-5]. One of the mecha-
nisms that allows such selective protein expression under
these conditions is internal ribosome entry site (IRES)-
dependent translation [1, 6-9].

Importantly, translation initiation is widely considered
to be the most regulated step in protein translation [1].
Under normal conditions, translation initiation proceeds
via the canonical or 5-cap-dependent mechanism. In
this process, the translation machinery recognizes the 5’-
m’G-cap modification of the mRNA, paving the way for
translation initiation. However, under certain circum-
stances, some components of the translation machinery
are depleted, and 5’-cap recognition is suppressed. These
conditions hinder the canonical translation initiation
mechanism. IRESs allow the binding of the translation
machinery to mRNA independently of 5’-cap recognition,
enabling translational initiation to proceed [6, 7, 10]. The
first IRES was reported in the 5-UTR of picornaviruses
[11]. Subsequently, a number of IRESs were described in
multiple viral transcripts. They enable viral protein pro-
duction using the host translational machinery when the
global synthesis is repressed due to the infection process.
Shortly afterwards, the first cellular IRES was identified in
the 5-UTR of the BiP chaperone, allowing its translation
in poliovirus-infected cells [12]. Currently, there are more
than 100 reported cellular IRESs [13].

Until now, a high-throughput method for the detec-
tion of IRESs is not available; each candidate has to be
tested individually in a procedure that involves different
stringent controls to verify its activity [14]. Thus, we
believed that a bioinformatic approach to discover new
potential IRESs would vastly reduce the number of can-
didates to be tested. Nevertheless, the prediction of cel-
lular IRESs presents a considerable challenge due to
their lack of sequence and structure conservation, even
in homologous genes [15]. For this reason, and to the
best of our knowledge, current predictive strategies have
had very limited success [16]. To develop a computational
methodology to identify IRES-specific patterns and accur-
ately predict these regulatory elements in fungal species,
we implemented a support vector machine (SVM) method
using 5-UTR sequence characteristics and comparative
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genomic features. Subsequently, an enrichment analysis of
our initial IRES predictions in clusters of orthologous
yeast genes allowed us to identify the most likely IRES
candidates. In this article, using S. cerevisiaze as a model,
we present a detailed analysis of the protein-protein
interaction (PPI) network of genes translated by these
top IRES predictions. The notable enrichment in ortholo-
gous groups, the PPI analysis and the functional evalu-
ation of our predictions enabled us to formulate biological
hypotheses concerning the evolutionary conservation and
genome-wide associations of IRESs.

Results and discussion

Prediction of IRESs in 5’-UTR regions

To identify 5’-UTR regions bearing IRESs, we developed
a method based on machine learning and comparative
genomics. Our method is focused on the unstructured
A-rich IRESs found in fungal organisms, such as those
identified in S. cerevisiae [17, 18], and does not include
highly structured IRESs found in higher organisms [16].
We employed sequence composition-based features,
the minimum folding energies (MFEs) of the RNAs,
and certain orthologous group comparative properties
to generate a total of 29 features, which are listed in
Additional file 1 (see Methods).

Cross-validation was performed to evaluate the perform-
ance of our method and for parameter optimization. The
SMOTE procedure allowed the generation of synthetic
positive cases that were used for training and testing, as de-
scribed in the Methodology section. This set (consisting of
positive and negative cases) was randomly split into ten
parts; of these, one was used for testing, and the rest were
used for training. The process continued until all the parts
were individually used for training (10 steps). The perform-
ance measures were determined (accuracy and Cohen’s
kappa) for each of the steps, and the mean values were cal-
culated. This entire process was repeated 30 times. From a
total of 32 different combinations of SVM parameters, the
optimized parameters were sigma and cost. We selected
the model with the best performance measures achieving
an accuracy of 94.3 % and a Cohen’s kappa of 0.828
[19, 20]. The estimated values of sensitivity and specifi-
city using a confusion matrix for our model were 0.94
and 0.98, respectively. Thereafter, we used our model
to make predictions for 99,759 sequences from 20 inde-
pendent fungal organisms. Our method classified 6,532
sequences as containing IRESs (positive predictions)
and 93,227 sequences as not containing IRESs (negative
predictions). The positive predictions represent 6.8 % of the
total sequences used. This number is in close agreement
with the estimate of the proportion of cellular mRNAs that
could be translated using cap-independent mechanisms, ac-
cording to cDNA microarray data (10-15 %) [21, 22]. In
order to have a negative control with the exactly the same
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number of sequences as in our IRES analysis, for every gene
initially considered in our study, we analyzed the 60 nt im-
mediately upstream of the translation termination codon
since it is expected that in this coding region, the presence
of IRES would be minimal or nonexistent. The number of
sequences analyzed as negative control was 99,759 and of
these only 317 were predicted as containing IRESs (false
positives). This corresponds to 0.3 % of the total negative
control set. Considering that our IRES analysis included the
same number of UTR sequences (99,759) and that 6,532 of
them were predicted as containing IRESs, the false discov-
ery rate of our predictions was evaluated to be 5 %.

Evolutionarily conserved patterns related to IRES-
dependent translation are found in the 5-UTRs of fungi
Of the aforementioned 6,532 positive predictions, 815
showed distinctive features of evolutionary conservation
as analyzed by orthologous group enrichment (False dis-
covery rate (FDR) < 0.05). These predictions included 86
orthologous groups (OG) out of the 22,605 considered
(Fig. 1).

Several of the enriched groups contain genes implicated
in the stress response. Some of these groups have homolo-
gous genes experimentally verified as genes containing
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IRESs in other organisms. We discuss the biological rele-
vance of the most enriched groups below.

The most significant group yielded an enrichment p-
value of 1 x 10724, corresponding to 78 positive predictions
out of the 265 gene members of this group encoded in the
20 non-redundant fungal genomes used in our analysis.
The proteins in this group are transmembrane sugar trans-
porters and glucose sensors (hexose transporters group).
These transporters have a wide array of affinities and are
regulated by glucose concentration, allowing adaptation to
changing conditions in nutrient levels; their function and
regulation are reviewed in [23]. Furthermore, experiments
using ribosome profiling analysis have shown that six
hexose transporters genes—HXT1, HXT2, HXT4, HXTS,
HXT9, and GAL2—are translationally up-regulated in
response to osmotic stress [24]. Importantly, the genes
encoding four of these proteins—Hxt1lp, Hxt5p, Hxt9p
and Gal2p—were predicted to contain IRESs using our
method in most of our studied organisms. Translational
up-regulation was preferentially mediated by strengthened
polysome association in the 5-UTR after osmotic stress
and not only by increased mRNA levels. Additionally, an
increase in polysomal mRNA led to incremental protein
production [24]. This finding is in good agreement with
our predictions because increased ribosome occupancy
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in the 5-UTR has been linked to IRES-dependent
translation [3].

The second-most enriched group corresponds to the
HSP70 family (36 predictions out of 107, p-value of 1.7 x
107"%). Acting as chaperones, the proteins in this family
are conserved in virtually all organisms and are used by
cells to contend with several types of stress, including
heat. There is evidence of translational control and in-
creased ribosome occupancy in the mRNA of SSA4
(which was predicted to contain an IRES by our model)
in response to different stress conditions, such as high
salinity [25] and starvation conditions, in which its
translation efficiency increased 2.5-fold [2]. There are
two members of this family that have experimentally
verified IRESs, one in humans and the other in flies
[13]. This result may be explained by the hypothesis that
IRES-dependent translation initiation is conserved across
species in phylogenetically related proteins.

The third-most enriched group includes the stress-
induced Srplp/Tiplp family (16 predictions out of 40, p-
value of 2.0 x 107°). Several members of this family are
known to be induced by various stress conditions, in-
cluding low temperatures [26], hypoxia [27] and nitro-
gen starvation [28]. A number of members of the SRP/
TIP1 family are regulated by the transcriptional factor
Mss11p [29]. Remarkably, Mss11p, Msnlp and Flo8p are
part of the signal transduction pathway that regulates
pseudohyphal differentiation and filamentous growth [30].
Furthermore, Mss11p and Flo8p bind cooperatively to the
STA1 promoter, leading to the filamentous and invasive
growth response [31]. Significantly, the genes coding for
Flo8p and Msnlp are translated in an IRES-dependent
manner, as are 7 additional genes involved in invasive
growth [17]. One hypothesis that could explain these ob-
servations is that IRES-dependent translation is required
when the selective co-expression of proteins under stress
conditions is needed, for example, in some regulatory or
interaction networks.

The fourth-most enriched group (36 predictions out of
185, p-value of 3.9 x 10™°) represents a subset of the
major facilitator superfamily, more specifically genes that
code for H" antiporters. These enzymes are crucial for
multidrug resistance and chemical stress responses in
yeast [32]. In this regard, it has been demonstrated
that PDRIS is translationally regulated and that its 5'-
UTR shows increased levels of ribosome occupancy in
response to high salinity [25]. Similarly, PDRS and
PDR12 (which were positive IRES predictions accord-
ing to our model) showed a positive correlation be-
tween ribosome 5-UTR occupancy and translational
efficiency during different developmental stages; this
trend has been linked to translationally regulated genes.
Importantly, a similar correlation was observed for yeast
IRESs [3].
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The fifth-most significant group (23 predictions out
of 92, p-value of 1.5 x 107°) is the ATP-binding cas-
sette (ABC) family. Its members participate in many
biological processes that include vacuolar detoxification,
pleiotropic drug resistance (PDR) and stress adaptation
(reviewed in [33]). Yaplp participates in the PDR regula-
tion network, and its encoding gene has a verified IRES
[34]. Additionally, we predicted four genes containing
IRESs in this regulatory network (PDRS5, PDRI12, SNQ2
and STPS5), two of which have been shown to be directly
regulated by Yaplp (SNQ2 and PDRS5) [33]. It is important
to note that although YAPI was not used to train our
SVM, it was one of the genes predicted as having an
IRES. The above-described case constitutes another
example consistent with the hypothesis of multiple
IRES-dependent genes in the same regulatory or inter-
action network [7]. A second example of a gene with
an experimentally verified IRES [35-37], that was not
used in the training procedure of our SVM, but suc-
cessfully identified as having an IRES by our method is
HAP4. Remarkably, there is functional evidence that
HAP4 and YAP1 diverged from a common ancestor
[38]. Considering the statistical and biological aspects
of the aforementioned predictions, we believe that our
results validate our method and support IRES-dependent
translation conservation in fungi (Fig. 1).

Selection of top IRES predictions

The product of the orthologous group enrichment and the
complement of the SVM class posterior probability [39] (1-
probability that a prediction is an IRES based on SVM out-
put) was used as a criterion for ranking our predictions.
We defined a threshold of 0.05 (lower values indicate better
predictions) for selecting the best predictions. Our top IRES
predictions included only 801 out of the 6,532 total positive
predictions (12 %) and represented 0.8 % of the entire set of
genes considered in our analysis (99,759). For S. cerevisiae,
174 genes out of its nearly 6,000 coding genes were in-
cluded in the top-predictions category. The advantage of
our selection procedure (see Methods) is that it takes into
account the similarity of features found in each sequence
compared with those of the experimentally verified IRESs
used in this study (given by the posterior class probability)
and the enrichment of IRES predictions in phylogenetically
related genes across organisms, which could indicate a se-
lective pressure to conserve IRES-dependent translational
control. All further analyses in our study were performed
using this sub-set of 174 top IRES predictions in S.
cerevisiae.

Gene ontology enrichment analysis of the predicted IRESs
in S. cerevisiae

We performed a gene ontology (GO) [40, 41] enrichment
analysis corresponding to “Biological Process (BP)” terms



Peguero-Sanchez et al. BMC Genomics (2015) 16:1059

for the top IRES predictions of 174 genes. We found 28
significantly enriched GO terms using FDR adjustment
(FDR <0.1) after summarizing them using REVIGO [42]
(Fig. 2). It is worth noting that a number of the enriched
GO terms presented here have been associated with
5’-cap-dependent translation suppression and selective
protein production through 5’-cap-independent translation,
and in several cases, a detailed study of those genes trans-
lated in a selective manner led to the discovery of new
IRESs. Some of the aforementioned conditions include de-
velopmental processes, transport, cell communication [43],
filamentous growth [17] and response to stress (reviewed in
[7, 44]). As such, these results indicate that our predictions
are clearly different from those produced randomly, not
only at the phylogenetic level (as shown by orthologous
group enrichment) but also at the functional level of
proteins participating in specific biological processes.

Network analysis of the predictions

A functional PPI network comprising the 174 top IRES
predictions in S. cerevisiae was constructed using data
from the STRING database [45]. This database provides
information not only for direct physical protein-protein
interactions but also considers a broader set of “func-
tional protein-protein associations” comprising partici-
pation in common metabolic pathways, co-regulation,
and participation in larger structural assemblies [45]. To
characterize the PPI network from the perspective of its
connectivity, we selected the parameter of network density
because it describes the global level of cohesion. Network
density is calculated as the ratio of observed connections
to possible connections (possible connections refers to the
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number of links in a fully connected network) [46]. Net-
work density has an intuitive biological meaning in this
context because larger network densities are related to
higher levels of functional association.

Statistical simulation was used to test how the network
density of the PPI network of the top IRES predictions
compares with a random network (see Methods). Remark-
ably, the network density had a value of 0.071, higher than
that of the expected value of a random network (0.0461;
p-value of 1.3 x 10™*). These values show that the PPI
network built from the top predicted IRESs was more
cohesive and significantly different from a random network
of the same size.

IRES-dependent translated proteins are functionally
associated into biologically significant modules that
participate in specific processes

It has been widely demonstrated that cells perform most
of their functions in a modular fashion [47-51]. The
prevailing definition of modularity considers a set of pro-
teins connected working together physically or function-
ally to perform related functions [47, 52]. This definition
implies that cellular processes occur via the coordinated
action of a number of molecules. Therefore, it is expected
that the density of connections in each module will be
higher than the density of connections in the entire net-
work because the proteins within each module share a
common, relatively homogenous set of functions [48]. In
addition, the decomposition of a network into functionally
related sub-parts can offer valuable information on how
the complete system works, thus facilitating its analysis.
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To characterize the PPI network of the top IRES
predictions in terms of its modular structure, we used
the Louvain method multi-level unsupervised clustering
(module-finding) algorithm [53] implemented in the igraph
package [54]. In our study, a total of 9 modules were
obtained. One of these modules contained only one
protein and was therefore excluded from further evalua-
tions. To explore the biological function of each module,
we conducted GO-term enrichment analysis using the
same procedure as that applied to the complete set of pre-
dictions. This analysis revealed a significant GO-term en-
richment (FDR < 0.02) in 7 out of the 8 modules (Fig. 3a).
Interestingly, each module exhibited a unique functional
specialization because only 6 of the total 117 GO terms
were shared (represented by multiple colored bars in
Fig. 3a). A closer inspection inside each module also re-
vealed substantial functional homogeneity (Fig. 3a).

The aforementioned results are in good agreement
with previous findings of comparable functional module
enrichments [55] and support the validity of the clustering
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procedure used. To facilitate discussion, representative
names were assigned to each module based on GO terms:
Module 1, heme biosynthesis; Module 2, respiration and
energy generation; Module 3, cell wall organization; Mod-
ule 4, cell cycle; Module 5, transport; Module 6, pyridox-
ine biosynthesis; Module 7, RNA processing; and Module
8, undefined function, because no GO term enrichment
was found.

In general, higher density values are found when pro-
teins are properly classified into biological modules [55].
For this reason, we compared the modules with the entire
network of top IRES predictions in terms of density. Add-
itionally, we compared the density of each module with
that of a randomly generated network of a corresponding
size (Fig. 4). All modules showed statistically significant
higher density values compared with both random net-
works and the entire network of top IRES predictions.
These results are in good agreement with previous studies
in which a comparable trend in the density of clusters was
observed [55, 56].
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cohesive than random networks
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We believe the higher density of the modules when
compared with either size-equivalent random networks
or with the entire network, the GO-term enrichments
found in each module, their functional specialization
(few shared GO terms between modules), and their
functional homogeneity (similar or related functions
within a module) strengthen the biological relevance of
our IRES predictions. These results support the hypothesis
that IRES-dependent translation facilitates the expression
of proteins working in a coordinated manner in specific
biological processes, such as those previously reported in
poliovirus infection, hypoxia and ER stress [7], mitosis
[7, 9], apoptosis [10], invasive growth in yeast [17], and
the meiotic program [3].

Biological relevance of the top IRES predictions in the
context of their respective modules

In this section, we describe some relevant examples of
the top IRES predictions in the biological contexts of their
respective modules. We use node connectivity degree (or
simply connectivity degree) as a measure of protein im-
portance within the PPI network. The connectivity degree

of a given node (protein) represents the number of inter-
actions that this node has in a particular network. The
connectivity degree in PPI networks has been linked
to the biological significance of proteins. For example,
it has been observed that protein connectivity degree
is positively correlated with lethality [57] and disease-
related genes [58]. The complete list of top IRESs predic-
tions, their module classifications, connectivity degrees and
descriptions are presented in Additional file 2.

Module 1: Heme biosynthesis. Heme is crucial in
many fundamental biological processes and serves as a
prosthetic group and a signaling molecule. For example,
heme is used in controlling cell growth and differenti-
ation, reducing oxidative damage, generating energy by
respiration, and as an enzyme cofactor [59]. In yeast,
heme controls transcription in response to oxygen levels
through the activator Haplp [59]. Interestingly, Haplp is
indeed included in the cell-cycle module (module 4),
emphasizing the close relationship between the heme
group and developmental processes. Additionally, this
association suggests a case in which the effector molecule
(heme) and the regulated gene (HAPI) are translated in an
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IRES-dependent manner, highlighting the functional asso-
ciation of IRESs.

Another protein with a regulatory function in this
module is Gis2p. This protein is the most connected
element in this module, with a connectivity degree value
of 34. Gis2p is a translational activator of mRNAs with
IRESs [60, 61]. Additionally, similar regulatory functions
in IRES translation were found for the Gis2p orthologs
Znf9p in humans [62] and Cnbp in flies [63], indicating
a potentially conserved function. Furthermore, Gis2p is
implicated in stress response by its accumulation in P-
bodies and stress granules under glucose deprivation
conditions [64], and it is part of the genetic network
implicated in the induction of invasive growth [65]. Re-
markably, seven other genes required for invasive growth
are also known to be translated in an IRES-dependent
manner in S, cerevisiae [17].

The presence of IRES elements in regulatory genes,
such as the abovementioned HAPI and GIS2, implies
the existence of a wider hierarchical regulatory network
that responds to specific metabolic or stress conditions
in which some components of the translation machinery
may be depleted.

Another remarkable example of two closely related pro-
teins in this module is Ssqlp, a mitochondrial chaperone
of the HSP70 family, and its co-chaperone, Mdjlp [66]. It
is worth noting that Ssqlp has two homologs encoded by
genes with IRESs, Hsp70p in D. melanogaster and in
humans [13]. Ssqlp is required for the assembly of
iron-sulfur clusters into proteins [67].

An additional example worth noting within this mod-
ule is Sbplp. It has two homologous proteins, Pablp in
yeast and Cirp in mice, which are known to be translated
in an IRES-dependent manner.

Module 2: Respiration and energy generation. The
ability to respond to nutrient changes is a crucial require-
ment for cell survival. S. cerevisiae preferentially uses glu-
cose as a carbon source, although in glucose starvation
conditions, alternative non-fermentable carbon sources
can be used. Two proteins included in this module that
belong to the central pathway of gluconeogenesis are
malate dehydrogenase (Mdhlp and Mdh2p) and phos-
phoenolpyruvate carboxykinase (Pcklp). These proteins
are degraded in the presence of glucose [68], and their
corresponding genes are transcriptionally regulated by
the zinc-finger transcription factor Znflp following glu-
cose starvation [69]. Pcklp also participates in other stress
conditions, and it was found to confer cold tolerance in
yeast [70].

Module 3: Cell wall organization. The cell wall adjusts
its thickness and composition to contend with environ-
mental stimuli, such as mechanical, osmotic, and heat
shock stresses. The S. cerevisiae cell wall is composed
largely of polysaccharides (85 %) and proteins (15 %), one
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of which is predicted to have an IRES: Gsc2p, a p-1,3-glu-
can synthase that can be induced by different environmen-
tal stimuli. For example, extracellular calcium, treatment
with a-factor [71], heat shock [72], exposure to cell wall-
damaging agents [73], or treatment with the reducing
agent dithiothreitol [74] leads to strong Gsc2p induction.

The cell wall adapts its shape during different develop-
mental and growth stages (reviewed in [75]). For example,
the products of HSP150/PIR2 and PIRI, which are pre-
dicted to contain IRES sequences, are required for cell wall
stability [76], but how these proteins contribute is still un-
clear. However, PIR proteins are known to impact the per-
meability of the cell wall, and this effect is consistent with
the role of these proteins in cross-linking [3-1,3-glucans
[77,78].

Hsp150p and Pirlp are induced by heat shock, treat-
ment with CFW or Zymolyase, and nitrogen limitation
[77, 79, 80]. They are also regulated during cell cycle
progression and in response to stress [81]. Additionally,
there is evidence of coordinated regulation between
genes required for cell wall organization or biogenesis
and cell cycle genes [82]. Importantly, evidence has been
found for translational control through 5-UTRs in the
case of two of the proteins in this module, Uthlp and
Siml1p [83].

Module 4: Cell cycle. Module 4 is the largest module
in terms of the number of enriched GO terms (Fig. 3a)
and the number of genes (Fig. 3c). Additionally, this mod-
ule includes the nodes displaying the highest connectivity
degrees.

Importantly, the translational regulation of cell cycle
processes has been described in several studies, and a
number of IRESs play central roles regulating the ex-
pression of different kinases (reviewed in [9]).

The most connected protein in module 4 is Hoglp
(High Osmolarity Glycerol response), which has a con-
nectivity degree of 54 (Fig. 3c). Remarkably, Hoglp has
3 homologous proteins in humans that are translated in
an IRES-dependent manner (PITSLREp, Pimlp and cal-
cium/calmodulin-dependent protein kinase type II subunit
alpha) [13]. This finding supports IRES conservation even
in distant organisms. Hoglp is a mitogen-activated protein
kinase that has important roles in different stress condi-
tions. For example, the translational response to hyperos-
motic shock is strongly dependent on Hoglp [24], and
this protein has been shown to control cell cycle progres-
sion in response to stress [84]. It is worth noting that other
kinases are part of this module and have important regula-
tory roles in the cell cycle (Tellp [85], Ipllp [86], Vhslp
[87], and Meklp [88]), cell growth and proliferation
(Cka2p [89]), salt tolerance (Hal5p [90]), and mating
(Fus3p [91)).

Another relevant protein in this module is Gcndp,
which is a master translation factor that activates the
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response to amino acid starvation [92] and is controlled
at both the transcriptional and translational levels by di-
verse signals of stress [93]. Within the network of top
IRES predictions, Gendp has a high connectivity degree
(33), possibly reflecting its importance. Significantly, the
Gcendp paralog Yaplp and the ortholog Jun protein in
chicken are encoded by genes with experimentally veri-
fied IRESs [13].

A final example of a remarkably significant protein in
this module is Med10p (Nut2p), a subunit of the RNA 1I
mediator complex that is required for transcriptional ac-
tivation because its concentration is elevated in response
to DNA replication stress [94, 95]. In addition, the
mRNAs of two other proteins that are part of this com-
plex, Med7p and Med18p (Srb5p), were predicted to be
encoded by genes with IRESs. This finding has biological
relevance because several components of the same complex
are translated in an IRES-dependent manner, providing se-
lective co-regulation under stress conditions. Additionally,
there is evidence of the co-regulation of some proteins
in these complexes at both the transcriptional and
translational levels [96-98].

Module 5: Transport. The biological relevance of some
members of this module has already been discussed be-
cause they are part of the most enriched orthologous
groups (HAAI, HXT1, HXTS5, HXT6, HXT9, PDRS, PDR12,
PDRI5, SSA4, and SNQ2; see Enrichment analysis of IRES
predictions in Orthologous Groups). The proteins in this
module are involved in the transport of a wide range of
molecules. For example, Ssa3p and Ssadp participate in
SRP-dependent co-translational protein-membrane target-
ing and translocation [99], HXT members sense and trans-
port glucose [23], Snq2p is an ABC transporter that confers
multidrug resistance [100], Tpolp and Tpo2p function as
polyamine transporters [101], Yro2p is a plasma membrane
protein involved in resistance to weak acid stress [102, 103],
and Haalp is a transcriptional activator that regulates
TPO2 and YRO2 [104]. In the context of stress response,
transport mechanisms play fundamental roles. For example,
multiple transporters are involved in the response to weak
acid stress, including the aforementioned Snq2p, Tpolp,
Tpo2p, Pdr12p, etc. [105]. Other stress conditions relevant
to the members of this module are osmotic stress, oxidative
stress, heat shock and detoxification [33] (see Additional
file 2).

Module 6: Pyridoxine biosynthesis (VitB6). The most
studied role of VitB6 is as a cofactor of enzymatic reactions.
However, it is now clear that VitB6 is a potent antioxidant
that protects cells from oxidative stress [106, 107]. More-
over, Snz2p and Snz3p, which are part of this module, are
known to respond to nutrient limitation [108].

Module 7: RNA processing. This module exhibited an
enrichment of terms related to RNA processing, including
ncRNA and tRNA. Although there are no IRESs known to
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be associated with RNA processing, we believe that the
predicted genes presented in this study are plausible be-
cause RNA-based regulation is an area that we are just be-
ginning to understand [109], and our findings may have
direct implications in stress response and pathological
processes [110]. It is worth noting that the protein Hrr25p,
which is a part of this module and is involved in tRNA
wobble uridine modification [111], is a likely homolog of
the Pim-1 protein, which has an experimentally verified
IRES [13].

Module 8: Undefined function. Although module 8 was
not enriched with specific GO terms, 5 out of the 10
members of this module were COnserved Sequence (COS)
proteins (Coslp, Cos3p, Cosdp, Cos6p and Cos8p), which
are highly conserved in sequence, although their functions
are unknown [112].

Interestingly, two RNA-binding paralogs, Pes4p and
Mip6p, are included in this module. Both proteins are
also homologous to Paplp, the translation of which is
IRES-dependent and part of the translation initiation
complex [17], providing evidence of selective IRES con-
servation in homologous genes.

We believe that the fact that our IRES predictions clus-
tered in cohesive GO-enriched modules highlights the
functional association of IRES-translated genes and is com-
plementary with our comparative genomics and network
analyses. Furthermore, our modular organization-based ap-
proach could be used to analyze the results from genome-
wide studies addressing IRES-dependent translation.

Comparison of predictions with translationally regulated
genes

Ribosome profiling is a recently developed technique
that has contributed to the understanding of the translation
process by enabling the determination of the positions and
dynamics of active ribosomes along the message, allowing
the identification of translationally controlled genes. For
this reason, we selected a previously published study [3]
based on ribosome profiling to determine the intersection
of our predictions and those genes that were found to be
translationally controlled. Selected genes had the additional
characteristic that their 5-UTR ribosome occupancy rates
were positively correlated with their translation efficiencies,
indicating that augmented protein production is a conse-
quence of increased ribosome occupancy. The number of
translationally regulated S. cerevisiae genes in the afore-
mentioned study was 110, whereas the number of top S.
cerevisiaze IRES predictions was 174; the intersection be-
tween these two sets of genes is 14 genes. The probability
of having an intersection of this size at random considering
6,000 coding genes in S. cerevisiae is 5 x 107 (Fisher’s exact
test), which is a good indication of the accuracy of our
predictions. Representative examples of ribosome foot-
prints for genes with experimentally verified IRESs, genes
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predicted as having IRES and genes predicted as not hav-
ing IRESs, are presented in Additional file 3. Data obtained
from reference [2].

Conclusions

We developed an accurate computational method based
on a SVM for the identification of unstructured A-rich
IRESs in fungal organisms. Using this method, we pre-
dicted IRES elements in the 5-UTR sequences of 20
non-redundant fungal genomes and performed a com-
parative analysis and characterization of the functional
relationships among the proteins encoded by the genes
predicted to have IRES elements. We found statistically
significant conservation of IRES-dependent translation
in some groups of orthologous genes that revealed an
underlying selective pressure, particularly in stress-
related genes. In addition, our network analyses allowed
us to identify biologically meaningful modules exhibiting
specialized functions, providing evidence of a strong
functional association between IRES-dependent trans-
lated proteins. Our study represents a useful resource
for hypothesis-driven experiments and gene function ex-
ploration in the field of cap-independent translational
regulation.

Methods

DNA sequence data

In this study we used sequence and annotation data
from 33 completely sequenced fungal genomes. To avoid
data overrepresentation, non-redundant genomes were
selected based on their position in a maximum likeli-
hood phylogenetic tree that was constructed using the
PHANGORN package [113] available in the R software
[114]. For each pair of phylogenetically close organisms,
the one with the smaller genome was eliminated, leaving
the organism with the larger genome [115]. The final set
of non-redundant organisms used in our analysis con-
sisted of 20 organisms. The complete list of organisms
used, the list of non-redundant organisms and the
phylogenetic tree are provided in Additional files 4, 5
and 6, respectively.

Obtaining the 5’-UTR sequences in this study

It has been shown that several yeast IRESs are located
within the region corresponding to the first 60 nt immedi-
ately upstream of the translation initiation codon [17, 18].
Consequently, using a Perl script, the aforementioned
region was obtained for each gene in each of our non-
redundant yeast genomes. We termed these sequences
60ntUTRs, and they were used in our subsequent ana-
lyses. These 60ntUTRs were sorted in accordance with
the orthologous groups of their corresponding genes.
In S. cerevisiae, as far as we know, there are 11 experi-
mentally confirmed and well-characterized IRESs with
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the common characteristic of being A-rich sequences
[17, 18], 9 of these constitute the positive cases for the
training of our SVM, whilst 2 of them were used as our
internal positive control. The list of these genes and their
characteristics are given in Additional file 7. Negative
cases were obtained by the random sampling of 12,500
sequences from the complete pool of 60ntUTRs. This
number of negative cases was selected because when
compared with the number of positive cases generated
by SMOTE (5,000) gives a ratio of 2.5:1. It should be
noted that it was not easy to select cases that represent
a truly 100 % negative control supported by experimen-
tal studies. Nevertheless, based on microarray analyses
it has been estimated that only 10-15 % of mRNAs re-
main attached to polyribosomes under different stress
conditions and considering that only 4 % of them might
exhibit cap-independent translation [43]; we estimated
that only 4-6 % of the genes used in the negative set for
the training of our SVM might contain an IRES.

Feature selection for the prediction of IRES elements

Feature selection of the 60ntUTRs to predict IRES ele-
ments was based on a literature review, considering those
variables that have been reported as correlated with the
presence of IRESs or those that have been used to classify
non-coding RNA (ncRNA). The set of features used in our
analysis was grouped according to the following criteria: i)
Minimum folding energy (MFE), which has been used to
classify non-coding RNAs (ncRNA) [116] and is correlated
with IRES expression strength in yeast [18]. The MFE of
each of the 60ntUTRs was calculated using the RNAfold
program of the Vienna RNA package, version 1.8.5 [117].
ii) GC content. It has been proposed that IRES-possessing
S. cerevisiae genes related to nitrogen starvation tend to
be A-rich [17]. Additionally, a positive correlation has
been observed between the low GC content of UTRs and
increased translational activity in glucose starvation condi-
tions, which might be explained, at least partially, by IRES
elements promoting protein expression [118]. For these
reasons, two features were included: the GC content of
the 60ntUTRs relative to the GC content of their corre-
sponding intergenic regions (relGCintergenic) and the GC
content of the 60ntURs relative to the chromosomal GC
content (relGCchr). iii) Relative gene position in the
chromosome (relPosChr). This feature was used because
it has been shown to be related to the selective expression
of stress-response genes [28, 119-121]. iv) Di-nucleotide
frequencies. Composition-based approaches have been
successfully used to develop ncRNA classification methods
[122]. Therefore, we calculated di-nucleotide frequencies
(16 variables) as input features. v) Measures of statistical
dispersion. The higher the conservation of IRESs in an
orthologous group, the more influence these elements will
have on the properties of their group. For this reason, the
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mean, mode, standard deviation, and skewness of each of
the ortholog groups were calculated for the relGCinter-
genic and the MFE of its sequence members. vi) Length of
the intergenic region. This feature was selected for IRES
identification because longer regions could be indicative of
the presence of regulatory elements, such as IRESs. After
applying the criteria described above, a total of 29 features
were used as inputs in our SVM. The lists of features be-
fore and after selection are provided in Additional file 1.
In order to have a relative estimation of the likely contri-
bution of these features in our SVM, we compared the
average values of the features of the positive predictions
versus the average values of the negative set of sequences
used to train our SVM. The result of these comparisons is
show in the figure of Additional file 8. As it was expected,
in this figure, the AA and the GC dinucleotides presented
the most significant values. Other features with important
coefficient values were the intergenic region length and
those features related with the minimum folding energy of
the 60ntUTRs.

Feature pre-processing

To render the inter-species attributes comparable, feature
standardization was performed to rescale the variables by
their means and variances relative to their distributions in
each organism. Subsequently, all the features had a mean
of 0 and a variance of 1. To avoid data redundancy, we re-
duced the number of features to retain only uncorrelated
variables [123]. A pair of features exhibiting a Pearson cor-
relation factor greater than 0.55 were considered to be
correlated. For each binary combination of correlated fea-
tures, one was eliminated. After this step, 25 features from
the original set of 29 were retained (see Additional file 1).

Synthetic minority oversampling

In general, machine learning methods perform poorly
when they are applied to imbalanced datasets in which
negative cases heavily outnumber positive cases [124].
However, in real data sets imbalances ranging from 100:1
up to 10,000:1 have been reported [125]. This type of data-
sets are common in biological studies as well, for example,
in the prediction of translation initiation sites [126] and
pre-miRNA classification [127]. The dataset used in this
work is imbalanced because the number of A-rich IRESs in
S. cerevisiae used in the training of our SVM (9 sequences)
is very small compared to all possible genes containing
IRESs (nearly 100,000 for the 20 selected organisms). To
address this imbalance, synthetic minority oversampling
technique, SMOTE [124] implemented in the DMwR pack-
age [128], was used. SMOTE is an oversampling technique
that generates synthetic minority class samples by randomly
choosing elements along the line segments joining some of
the k minority class nearest neighbors [124]. This technique
was selected because it has been shown to significantly
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improve the performance of SVMs used to classify
non-coding RNAs (ncRNAs) [127], to predict RNA-
protein interactions [129], and to analyze other imbal-
anced bioinformatic datasets [130] when this imbalance is
superior to 100:1 [129, 131, 132]. It is worth mentioning
that in our analysis, this imbalance was more significant
than those previously reported (nearly 10,000:1). Addition-
ally, considering the limited number of positive cases, this
represents a potential constraint for the generalization of
our predictions outside the training set. Considering this
concern, our study includes two external positive cases of
experimentally confirmed IRES not used in the training
procedure (see Methods section). Furthermore, we per-
formed an extensive and detailed statistic analysis of the
enrichment of our IRES prediction in specific orthologous
and functional groups (PPI network analysis) that supports
the validity and generalization capacity of our IRES identi-
fication method (see Results and discussion section). For
the SMOTE procedure, the parameter k was set to 300,
the over-sampling to 900, and the under-sampling to 500,
resulting in a subset of 17,500 genes.

Machine learning for IRES prediction

A support vector machine with a second-order polynomial
kernel implemented in the caret package [133] was used for
training on the selected features for IRES prediction. To in-
crease the sensitivity, a cost of 2:1 (positive prediction:
negative prediction) was set for the SVM [134]. Cross-
validation (10-fold) repeated 30 times was used to measure
the performance of the SVM. Predictions were evaluated
using the set of 100,000 genes. Posterior class probabilities
P(class|input) were calculated for each prediction according
to Platt’s methodology [39]. The complete list of predictions
is provided in Additional file 9.

Enrichment analysis for the predictions

Genes predicted to contain IRESs were assigned to their
corresponding orthologous groups. Fisher’s exact test was
performed to determine enrichment significance [19], and
the resulting p-values were corrected for multiple testing
using the Benjamini-Hochberg procedure [135].

Comparison of predictions with experimental data

To compare the probability of a random intersection of
the IRES predictions with sets of translationally-controlled
genes determined experimentally [3], Fisher’s exact test
was used [19].

Gene ontology analysis

The GO enrichment analysis [40, 41] was performed
using the GOstats package [136] in the R software [114],
correcting for multiple comparisons via the Benjamini-
Hochberg method [135].
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Selection of top IRES predictions

To select the best IRES predictions, we used a simple
procedure that consisted of multiplying the posterior
class probability [39] (the probability that a prediction is
an IRES based on SVM output) of each prediction by its
corresponding orthologous group enrichment p-value.
We ranked the predictions according to this product
(lower values indicate better predictions) and established
a cutoff of 0.05. We used only genes classified as having
IRESs by the SVM to avoid increasing the misclassifi-
cation. The list of top predictions can be found in
Additional file 2.

Protein-protein network analysis

Interaction data were obtained from the STRING data-
base version 9.1 [45] using the STRINGdb package in
the R software [45]. Graph properties were calculated
using the Louvain method [53] implemented in the igraph
package [54]. The corresponding number of genes in the
complete network or in the particular module (Fig. 3c) to
be evaluated was sampled at random from the entire list of
protein-coding genes in S. cerevisiae. Afterwards, a network
was constructed using the sampled genes, and its graph
properties were calculated. This process was repeated
100,000 times for each case. The data were Box-Cox trans-
formed to approximate normal distributions [137]. The
normal distribution function was applied to calculate
the p-values using the R software [114].

Protein homology determination

In order to determine if two proteins are homologous,
pairwise comparison was performed using delta-blast [138],
with an e-value threshold of 1 x 107

Availability of supporting data
DNA sequences and annotations were obtained from the
Entrez Genome Database (ftp://ftp.ncbi.nlm.nih.gov/
genomes/) [139]. The complete list of organisms and
their corresponding accession numbers are in Add-
itional file 4. The R software is available from https://
www.r-project.org/. Groups of orthologous genes were
downloaded  from  ftp://cegg.unige.ch/OrthoDB7/
OrthoDB7_ALL_FUNGI_tabtext.gz [140]. The data of
genes having IRESs was obtained from http://iresite.org/
[13] and from [17], and its respective supplement: http://
www.sciencemag.org/content/317/5842/1224/suppl/DCI1.
The list of translationally controlled genes determined
by ribosome profiling was downloaded from the materials
and methods supplement of [3]: http://www.sciencema-
g.org/content/335/6068/552/suppl/DC1. All the programs
used in our analysis are available at our web page http://
www.ibt.unam.mx/biocomputo/IRES_programs.html or at
the figshare website http://dx.doi.org/10.6084/m9.figshare.
1598203.
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Additional files

Additional file 1: Features used to train our SVM. The initial 29
features to train our SVM are listed. After the selection of non-correlated
features, 25 features from the original set of 29 were retained. A pair of
features exhibiting a Pearson correlation factor greater than 0.55 were
considered to be correlated. (XLS 21 kb)

Additional file 2: Top predictions. List of top genes predicted as
having IRESs, including the names of the genes, their Gl identifiers, their
corresponding modules (clusters) in the PPI network, short descriptions/
aliases, and long descriptions. (XLS 98 kb)

Additional file 3: Comparison of ribosome profiles. Ribosome
profiles for Saccharomyces cerevisiae grown in rich media and under
starvation conditions are presented. A) and B) are two genes that have
verified IRESs. C) and D) are positive predictions and E), and F) are
negative predictions. The regions presented comprise the 60 nt upstream
and the 100 nt downstream the start codon. The translation initiation site
is shown (blue vertical lines). The genes having IRESs present an increment
ribosomes occupancy within the 60 nt upstream the translation initiation in
starvation conditions compared to rich media. The two positive predictions
depicted similar increments. These increments are not observed in the two
negative predictions. The profiles were obtained using the web page
http://gwips.ucc.ie/. (PNG 980 kb)

Additional file 4: List of organisms initially considered for the
analysis. (XLS 29 kb)

Additional file 5: List of non-redundant organisms in the analysis.
Non-redundant genomes were selected based on their position in a
maximum likelihood phylogenetic tree that was constructed using
the PHANGORN package [113] available in the R software (http://
www.r-project.org) [114]. (XLS 21 kb)

Additional file 6: Phylogenetic tree. Phylogenetic tree used to select
the non-redundant organisms. Bootstrap supporting values are indicated.
(PNG 79 kb)

Additional file 7: Description of experimentally verified IRESs in
Saccharomyces cerevisiae. A table containing their sequences,
description and references. (XLS 34 kb)

Additional file 8: Comparison of the feature averages of the IRES
predictions to the negative set used for training. The y-axis represents
the log?2 ratio of the feature averages for the positive predictions to the
negative set. Higher values for the positive predictions are depicted in
red and lower values in green. The Wilcoxon rank sum test was used to
test the differences between means comparing the positive and negative
sets. (PNG 88 kb)

Additional file 9: Complete predictions. List of genes predicted to
have IRESs, including the Gl identifier, gene name, orthologous group,
posterior probability of being an IRES, orthologous group enrichment,
product of the posterior probability and group enrichment, and the
mMRNA sequence used. (XLS 1571 kb)
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