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Abstract

Background: Scleroderma is a clinically heterogeneous disease with a complex phenotype. The disease is characterized by
vascular dysfunction, tissue fibrosis, internal organ dysfunction, and immune dysfunction resulting in autoantibody production.

Methodology and Findings: We analyzed the genome-wide patterns of gene expression with DNA microarrays in skin
biopsies from distinct scleroderma subsets including 17 patients with systemic sclerosis (SSc) with diffuse scleroderma
(dSSc), 7 patients with SSc with limited scleroderma (lSSc), 3 patients with morphea, and 6 healthy controls. 61 skin biopsies
were analyzed in a total of 75 microarray hybridizations. Analysis by hierarchical clustering demonstrates nearly identical
patterns of gene expression in 17 out of 22 of the forearm and back skin pairs of SSc patients. Using this property of the
gene expression, we selected a set of ‘intrinsic’ genes and analyzed the inherent data-driven groupings. Distinct patterns of
gene expression separate patients with dSSc from those with lSSc and both are easily distinguished from normal controls.
Our data show three distinct patient groups among the patients with dSSc and two groups among patients with lSSc. Each
group can be distinguished by unique gene expression signatures indicative of proliferating cells, immune infiltrates and a
fibrotic program. The intrinsic groups are statistically significant (p,0.001) and each has been mapped to clinical covariates
of modified Rodnan skin score, interstitial lung disease, gastrointestinal involvement, digital ulcers, Raynaud’s phenomenon
and disease duration. We report a 177-gene signature that is associated with severity of skin disease in dSSc.

Conclusions and Significance: Genome-wide gene expression profiling of skin biopsies demonstrates that the
heterogeneity in scleroderma can be measured quantitatively with DNA microarrays. The diversity in gene expression
demonstrates multiple distinct gene expression programs in the skin of patients with scleroderma.
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Introduction

Scleroderma is a systemic autoimmune disease with a

heterogeneous and complex phenotype that encompasses several

distinct subtypes. The disease has an estimated prevalence of 276

cases per million adults in the United States [1,2]. Median age of

onset is 45 years of age with the ratio of females to males being

approximately 4:1.

Scleroderma is divided into distinct clinical subsets. One subset is

the localized form, which affects skin only including morphea, linear

scleroderma and eosinophilic fasciitis. The other major type is

systemic sclerosis (SSc) and its subsets. The most widely recognized

classification system for SSc divides patients into two subtypes,

diffuse and limited, a distinction made primarily by the degree of skin

involvement [3]. Patients with SSc with diffuse scleroderma (dSSc)

have severe skin involvement [4] often characterized by more rapid

onset and progressive course with fibrotic skin involvement

extending from the hands and arms, trunk, face and lower

extremities. Patients with SSc with limited scleroderma (lSSc) have

fibrotic skin involvement that is typically limited to the fingers

(sclerodactyly), hands and face. Some patients in the limited subset

develop significant pulmonary arterial hypertension, pulmonary

fibrosis or digital ischemia/ulcerations. Although there are certain

disease characteristics that differentiate these two groups, some of the

severe vascular and organ manifestations occur across groups and

are the cause of significant morbidity and mortality [5].

Disease classification based largely on the extent of skin

involvement does not reflect the true heterogeneity of scleroderma
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[6,7]. We have used a genomic approach to capture the clinical

diversity among different patients in a way that will provide new

insight into the complexity of the disease. High throughput gene

expression data, combined with clinical phenotypic data, provides a

powerful new tool to probe the underlying biology of scleroderma.

Skin thickening is one of the earliest manifestations of the

disease; it remains the most sensitive and specific finding [8] and is

one of the most widely used outcome measures in clinical trials

[9,10,11]. Several studies have demonstrated that the extent of

skin involvement directly correlates with internal organ involve-

ment and prognosis in SSc patients [12,13,14]. Furthermore,

improvement in Modified Rodnan Skin Score (MRSS) is

associated with improved survival [15]. Probing the gene

expression in this end target organ is likely to yield genes that

will provide clues to pathogenesis and may serve as potential

biomarkers of disease activity. In this study we have measured the

genome-wide patterns of gene expression in skin biopsies from

patients with SSc because skin can provide insights into the

relevant pathological processes in the disease.

DNA microarrays have been used to characterize the changes in

gene expression that occur in dSSc skin when compared to normal

controls [16,17]. Here we extend these findings to show that DNA

microarrays can measure the heterogeneity in scleroderma skin. We

identify molecular subsets among dSSc and define a gene expression

signature that is associated with lSSc. We also identify a subgroup

that contains skin biopsies from patients with dSSc, lSSc and

localized scleroderma (morphea), characterized by a unified gene

expression signature indicative of an early inflammatory response.

Each gene expression subgroup has been mapped to clinical

covariates and biological processes that are modified in the disease.

Results

Previous studies have demonstrated that the skin of patients

with dSSc can be easily distinguished from normal controls at the

level of gene expression [16,17]. Here, we have extended these

findings and tested the hypothesis that we can identify distinct

subsets of scleroderma within the existing clinical classifications by

gene expression profiling of skin biopsies using DNA microarrays.

We studied skin biopsies from 34 subjects: twenty-four patients

with SSc (17 dSSc and 7 lSSc), 3 patients with morphea and 6

healthy controls (Tables 1–2). A single biopsy was analyzed from

a patient with eosinophilic fasciitis (EF). Skin biopsies were taken

from two different anatomical sites for 27 subjects: a forearm site,

and a lower back site. In dSSc, the forearm site was clinically

affected and the back site was clinically unaffected. In lSSc, both

Table 1. Subject clinical characteristics.

Subject Age/Sex Duration, yrs
Skin Score
(0–51)

Raynaud’s
severity (0–10)

Digital Ulcers
(0–3) GI ILD Renal ANA/Scl-70/ACA

dSSc 1 41/F 2 28 - 0 + + 2 +/+/2

dSSc 2 49/M 2.5 26 3 0 + 2 2 ND

dSSc 3 33/F 2.5 35 7 0 2 2 2 +/+/2

dSSc 4 47/F 3 35 7 0 + 2 2 +/2/2

dSSc 5 52/F 1 10 4 1 + 2 2 +/+/2

dSSc 6 63/F 0.5 26 10 0 2 2 2 +/2/2

dSSc 7 42/F 2.5 23 10 3 + 2 2 ND

dSSc 8 58/M 2 43 7 0 2 2 2 +/2/2

dSSc 9 56/F 8 21 5 0 + + 2 +/2/2

dSSc 10 35/F 7 35 8 2 + + 2 2/2/2

dSSc 11 47/F 8.5 30 8 1 + + 2 +/+/2

dSSc 12 58/M 9 15 5 0 + 2 2 2/2/2

dSSc 13 47/F 6 15 3 0 + 2 2 +/2/2

dSSc 14 49/F 10 15 8 0 2 + 2 +/2/2

dSSc 15 58/F 20 18 2 1 + + 2 ND

dSSc 16 65/F 10 20 4 0 + + + ND

dSSc 17 40/F 20 15 2 1 + + + ND

lSSc 1 67/F 3 8 5 0 + 2 2 +/2/+

lSSc 2 57/F 2 8 2 0 + 2 2 +/2/+

lSSc 3 35/F 3 6 6 3 + 2 2 +/2/2

lSSc 4 63/F 13 8 6 0 2 + 2 +/2/2

lSSc 5 60/F 28 9 6 0 + + + +/2/2

lSSc 6 55/F 17 9 6 1 + + 2 +/2/2

lSSc 7 67/F 5 8 5 0 + + 2 +/+/2

Clinical characteristics of the 25 Systemic Sclerosis subjects from which skin biopsies were taken are shown. Indicated for each subject are the age, sex, disease duration
since first onset of non-Raynaud’s symptoms, modified Rodnan skin score on a 51-point scale, a self-reported Raynaud’s severity score on a 10-point scale, and the
presence or absence of digital ulcers on a 3-point scale. Also indicated are the presence (+) or absence (2) of gastrointestinal involvement (GI), interstitial lung disease
(ILD) as determined by high-resolution computerized tomography (HRCT), and renal disease. The age and sex of subjects with Morphea are: Morph1 (49 yrs, female,
disease duration 16 yrs), Morph2 (54 yrs, female, disease duration 7 yrs), and Morph3 (49 yrs, female, disease duration 4 yrs). The age and sex of healthy control subjects
are as follows: Nor1, 53 yrs, female; Nor2, 47 yrs, female; Nor3, 41, female; Nor4, 26, female; Nor5, 45, male; Nor6, 29, female. ND = Not determined
doi:10.1371/journal.pone.0002696.t001
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forearm and back sites were clinically unaffected. Seven subjects

provided single biopsies resulting in a total of 61 biopsies. Total

RNA was prepared from each skin biopsy and analyzed on whole-

genome DNA microarrays. In addition, fourteen technical

replicates were analyzed for a total of 75 microarray hybridiza-

tions.

Overview of the gene expression profiles
We identified 4,149 probes whose expression varied from their

median values in these samples by more than 2-fold in at least two

of the 75 arrays and analyzed them by two-dimensional

hierarchical clustering [18]. The resulting sample dendrogram

shows that the samples separate into two main branches

(Figure 1A) that in part stratify patients by their clinical diagnosis.

The branch lengths in the tree are inversely proportional to the

correlation between samples or groups of samples. The diversity in

gene expression among the patients with scleroderma is greater

than previously shown (Figure 1B) [16,17] as distinct subsets of

scleroderma are evident in the gene expression patterns. Some of

these delineate existing classifications, such as the distinction

between limited and diffuse, while others reflect new groups. One

subset of dSSc patients cluster on the left branch (red) and has

gene expression profiles that are distinct from both healthy

controls and patients with lSSc (Figure 1B–1C), while a second

subset of dSSc skin clusters in the middle of the dendrogram tree

(black), and a third set clusters with healthy controls. We found

lSSc samples formed a group in the middle portion of the

dendrogram and could be associated with a distinct, but

heterogeneous gene expression signature that also showed high

expression in a subset of dSSc patients (Figure 1H). LSSc samples

are partially intermixed with normal controls on the right

boundary and with dSSc on the left boundary of the tree,

illustrating that their gene expression phenotype is highly variable

(Figure 1A). Samples taken from individuals with morphea also

grouped together with a gene expression signatures that

overlapped with those of dSSc and lSSc (Figure 1). Although

nodes can be flipped, we have left the nodes of the dendrogram as

originally organized by the clustering software, which places nodes

with the most similar samples next to one another. Although, the

assignment of samples into particular clusters (Table 3) would not

change even if nodes were flipped.

Multiple distinct gene expression programs are evident in each

subgroup. Some of these recapitulate the major themes in our

prior microarray study of dSSc skin [16] while others reflect gene

expression programs not previously observed. A subset of these

biological themes and selected genes are discussed below. The

entire figure with all gene names is available in the supplementary

material (Supplementary Figure S1; Supplementary Data
File S1).

Immunoglobulins typically associated with B lymphocytes and

plasma cells are expressed in a subset of the dSSc skin biopsies

(Figure 1C). Previously we found dense clusters of infiltrating B

cells in dSSc by immunohistochemistry (IHC), indicating that

these genes may be from infiltrating CD20+ B cells rather than

from a small number of infiltrating plasma cells [16].

Previous studies have identified infiltrating T cells in the skin of

dSSc patients [19,20,21,22,23], although an association between T

cell gene expression and dSSc was not observed in our prior study

[16]. A new result from this study is genes typically associated with T

cells are more highly expressed in a subset of the patients

(Figure 1F). These genes include the PTPRC (CD45; Leukocyte

Common Antigen Precursor), which is required for T-cell activation

through the antigen receptor [24,25,26], as well as CD2 [27,28] and

CDW52 [29] that are expressed on the surface of T lymphocytes.

Also found were CD8A, Granzyme K, Granzyme H, and Granzyme

B that are typically expressed in cytotoxic T lymphocytes

[30,31,32,33,34], and CCR7, which is expressed in B and T

lymphocytes [35]. Genes induced by interferon (IFIT2, GBP1),

genes involved in antigen presentation (HLA-DRB1, HLA-DPA1

and HLA-DMB) and CD74, the receptor for Macrophage

Inhibitory factor (MIF), are also present [36,37,38,39,40]. Genes

typically associated with the monocyte/macrophage lineage, B cells

and dendritic cells (DCs) were also found in this cluster including

Leukocyte immunoglobulin-like receptor B2 and B3 (LILRB2 and

LILRB3; Figure 1F) [41,42]. Finally, genes specific to the

monocyte/macrophage lineage such as CD163 are expressed in

this group of genes (data not shown) [43].

Genes typically associated with the process of fibrosis were co-

expressed with markers of T lymphocytes and macrophages.

These genes showed increased expression in the central group of

samples that included patients with dSSc, lSSc and morphea

(Figure 1E). Included in this set of genes were the collagens

(COL5A2, COL8A1, COL10A1, COL12A1), and collagen triple

helix repeat containing 1 (CTHRC1), which is typically expressed

in vascular calcifications of diseased arteries and has been shown

to inhibit TGF2b signaling [44,45] (Figure 1E). Also found in

this cluster was fibrillin-1 (FBN1). The phenotype of the TSK1

mouse, a model of scleroderma, results from a partial in-frame

duplication of the FBN1 gene and defects in FBN1 are the cause of

Marfan’s syndrome (OMIM: 154700).

A surprising result in this study is the differential expression of a

‘proliferation signature’ (Figure 1D). The proliferation signature is

defined as genes that are expressed only when cells are dividing [46].

We have previously shown that the proliferation signature, originally

identified in breast cancer [47,48], is composed almost completely of

cell cycle-regulated genes [49]. Genes showing increased expression

in this cluster include the cell cycle-regulated genes CKS1B,

CDKS2, CDC2, MCM8, and E2F7 [49]. The existence of a

proliferation signature is consistent with reports demonstrating that a

subset of cells in dSSc skin biopsies show high levels of tritiated

thymidine uptake indicative of cells undergoing DNA replication

[50,51]; a more recent study has shown increased expression of the

cell cycle-regulated gene PCNA in a perivascular distribution [52].

IHC of dSSc skin biopsies with the proliferation marker KI67 also

shows proliferating cells primarily in the epidermis (see below).

Another cluster of genes is expressed at low levels in the dSSc

skin biopsies but at higher levels in all other biopsies, however it is

not clearly associated with a single biological function or process.

Included in this cluster are the genes WIF1, Tetranectin, IGFBP6,

and IGFBP5 found in our original study [16] with similar patterns

of expression (Figure 1G).

Since the skin of lSSc patients does not show any clinical or

histologic manifestations at the biopsy site, it was possible that the

Table 2. Skin samples collected and microarrays hybridized.

Diagnosis Patients Biopsies Microarrays

Diffuse SSc 17 30 38

Limited SSc 7 14 16

Morphea 3 4 5

Normal 6 12 15

Eosinophilic fasciitis 1 1 1

Total 34 61 75

doi:10.1371/journal.pone.0002696.t002
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Figure 1. Gene expression signatures in scleroderma. 4,149 probes that changed at least 2-fold from their median value on at least two
microarrays were selected from 75 microarray hybridizations representing 61 biopsies. Probes and microarrays were ordered by 2-dimensional
average linkage hierarchical clustering. This clustering shows that the dSSc, lSSc, morphea samples form distinct groups largely stratified by their
clinical diagnosis. A. The unsupervised hierarchical clustering dendrogram shows the relationship among the samples using this list of 4,149 probes.
Samples names have been color-coded by their clinical diagnosis: dSSc in red, lSSc in orange, morphea and EF in black, and healthy controls (Nor) in
green. Forearm (FA) and Back (B) are indicated for each sample. Solid arrows indicate the 14 of 22 forearm-back pairs that cluster next to one another;
dashed arrows indicate the additional 3 forearm-back pairs that cluster with only a single sample between them. Technical replicates are indicated by
the labels (a), (b) or (c). 9 out of 14 technical replicates cluster immediately beside one another. B. Overview of the gene expression profiles for the
4,149 probes. Each probe has been centered on its median expression value across all samples analyzed. Measurements that are above the median
are colored red and those below the median are colored green. The intensity of the color is directly proportional to the fold change. Groups of genes
on the right hand side indicated with colored bars are shown in greater detail in panels C–H. C. Immunoglobulin genes expressed highly in a subset
of patients with dSSc and in patients with morphea, D. proliferation signature, E. collagen and extracelluar matrix components, F. genes typically
associated with the presence of T-lymphocyes and macrophages, G. Genes showing low expression in dSSc, H. Heterogeneous expression cluster
that is high in lSSc and a subset of dSSc. In each case only a subset of the genes in each cluster are shown. The precise location of each gene in the
cluster can be viewed in Supplemental Figure S1.
doi:10.1371/journal.pone.0002696.g001
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skin of those patients would not show significant differences in

gene expression when compared to normal controls. In fact, lSSc

skin showed a distinct, disease-specific gene expression profile.

This novel finding demonstrates that microarrays are sensitive

enough to identify the limited subset of SSc even when discernable

skin fibrosis was not present. There is a signature of genes that is

expressed at high levels in a subset of lSSc patients, and variably

expressed in dSSc and normal controls (Figure 1H). Included in

this signature is the urotensin 2 receptor (UTS2R). The ligand for

this receptor, urotensin 2, is considered to be one of the most

potent vasoconstrictors yet identified [53,54,55]. This finding

raises the intriguing possibility that this vasoactive peptide is

involved in the vascular pathogenesis of lSSc.

We previously demonstrated that skin biopsies from patients

with early dSSc show nearly identical patterns of gene expression

at a clinically affected forearm site and a clinically unaffected back

site, and the gene expression profiles are distinct from those found

in healthy controls [16]. This finding is confirmed in this larger

cohort of patients analyzed on a different microarray platform. 14

of 22 forearm-back pairs cluster immediately next to one another

indicating that these samples are more similar to each other than

to any other sample (Figure 1A). An additional 3 forearm-back

pairs grouped together with only a single sample between them

(Figure 1A). In total, 17 of 22 (77%) forearm-back pairs show

nearly identical patterns of gene expression. This result holds true

for patients with lSSc even though neither the forearm or back

biopsy sites in lSSc patients are defined as clinically affected [16].

We found 9 out of 14 technical replicates clustered next to one

another. The five technical replicates that did not cluster together

are likely misclassified as a result of noise in the genes selected by

fold change.

Classification of scleroderma using the intrinsic genes
from skin biopsies

A list of genes selected by their fold change alone is not ideal for

classifying samples because they emphasize differences between

samples rather than the intrinsic differences between patients

[47,56]. To select genes that captured the intrinsic differences

between patients, we exploited the observation that the forearm-

back pairs from each SSc patient show nearly identical patterns of

gene expression to select the ‘intrinsic’ genes in SSc. We selected

995 genes with the most consistent expression between each

forearm-back pair and technical replicates, but with the highest

variance across all samples analyzed [47,56] (Supplementary
Data File S2). Each of the 995 intrinsic genes was centered on its

median value across all experiments, and the data clustered

hierarchically in both the gene and experiment dimension using

average linkage hierarchical clustering. The dendrogram summa-

rizes the relationship among the samples and shows their clear

separation into distinct groups (Figure 2A). As a direct result of our

gene selection, all forearm-back pairs cluster together and all

technical replicate hybridizations cluster together when using the

intrinsic genes. Sample identifiers have been colored according to the

patient diagnosis: dSSc is red, lSSc is orange, morphea and EF are

black, and normal controls are green (Figure 2A). The dendrogram

has been colored to reflect the signatures of gene expression that are

an inherent feature of the biopsies (Figure 2A–C).

The gene expression signatures further subdivide samples within

existing clinical groups. We find a consistent set of genes that are

highly expressed in a subset of the dSSc samples, which occupy the

left branch of the dendrogram tree (Figure 2D). These groups

have been labeled diffuse 1 (Figure 2A; blue branches) and diffuse

2 (Figure 2A; red branches) as they consistently cluster as two

separate groups (c.f. Figures 1 and 2) and have distinct

signatures of gene expression. The most consistent biological

program expressed across the diffuse 1 and diffuse 2 scleroderma

samples is that of proliferation (Figure 2D). We refer to this group

broadly as Diffuse-Proliferation. A second group contains dSSc, lSSc

and morphea samples on a single branch of the dendrogram tree

(Figure 2A, purple branches). The genes most highly expressed in

this group are those typically associated with the presence of

inflammatory lymphocyte infiltrates as described above and this

group has thus been labeled the Inflammatory group (Figure 2F). A

third group contains primarily lSSc samples (Limited, orange

branches, Figure 2A), which has low expression of the

proliferation and T cell signatures but has high expression of a

distinct signature found heterogeneously across the samples

Table 3. Cluster assignments using the scleroderma intrinsic
genes.

Patient Cluster 3.0 Sig Cluster Consensus Cluster Assignment

Identifier Assignment (p,0.001) K = 4 K = 5 K = 6

dSSc2 * Diffuse 1 1 [1 or 3] [1 or 5] [1 or 5]

dSSc12 Diffuse 1 1 1 1 1

dSSc1 Diffuse 2 1 1 1 1

dSSc10 Diffuse 2 1 1 1 1

dSSc11 Diffuse 2 1 1 1 1

dSSc15 Diffuse 2 1 1 1 1

dSSc16 Diffuse 2 1 1 1 1

dSSc17 Diffuse 2 1 1 1 1

dSSc3 Diffuse 2 1 1 1 1

dSSc4 Diffuse 2 1 1 1 1

dSSc9 Diffuse 2 1 1 1 1

dSSc8 * Inflammatory [5] 2 2 2

dSSc5 Inflammatory 2 2 2 2

dSSc6 Inflammatory 2 2 2 2

lSSc6 Inflammatory 2 2 2 2

lSSc7 Inflammatory 2 2 2 2

Morph1 Inflammatory 2 2 2 2

Morph2 Inflammatory 2 2 2 2

Morph3 Inflammatory 2 2 2 2

lSSc1 Limited 4 4 4 4

lSSc4 Limited 4 4 4 4

lSSc5 Limited 4 4 4 4

Nor1 Limited 4 4 4 4

lSSc2 Normal-like 3 4 4 4

Nor2 Normal-like 3 4 4 4

Nor3 Normal-like 3 4 4 4

dSSc14 Normal-like 3 3 3 3

dSSc7 Normal-like 3 3 3 3

lSSc3 Normal-like 3 3 3 3

Nor4 Normal-like 3 3 3 3

Nor5 Normal-like 3 3 3 3

Nor6 Normal-like 3 3 3 3

dSSc13 * Unclassified 1 [4] [4] [4]

EF * Unclassified 1 1 1 [6]

*Inconsistently classified
doi:10.1371/journal.pone.0002696.t003
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Figure 2. Cluster analysis using the scleroderma intrinsic gene set. The 995 most ‘intrinsic’ genes selected from 75 microarray hybridizations
analyzing 34 individuals. Two major branches of the dendrogram tree are evident which divide a subset of the dSSc samples from all other samples.
Within these major groups are smaller branches with identifiable biological themes, which have been colored accordingly: blue for diffuse 1, red for
diffuse 2, purple for inflammatory, orange for limited and green for normal-like. Statistically significant clusters (p,0.001) identified by SigClust are
indicated by an asterisk (*) at the lowest significant branch. A. Experimental sample hierarchical clustering dendrogram. Black bars indicate forearm-
back pairs which cluster together based on this analysis. B. Scaled down overview of the intrinsic gene expression signatures. C. Limited SSc gene
expression cluster. D. Proliferation cluster. E. Immunoglobulin gene expression cluster. F. T-lymphocyte and IFNc gene expression cluster. The full
figure with all gene names can be viewed in Supplemental Figure S2.
doi:10.1371/journal.pone.0002696.g002
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(Figure 2C). A branch of samples comprised primarily of healthy

controls (green branches, Figure 2A) also contains samples from

one patient with a diagnosis of dSSc and a patient with lSSc. This

group has been labeled Normal-like, since the gene expression

signatures in these samples more closely resemble and cluster with

normal skin.

Significance and reproducibility of intrinsic clustering
To examine the robustness of these groups, we performed two

separate analyses: Statistical Significance of Clustering (Sig-

Clust)[57] and consensus clustering [58]. SigClust analysis was

performed with the 995 intrinsic genes. At a p-value,0.001 we

find five statistically significant clusters. The four major groups of

diffuse-proliferation, inflammatory, limited and normal-like groups are

each found to be statistically significant (Figure 2A); samples of

patient dSSc8 form a statistically significant group of their own in

the SigClust analysis (Table 3). Thus, the major groups identified

in the hierarchical clustering using the 995 intrinsic genes are

statistically significant and cannot be reasonably divided into

smaller clusters with the current set of data. The two branches

within the diffuse-proliferation group do not reach statistical

significance in this analysis even though there are identifiable

differences in their gene expression profile.

To perform a second validation of the intrinsic groups, we used

consensus clustering [58], which performs a K-means clustering

analysis on randomly selected subsets of the data by resampling

without replacement over 1,000 iterations using different values of

K. Figure 3A shows the consensus over 1,000 iterations for K = 4,

5 and 6. To determine the number of clusters present in the data,

we examined the area under the Consensus Distribution Function

(CDF; Figure 3B). The point at which the area under the CDF

ceases to show significant changes indicates the probable number

of clusters (Figure 3C). The largest change occurs between three

and four clusters with a slight change between four and five

clusters (Figure 3C).

Based on this analysis and the SigClust analysis, we propose that

there are approximately four to five statistically significant clusters in

the data. The statistically significant cluster assignments from both

SigClust and consensus clustering are summarized in Table 3.

These are (1) Diffuse-proliferation comprised completely of patients

with dcSSc, (2) Inflammatory, which includes a subset of dSSc, lSSc

and morphea, (3) Limited, characterized by the inclusion of lSSc

patients and (4) Normal-like, which includes five of six healthy controls

along with two dSSc and one lSSc patients. Notably, three samples

are not consistently classified into the primary clusters. These are:

dSSc2 which is assigned to the either the diffuse-proliferation, normal-like

or into a single cluster by itself, dSSc13 which is assigned to either

diffuse-proliferation or the limited groups, and the patient EF which

clusters either on the peripheral edge of the diffuse-proliferation cluster

or is assigned to a cluster by itself.

To determine how sensitive the clustering was to the selection of

the intrinsic genes, we analyzed the clustering results using a larger

list of 2071 intrinsic genes and compared that clustering to that

obtained with 995 intrinsic genes (Supplemental Figure S3).

Although we find slight differences in the ordering of the samples,

the major subsets of diffuse-proliferation, inflammatory, and limited are

again identified. The Normal-like group is split onto two different

branches using this larger set of genes. Samples that show

inconsistent clustering are from patient dSSc2, dSSc8, dSSc13,

and the single array for patient EF. The samples for each of these

patients were also inconsistently classified in the SigClust and

consensus clustering analysis using the 995 intrinsic gene set.

Principal Component Analysis (PCA) was used to confirm the

sample grouping found by hierarchical clustering. PCA is an analytic

technique used to reduce high dimensional data into more easily

interpretable principal components by determining the direction of

maximum variation in the data [59]. The 995 intrinsic genes were

analyzed by PCA using the MultiExperiment Viewer (MeV)

software [60]. The first and second principal components that

capture the most variability in the data (Figure 3D), and the first

and third principle components (Figure 3E) have been plotted in 2-

dimensional space. The 2D projection shows that the samples group

in a manner similar to that found by hierarchical clustering analysis:

normal controls and limited samples group together and the two

different groups of diffuse scleroderma group together (Figure 3D).

Notably, the first and second principal components (Figure 3D)

separate the diffuse-proliferation, the inflammatory and the normal-like/

Limited groups. When the first and third principal components are

analyzed (Figure 3E) we find that the distinction between dSSc group

1 and dSSc group 2 is clearly delineated, as is the distinction between

normal-like and limited. The PCA analysis provides further evidence, in

addition to our hierarchical clustering analysis, that the gene

expression groups are stable features of the data.

Biological processes differentially expressed in the
intrinsic groups

In order to systematically investigate the biological processes

found in the gene expression profiles of SSc, we created a module

map using Genomica software [61,62] (Figure 4A). A module map

shows arrays that have co-expressed genes that map to specific gene

sets. In this case, each gene set represents a specific biological process

derived from Gene Ontology (GO) Biological process annotations

[63], or from previously published microarray datasets [49,64].

Modules with significantly enriched genes (p,0.05, hypergeo-

metric distribution) and corrected for multiple hypothesis testing

with an FDR of 0.1% are shown (Figure 4A). Expressed among

the group diffuse-proliferation are the biological processes of

cytokinesis, cell cycle checkpoint, regulation of mitosis, cell cycle, DNA repair,

S phase, and DNA replication, consistent with the presence of dividing

cells. Decreased in this group are genes associated with fatty acid

biosynthesis, lipid biosynthesis, oxidoreductase activity and decreased

electron transport activity. The decrease in genes associated with fatty

acid and lipid biosynthesis is notable given the loss of subcutaneous

fat observed in dSSc patients [4].

Expressed in the inflammatory group are biological processes

indicative of an increased immune response, including the GO

biological processes of immune response, response to pathogen, humoral

defense, lymphocyte proliferation, chemokine binding, chemokine receptor activity,

and response to virus (Figure 4A). Biological processes of icosanoid and

prostanoid metabolism, which represents synthesis of prostaglandin lipid

second messengers, have been associated with immune responses

[65], found to be highly expressed in rheumatoid arthritis [66,67,68]

and associated with severity in collagen-induced arthritis in mice

[69,70]. Also expressed in this group are processes associated with

fibrosis including trypsin activity, collagen and extracellular matrix. The full

figure with all differentially expressed biological processes is available

as Supplemental Figure S4.

In order to better define the proliferation signature observed, we

created gene sets representing the genes periodically expressed in

the human cell division cycle as defined by Whitfield et al. [49]

(Figure 4B). Gene sets were created that included the genes with

peak expression at each of the five different cell cycle phases, G1/

S, S, G2, G2/M and M/G1 [49]. The enrichment of each of these

five gene sets was statistically significant (p,0.05 using the

hypergeometric distribution) and more highly expressed in the

diffuse-proliferation group (Figure 4B).

To better characterize the lymphocyte infiltrates we generated

gene sets representing lymphocyte subsets using results reported by
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Palmer and coworkers [64]. Using isolated populations of

lymphocytes and DNA microarray hybridization, the genes

specifically expressed in different lymphocyte subsets were

identified. Subsets included T cells (total lymphocyte and

CD8+), B cells, and granulocytes. We found four of these gene

sets, B cells, T cells, CD8+ T cells and granulocytes, to have a

statistically significant over-representation in the inflammatory group

(Figure 4B). This suggests the gene expression signature

expressed in this group is determined by the presence of infiltrating

lymphocytes and specifically implies the infiltrating cells include T

Figure 3. Robustness of sample classification. The robustness of the sample classifications was analyzed by consensus clustering, which uses
multiple iterations of K-means clustering with random restart. 500 subsets of the data were sampled without replacement. The results of consensus
clustering and Principal Component Analysis (PCA) applied to the 75 arrays and 995 intrinsic genes are shown. A. Consensus matrices are shown for
K = 4, 5 and 6. Cluster numbers are shown and cluster assignments are summarized in Table 3. B. Empirical consensus distribution function (CDF) plots
corresponding to K = 2,3,4…10. The ideal number of clusters can be identified when the area under the curve shows minimal increases with
increasing K. C. Proportion increase D(K) in the area under the CDF. D. PCA was performed using TIGR MeV software; principal components 1 and 2
are plotted in 2-dimensional space. Samples (points in space) have been colored according Figure 2. Normal-like are green, limited orange, diffuse-
proliferation in red and inflammatory in black. Circles indicate groups of samples distinguished by the top two principal components. E. Principal
components 1 and 3 were plotted in two-dimensional space and show distinction between two groups within the diffuse-proliferation, normal-like
and limited scleroderma.
doi:10.1371/journal.pone.0002696.g003
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cells, B cells and granulocytes. Although we do not have a gene

expression signature representative of macrophages or dendritic

cells in this analysis, the macrophage marker CD163 is highly

expressed in this group, suggesting innate immune responses may

play an important role in disease pathogenesis.

Immunohistochemistry (IHC)
In order to verify that the gene expression reflected increased

numbers of infiltrating lymphocytes or proliferating cells, we

performed IHC for T cells (anti-CD3), B cells (anti-CD20) and

cycling cells (anti-KI67). Summarized in table 4 is a full

Figure 4. Scleroderma Module Map. A. Module map of the Gene Ontology (GO) Biological Processes differentially expressed among the
scleroderma samples is shown. Each column represents a single microarray and each row represents a single GO Biological process. Patient samples
are organized as described in Figure 2. Only modules that were significantly enriched (minimum 2-fold change, p,0.05) on at least 4 micoarrays are
shown. The average expression of the gene hits from each enriched gene set is displayed here. Only gene sets that show significant differences after
multiple hypothesis testing were included. Select GO biological processes are shown. The entire figure with all biological processes can be viewed in
Supplementary Figure S4. B. Module map using gene list created from an experimental identification of all cell cycle-regulated genes [49] and
genes found to be expressed in specific lymphocyte subsets [64].
doi:10.1371/journal.pone.0002696.g004
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enumeration of marker positive cells counted from representative

fields of all biopsies analyzed by IHC, with the observer blinded to

disease state. All IHC images for all three markers are available as

supplemental figure S5. Analysis of biopsies from each of the

major intrinsic groups confirmed the results found in the gene

expression signatures. The presence of infiltrating T cells was

confirmed in the inflammatory group (Table 4). The largest

numbers of T cells were found in perivascular and perifollicular

distributions, as well as in the dermis, of two dSSc patients (dSSc5,

dSSc6) assigned to the inflammatory group (Table 4). IHC was also

performed on skin biopsies from two patients with morphea

(Morph1, Morph 3) and each showed large numbers of infiltrating

T cells. Only a small number of T cells were observed in two

healthy controls analyzed (Nor2 and Nor3). A slight increase in T

cells was observed in a perivascular distribution in the four patients

assigned to diffuse-proliferation (dSSc1, dSSc2, dSSc11, dSSc12;

Table 4), which had a lower expression of the T cell signature.

Few CD20+ B cells were observed in the SSc skin biopsies. The

immunoglobulin gene expression signature was observed in eight

diffuse patients (dSSc1, dSSc3, dSSc6, dSSc7, dSSc8, dSSc10,

dSSc11, dSSc12) and one limited patient (1SSc7; Figure 2F). Of

the six patients analyzed by IHC (dSSc1, dSSc2, dSSc5, dSSc6,

dSSc11, dSSc12), two samples (dSSc1and dSSc12) showed small

numbers of CD20+ B cells.

The presence of the proliferation signature is correlated with an

increase in the mitotic index or number of dividing cells in

microarray studies of cancer [46,47,48,49,71]. To confirm the

presence of proliferating cells in the dSSc skin biopsies, we

performed IHC staining for KI67, a standard marker of cycling

cells. Analysis of skin from healthy controls (Nor2, Nor3), morphea

(Morph1, Morph3), and diffuse patients in the inflammatory group

(dSSc5, dSSc6), showed no proliferating cells in the dermis, and a

small numbers of proliferating cells surrounding dermal append-

ages and in the epidermal layer (Table 4). In contrast, analysis of

the skin from four patients in the diffuse-proliferation subgroup

(dSSc1, dSSc2, dSSc11 and dSSc12) showed higher numbers of

proliferating cells primarily in the epidermis (Table 4). Therefore,

we conclude that the proliferation signature is likely the result of an

increased number of proliferating cells in the epidermal compart-

ment of the SSc skin biopsies. The identity of these cells is very

likely to be keratinocytes.

Intrinsic gene expression maps to identifiable clinical
covariates

To map the intrinsic groups to specific clinical covariates,

Pearson correlations were calculated between the gene expression

of each of the 995 intrinsic genes and different clinical covariates.

Shown are the results for three different covariates: the modified

Rodnan skin score (MRSS; 0–51 scale), a self-reported Raynaud’s

severity score (0–10 scale), and the extent of skin involvement

(dSSc, lSSc and unaffected). Each group was analyzed for

correlation to each of the clinical parameters listed in Table 1;

only the significant associations are shown. Figure 5A shows the

gene expression patterns of the 995 intrinsic genes with each row

representing a microarray and each column representing a gene.

Pearson correlation coefficients were calculated between each of

the clinical parameters and the expression of each gene. The

moving average (10-gene window) of the resultant correlation

coefficients is plotted for MRSS (Figure 5B), Raynaud’s severity

(Figure 5C) and degree of skin involvement (Figure 5D). Areas

of high positive correlation between a clinical parameter and the

expression of a group of genes indicate that increased expression of

those genes is associated with an increase in that clinical covariate;

a negative correlation indicates a relationship between a decrease

in expression of the genes and an increase in a clinical covariate.

Areas of high positive or high negative correlation are

highlighted in three different panels (Figure 5B–D, Regions I–

III). Each of the three clinical covariates shows high positive

correlations to a subset of gene expression signatures. Most

notably, the MRSS skin score shows a high positive correlation to

the ‘proliferation signature’ (Figure 5B, region II) with correla-

tions ranging from 0.5 and 0.6. This signature is highly expressed

in diffuse-proliferation samples but has low expression in the

inflammatory group. The Raynaud’s severity score has a high

positive correlation to genes expressed at higher levels in the limited

group and heterogeneously expressed in patients with dSSc

Table 4. Immunohistochemical staining for KI67 and CD3 in the intrinsic subsets.

Patient Assignment a KI67 Append KI67 Epiderm KI67 Derm CD3 Append CD3 Epiderm CD3 Derm

Nor2 Normal-like 10 11 0 14 0 3

Nor3 Normal-like 0 11 0 22 0 0

Normal-like b 5 11 0 18 0 1.5

Morph3 Inflammatory 1 13 0 205 18 107

Morph1 Inflammatory 0 21 0 36 5 14

dSSc5 Inflammatory 4 11 0 68 1 5

dSSc6 Inflammatory 7 0 0 83 2 15

Inflammatory 3 11.3 0 98 6.5 35.3

dSSc1 Prolif (2) 4 20 0 56 0 0

dSSc11 Prolif (2) 8 14 0 12 0 7

dSSc2 Prolif (1) 0 22 1 31 0 2

dSSc12 Prolif (1) 2 85 0 55 10 16

Prolif 3.5 35.3 0.3 38.5 2.5 6.3

Shown is the summary of total counts per skin biopsy as determined by IHC staining for KI67, which stains cycling cells, and CD3, which stains T cells. Each biopsy was
also analyzed for CD20 and only a small number of cells were found around dermal appendages for Morph3 (3), dSSc6 (2) and dSSc12 (2). All other samples were
negative for CD20 cells. (Append = dermal appendages (hair follicles, vascular structures, eccrine glands); Epiderm = epidermis; Derm = dermis). a. Intrinsic group to
which each sample was assigned. b. Average of total counts per category.
doi:10.1371/journal.pone.0002696.t004
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Figure 5. Correlation between gene expression and clinical covariates. A. Shown is the color-coded heatmap of the 75 arrays and 995
intrinsic genes. The graph on the right of the heat map shows disease duration for each sample. Disease duration was set to zero for normal controls
and morphea samples. B. Pearson correlations were calculated between skin score and the expression values for each gene in the list. The moving
average of the Pearson correlation (10-gene window) was plotted. Regions of high negative and high positive correlations to the three different
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(Figure 5C, region I). Not surprisingly, the genes highly

correlated with MRSS also show a high positive correlation with

diffuse skin involvement (Figure 5D, region II). While this signature

associates with diffuse skin involvement, it is important to note that a

subset of dSSc skin biopsies do not express this signature and have

low skin scores. Similarly, the genes that have a high positive

correlation with Raynaud’s severity and a high positive correlation

with the limited group (Figure 5C), which typically has more severe

vascular involvement, are uncorrelated with the diagnosis of dSSc

and are expressed at low levels in healthy control samples

(Figure 5D, region III). Moving averages of the Pearson correlation

between the intrinsic genes and other clinical covariates (digital

ulcers, ILD, or GI involvement) were also calculated but did not

reveal significant regions of positive or negative correlation to the

gene expression profiles (data not shown).

One initial hypothesis was that there would be an obvious trend in

the gene expression data reflecting the progressive nature of SSc in

some patients. To examine this more carefully, disease duration in

years since first onset of non-Raynaud’s symptoms is plotted along

the X-axis of the heat map (Figure 5A, right panel). The mean

disease duration for the diffuse-proliferation group is 8.466.4 yrs,

whereas mean disease duration for the inflammatory group, which

includes dSSc and lSSc, is 6.566.1 yrs. Using a Student’s t-test with

a two-tailed distribution we find that this difference is not statistically

significant. To test the hypothesis that a subset of the patients was

grouping by disease duration, we analyzed the disease duration

between the dSSc patients in the diffuse-proliferation group and the

dSSc patients that were classified as either inflammatory or normal-like

(Table 3). The diffuse-proliferation group has a mean disease duration

of 8.466.4 years, and the dSSc patients in the inflammatory and

normal-like groups have a mean disease duration of 3.263.9 yrs

(Figure 5E, p = 0.12, t-test). The difference in the means between

these two groups is clear, but outliers in each reduce the significance

of the result. Dropping the two outliers results in p = 0.0042 (unequal

variance two-sample t-test, two-sided)). Therefore, we conclude that

there is a significant association between disease duration and the

intrinsic groups for dSSc samples.

Since no obvious clinical covariate was identified that

differentiated the dSSc group 1 from dSSc group 2, we selected

the genes that most differentiated the two groups. Genes were

selected that differentiated group 1 from group 2 using a non-

parametric t-test implemented in Significance Analysis of Micro-

arrays (SAM) [72]. 329 genes were selected that were differentially

expressed between these two groups with an FDR of 0.19%

(Figure 5F; Supplementary Data File S3). We analyzed these

329 genes for correlation to clinical covariates. Three clinical

covariates were found associated with these two groups. The genes

highly expressed in the dSSc group 2 (9 patients) are highly

correlated with the presence of digital ulcers (DU) and the

presence of interstitial lung disease (ILD) at the time the skin

biopsies were taken. In contrast, dSSc group 1 (2 patients, both

male) did not have DU or ILD at the time of biopsy. Although this

grouping could result simply from stratification by sex, it also may

reflect a true difference in disease presentation. Only 18 of the 329

genes map to either the X or Y chromosomes and thus are

expected to be differentially expressed, suggesting the remainder

may represent biology underlying these groups.

A subset of genes is associated with increased modified
Rodnan skin score

To identify genes associated with MRSS we selected the subset

of genes most highly correlated with each covariate from the

intrinsic list using Pearson correlations. 177 genes were selected

from the 995 intrinsic genes that had Pearson correlations with

MRSS .0.5 or ,20.5. We then used this list of 177 genes to

organize the skin biopsies by average linkage hierarchical

clustering (Figure 6; Supplementary Data File S4). We find

that both forearm and back skin biopsies from 14 patients with

dSSc (mean MRSS of 26.3469.42) clustered onto a single branch

of the dendrogram. All other samples, including the forearm-back

pairs of 4 patients with dSSc (mean MRSS 18.1166.45) clustered

onto a separate branch of the dendrogram. Using a two-tailed

Student’s t-test we find that the difference in skin score between

the two groups of dSSc is statistically significant (p = 0.0197).

From this analysis, 62 genes were expressed high levels and 115

genes were expressed at low levels in the patients with the highest

skin score. Genes highly expressed include the cell cycle genes

CENPE, CDC7 and CDT1, the mitogen Fibroblasts Growth

Factor 5 (FGF5), the immediate early gene Tumor Necrosis Factor

Receptor Superfamily member 12A (TNFRSF12A) and TRAF

interacting protein (TRIP). Since skin score is considered to be an

effective measure for disease outcome, this 177-gene group may

contain genes that could be further developed into surrogate

markers for skin score.

Quantitative Real Time PCR
In order to validate the gene expression in the major groups found

in this study, we performed quantitative real time PCR (qRT-PCR)

on three genes selected from the intrinsic subsets (Figure 7). These

included TNFRSF12A, which is highly expressed in the dSSc

patients and shows high expression in patients with increased MRSS

(see Figure 6), WIF1, which shows low expression in SSc its

decreased expression is associated with increased MRSS, and

CD8A, which is highly expressed in CD8+ T cells and is highly

expressed in the inflammatory subset of patients. A representative

sampling of patients from the intrinsic subsets was analyzed for

expression of these three genes. Each was analyzed in triplicate and

standardized to the expression of GAPDH.

Each gene is shown with the fold change relative to the median

value for the eight samples analyzed. TNFRSF12A shows highest

expression in the patients with dSSc and the lowest in patients with

limited SSc and normal controls. The three patients with highest

expression are dSSc and include the proliferation group

(Figure 7A). CD8A shows highest expression in the inflammatory

subgroup as predicted by our gene expression subsets (Figure 7B).

WIF1 shows highest expression in the healthy controls with

approximately 4–8 fold relative decrease in patients with SSc

(Figure 7C). The most dramatic decrease is in patients with dSSc

with smaller fold changes in patients with lSSc.

clinical parameters are indicated (regions I–III shaded grey). C. Moving average of the Pearson correlation coefficients (10-gene window) between the
self-reported Raynaud’s severity score and the expression of each gene, D. Moving average of the Pearson Correlations (10-gene window) between
extent of skin involvement and a diagnosis vector (see Methods) for dSSc(red), lSSc (orange) and healthy controls (green). E. Box plot of disease
duration for dSSc patients. The patients included in the diffuse-proliferation group had disease duration of 8.466.4 years. The dSSc patients that fell
into the inflammatory or normal-like groups have disease duration of 3.263.9 yrs (p,0.12, t-test). F. Genes that ideally discriminate ‘Diffuse 1’ and
‘Diffuse 2’ groups were selected using Significance Analysis of Microarrays (SAM). 329 genes were selected with an FDR,1%. Pearson correlation
coefficients were calculated between each clinical parameter and the expression for each gene and plotted as a 10-gene moving window.
doi:10.1371/journal.pone.0002696.g005
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Discussion

We have used DNA microarrays to determine if the

heterogeneity in scleroderma can be captured quantitatively and

objectively using gene expression profiling. We used an experi-

mental design that has previously been used with great success to

identify molecular subsets in tumors [47,48,56,73,74,75] and now

shows that we can also find subsets in the gene expression patterns

of scleroderma, a disease of completely different etiology but also

characterized by disease heterogeneity.

Our results show that the diversity in the gene expression

patterns of SSc is much greater than demonstrated in two prior

studies of dSSc skin [16,17]. We find evidence for four major

groups, each characterized by a distinct gene expression profile.

The diffuse-proliferation group is composed solely of patients with a

diagnosis of dSSc, the inflammatory group includes patients with

dSSc, lSSc and morphea, the limited group is comprised solely of

patients with lSSc, and the normal-like group includes healthy

controls along with dSSc and lSSc patients. The diffuse-proliferation

group contains two potential subgroups, however, our sample size

is not large enough to draw definitive conclusions regarding their

stability.

It is unlikely that the underlying gene expression groups result

from technical artifacts or heterogeneity at the site of biopsy. First,

we created a standardized sample-processing pipeline, which was

extensively tested on skin collected from surgical discards prior to

beginning this study and included strict protocols that were used

throughout with the goal of eliminating variability in sample

handling and preparation. Second, all gene expression groups

were analyzed for correlation to date of hybridization, date of

sample collection and other technical variables that might have

affected the groupings. Also, heterogeneity at the site of biopsy is

unlikely to account for the findings as the signatures used to classify

the samples were selected by virtue of their being expressed in both

the forearm and back samples of each patient. The inflammatory

group is unlikely to be a result of active infection in patients as

individuals with active infections were excluded from the study.

Finally, the gene expression signatures we found are supported by

both the IHC findings (Table 4) and the quantitative real-time

PCR findings (Figure 7).

We were able to associate our gene expression signatures with

changes in specific cell markers. We have confirmed infiltration of

T cells in the dermis of the ‘inflammatory’ subgroup, and have

confirmed an increase in the number of proliferating cells in the

epidermis in the ‘proliferation’ group. The increase in the number

of proliferating cells in the epidermis could result from paracrine

influences on the resident keratinocytes, possibly activated by the

profibrotic cytokine TGFb. We were not able to find significant

numbers of CD20 positive B-cells.

An open question that remains is how do these gene expression

changes correlate with more specific histological changes in the

skin? Two studies of gene expression in liver [76] and in the brain

[77] have correlated large-scale morphological changes with the

changes in gene expression. In each case it was possible to create a

detailed map linking gene expression to features in detailed

imaging analysis providing addition insight into tumorigenesis. A

comprehensive gene expression study in SSc that combines

detailed histological or morphological analysis of fat changes,

vascular changes and dermal markers, would provide additional

insight into how the gene expression changes correlate with

morphological changes in SSc skin. Unfortunately these analyses

are not possible with our current set of data.

The detection of subsets in the gene expression of SSc raises

questions as to their etiology. Do these subsets represent distinct

groups with stable patterns of gene expression or do the groups

represent different time-dependent phases of the disease? We have

Figure 6. Genes correlated with MRSS. We selected the genes from the 995 intrinsic list that had a correlation greater than 0.5 or less than 20.5
to the MRSS. This list of 177 genes was then used to organize the skin biopsies. Forearm-back pairs from 14 patients with dSSc (mean MRSS of
26.3469.42) clustered onto one branch of the dendrogram tree. The forearm-back pairs of 4 patients with dSSc (Mean MRSS 18.1166.45) clustered
onto a different branch of the dendrogram tree. The difference in skin score between these two groups is statistically significant (p,0.0197).
doi:10.1371/journal.pone.0002696.g006
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found a clear relationship between severity of disease and gene

expression (Figures 6–7), but only a weak association between

duration of disease and gene expression (Figure 6B). However,

analysis of disease duration in only the dSSc patients raises the

possibility that the groups we have labeled as inflammatory and

normal-like include patients in the early stages of disease, while the

diffuse-proliferation group includes patients with later stage

disease. There is the distinct possibility that patients with the

inflammatory gene expression signature will eventually progress to a

gene expression signature more characteristic of the diffuse-

proliferation group - a hypothesis that can only be addressed

directly in a longitudinal study of a well-defined patient cohort.

The multiple groups observed in our gene expression data may

correspond to patients that will have distinct clinical outcomes. This

is supported by recent work analyzing the relationship between

change in skin score and outcome in a large single center cohort of

225 patients [14]. Using a Latent linear trajectory model, Denton

and coworkers were able to classify 58% of their patients into 1 of 3

subgroups with different skin score trajectories. Each group showed

different progression to clinical endpoints. Survival was lowest in a

group with the highest baseline skin score and showed little

improvement during follow-up. A second group had severe MRSS

but improved with follow-up and a third group had low initial MRSS

and subsequent improvement. A second study analyzed SSc patients

with anti-topoisomerase I (anti-topo I) antibodies and found patients

could be divided into five different subgroups based on skin thickness

progression rates [6]. These included three groups of dSSc patients

and two groups of lSSc patients.

This study allows us to then propose two different models that

could account for the gene expression subsets we have found in

scleroderma. The first model is that there are multiple distinct

groups of scleroderma patients, each exhibiting distinct gene

expression profiles. The aberrant gene expression patterns may be

established early in the disease and remain stable during disease

progression. In this case, serial biopsies taken over time would

result in sequential biopsies from the same patient always

remaining in the same group. It would likely be possible to

identify the clinical endpoints and complications to which each

group would progress. The implications are that it may be possible

to predict patient outcome based on their gene expression profile.

The reports of three different groups of diffuse patients with

different outcome trajectories or different skin thickness progress

rates supports this model [6,14].

The second model is that the different gene expression

subgroups represent different disease stages. This is supported in

part by the analysis of disease duration since the first onset of non-

Raynaud’s symptoms between the group we labeled diffuse-

proliferation, and the dSSc patients that were classified as either

inflammatory or normal-like (Figure 5E). There is an obvious trend

toward the patients in the very earliest stages of disease mapping to

the inflammatory group and the latest stage patients mapping to the

diffuse-proliferation group.

The gene expression profiles in scleroderma hold the promise of

identifying markers of disease activity that could be used as

surrogate markers in clinical trials. Therefore, the analysis of skin

biopsies before and after treatment may be useful in testing the

efficacy of novel therapeutics. To this end, we have identified 177

genes that are strongly correlated with the severity of skin disease.

These genes may point to a novel pathway involved in skin fibrosis

that includes TNFRSF12A (Tweak Receptor (TweakR); Fn14),

which is a TNF receptor family member expressed on both

fibroblasts [78] and in endothelial cells [79]. It is induced by FGF1

and other mitogens, including the proinflamatory cytokine TGFb
(J.L.S. and M.L.W., unpublished). In fibroblasts, increased

Figure 7. Quantitative Real Time PCR analysis of representative
biopsies. The mRNA levels of three genes, TNFRSF12A (A), CD8A (B)
and WIF1 (C) were analyzed by Taqman quantitative real time PCR. Each
was analyzed in two representative forearm skin biopsies from each of
the major subsets of proliferation, inflammatory, limited and normal
controls. In the case of TNFRSF12A, patient dSSc11 was replaced by
patient dSSc10, which cluster next to one another in the intrinsic
subsets and show similar clinical characteristics (Table 1). Each qRT-
PCR assay was performed in triplicate for each sample. The level of each
gene was then normalized against triplicate measurements of GAPDH
to control for total mRNA levels (see materials and methods). The
relative expression values are displayed as the fold change for each
gene relative to the median value of the eight samples analyzed.
doi:10.1371/journal.pone.0002696.g007

Subsets of Scleroderma

PLoS ONE | www.plosone.org 14 July 2008 | Volume 3 | Issue 7 | e2696



expression results in decreased adhesion to ECM proteins

fibronectin and vitronectin [78]. TNFRSF12A has also been

shown to play role in angiogenesis [79]. In vitro cross-linking of the

TNFRSF12A in endothelial cells stimulates endothelial cell

proliferation [79], while inhibition prevented endothelial cell

migration in vitro and angiogenesis in vivo. Activation of

TNFRSF12A in human dermal fibroblasts results in increased

production of MMP1, the proinflammatory prostaglandin E2, IL6,

IL8, RANTES and IL10 [80]. The cytoplasmic domain of

TNFRSF12A binds to TRAF1, 2 and 3 [79]. A factor downstream

of the TRAFs, TRIP (TRAF Interacting Protein), is highly

correlated with MRSS. With further refinement, these genes could

serve as surrogate markers for disease severity in scleroderma.

Materials and Methods

Ethics approval was obtained for this study from the University

of California at San Francisco’s Committee on Human Research

(CHR) and from Dartmouth College’s Committee for the

Protection of Human Subjects (CPHS). All subjects signed consent

forms approved by the CHR at the University of California, San

Francisco (UCSF). All patients met the American College of

Rheumatology classification criteria for SSc [8] and were further

characterized as the diffuse (dSSc) [3], or the limited (lSSc) subsets

[1]. LSSc patients had 3 of the 5 features of CREST (calcinosis,

Raynaud’s syndrome, esophageal dysmotility, sclerodactyly and

telangiectasias) syndrome, or had Raynaud’s phenomenon with

abnormal nail fold capillaries and scleroderma-specific autoanti-

bodies. The diffuse systemic sclerosis (dSSc) had wide spread

scleroderma and MRSS ranging from 15 to 35. The lSSc patients

had MRSS ranging from 8 to 12. Patients with undifferentiated

connective tissue disease (UCTD) were excluded from the study.

Skin biopsies were taken from a total of 34 individuals: 17

patients with dSSc, 7 patients with lSSc, 3 patients with morphea

(MORPH), 6 healthy volunteers (NORM) and one patient with

eosinophilic fasciitis (EF) (Table 1). dSSc patients (median age

4969.4 years) were divided into two groups by their disease

duration as defined by first onset of non-Raynaud’s symptoms.

Eight of the dSSc patients had disease duration ,3 years since

onset of non-Raynaud’s symptoms (median disease duration

2.2560.8 years) and nine dSSc patients had disease duration

.3 years since onset of non-Raynaud’s symptoms (median disease

duration 965.3 years). The seven patients with lSSc had a median

disease duration 569.7 years. The three patients with morphea

had median disease duration 766.2 years.

In most cases, two 5-mm punch biopsies were taken from the

lateral forearm, 8 cm proximal to the ulna styloid on the exterior

surface non-dominant forearm for clinically involved skin. Two 5-

mm punch biopsies were also taken from the lower back (flank or

buttock) for clinically uninvolved skin. Thirteen dSSc patients

provided forearm and back biopsies; four dSSc patients provided

only single forearm biopsies. The seven lSSc patients and all six

healthy controls also underwent two 5-mm punch biopsies at the

identical forearm and back sites. Three subjects with morphea

underwent two 5-mm punch biopsies at the clinically affected

areas of the leg (MORPH1), abdomen (MORPH2), and back

(MORPH3).

For each patient, one biopsy was immediately stored in 1.5. mL

RNAlater (Ambion) and frozen at 280uC, a second biopsy was

bisected; half went into 10% formalin for routine histology and

half was fresh frozen. In total, 61 biopsies were collected for

microarray hybridization: 30 from dSSc, 14 from lSSc, 4 from

morphea, 1 eosinophilic fasciitis, and 12 from healthy controls

(Table 2).

RNA was prepared from each biopsy by mechanical disruption

with a PowerGen125 tissue homogenizer (Fisher Scientific)

followed by isolation of total RNA using an RNeasy Kit for

Fibrous Tissue (Qiagen). Approximately 2–5 mg of total RNA was

obtained from each biopsy.

cRNA synthesis, microarray hybridization and data
processing

200 ng of total RNA from each biopsy was converted to Cy3-

CTP (Perkin Elmer) labeled cRNA, and Universal Human

Reference (UHR) RNA (Stratagene) was converted to Cy5-CTP

(Perkin Elmer) labeled cRNA using a low input linear amplifica-

tion kit (Agilent Technologies). Labeled cRNA targets were then

purified using RNeasy columns (Qiagen). Cy3-labeled cRNA from

each skin biopsy was competitively hybridized against Cy5-CTP

labeled cRNA from Universal Human Reference (UHR) RNA

pool, to 44,000 element DNA oligonucleotide microarrays (Agilent

Technologies) representing more than 33,000 known and novel

human genes in a common reference design [81]. Hybridizations

were performed for 17 hours at 65uC with rotation.

After hybridization, arrays were washed following Agilent 60-

mer oligo microarray processing protocols (66 SSC, 0.005%

Triton X-102 for 10 min. at room temperature; 0.16 SSC, 0,

005% Triton X-102 for 5 min at 4uC, rinse in 0.16 SSC).

Microarray hybridizations were performed for each RNA sample

resulting in 61 hybridizations. Fourteen replicate hybridizations

were added, resulting in a total of 75 microarray hybridizations.

Microarrays were scanned using a dual laser GenePix 4000B

scanner (Axon Instruments). The pixel intensities of the acquired

images were then quantified using GenePix Pro 5.0 software.

Arrays were visually inspected for defects or technical artifacts, and

poor quality spots were manually flagged and excluded from

further analysis. Only spots with fluorescent signal at least twofold

greater than local background in both Cy3- and Cy5- channels

were included in the analysis. Probes missing more than 20% of

their data points were excluded, resulting in 28,495 probes that

passed the filtering criteria. The data were displayed as log2 of the

LOWESS-normalized Cy5/Cy3 ratio. Since a common reference

experimental design was used, each probe was centered on its

median value across all arrays.

Selection of intrinsic genes
An intrinsic gene identifier algorithm was used to select a set of

intrinsic scleroderma genes. Detailed methods on the selection of

intrinsic genes are available in [47] and http://genome-www.

stanford.edu/breast_cancer/molecularportraits/. A gene was con-

sidered ‘intrinsic’ if it showed the most consistent expression

between forearm-back pairs and technical replicates for the same

patient, but had the highest variance in expression across all

samples analyzed. The intrinsic gene identifier computes a weight

for each gene, which is inversely related to how intrinsic the gene’s

expression is across the samples analyzed. A lower weight equals a

higher ‘intrinsic’ character. A total of 34 experimental groups were

defined, each representing the 34 different subjects in our study.

Replicate hybridizations for a given patient were assigned to the

same experimental group.

In order to estimate False Discovery Rate (FDR) at a given

intrinsic weight, the analysis was repeated on data randomized in

rows (i.e. across each gene). The FDR at a given weight was

estimated by determining the number of genes that received the

same weight or lower in the randomized data. 995 genes were

selected that had an intrinsic weight ,0.3; in randomized data

3967 genes (calculated from 10 independent randomizations) had

a weight of 0.3 or less, resulting in an FDR of approximately 4%.
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We found that a cutoff of 0.3 balanced the number of genes

selected with an acceptable FDR, while retaining reproducible

hierarchical clustering of technical replicate samples. Although it is

possible to select a more or less restrictive list of genes with FDRs

of 5% (weight ,0.35; 2071 genes), 3.4% (weight ,0.25; 425

genes) or 2.4% (weight ,0.20; 171 genes), these smaller lists of

genes resulted in less reproducible hierarchical clustering suggest-

ing overfitting (Supplemental Figure S3).

Hierarchical clustering
Average linkage hierarchical clustering was performed in both

the gene and experiment dimensions using either Cluster 3.0

software (http://bonsai.ims.u-tokyo.ac.jp/,mdehoon/software/

cluster/software.htm) or X-Cluster (Gavin Sherlock; http://

genetics.stanford.edu/,sherlock/cluster.html) using Pearson cor-

relation (uncentered) as a distance metric [18]. Clustered trees and

gene expression heat maps were viewed using Java TreeView

Software (http://jtreeview.sourceforge.net/) [82].

Robustness and statistical significance of clustering
The statistical significance of clustering was assessed using

Statistical Significance of Clustering (SigClust) [57] and Consensus

Cluster [58]. SigClust tests the null hypothesis that the samples

form a single cluster. A statistically significant p-value indicates the

data came from a non-Gaussian distribution and that there is more

than one cluster. Two different p-values were used to identify

significant clusters, p,0.01 and p,0.001. The statistical signifi-

cance of the clusters was first assessed at the root node of the tree

derived from hierarchical clustering with the 995 intrinsic genes. If

the cluster was statistically significant, the next node further down

the tree was tested. The process ended when a cluster had a p-

value greater than the established cutoff.

In addition, we analyzed the 995 intrinsic genes using

Consensus Cluster [58]. Consensus Cluster is available through

GenePattern (v.1.3.1.114; [83]). Assessment of sample clustering

was performed by consensus clustering with K clusters (K = 2, 3,

4…10) using 1000 iterations with random restart. Samples that

clustered together most often in each of the K clusters received a

correlation value. The resulting consensus matrix was visualized as

a color-coded heat map with varying shades of red, the brighter of

which corresponded to higher correlation among samples

(Figure 3A). Summary statistics are shown, including the empirical

consensus distribution function (CDF) vs. the consensus index value

(Figure 3B). Also shown are the proportion change (DK) under

the CDF for each K = 2, 3…10 (Figure 3C). Consensus Cluster

assignments for each sample are summarized in Table 3.

Principal Component Analysis
Principal Component Analysis was performed using Multi-

experiment Viewer (MeV) software version 4.0.01 (http://www.

tm4.org/mev.html; [60]). Data was loaded into MeV as a tab

delimited text file of log2-transformed Cy3/Cy5 ratios. For PCA

analysis [59], missing data were first estimated using K-nearest

neighbors (KNN) imputation with N = 4.

Module Maps
Module maps were created using the Genomica software

package [61,62]. Gene sets containing all human Gene Ontology

(GO) Terms were obtained from the Genomica web site (http://

genomica.weizmann.ac.il/; Human_go_process.gxa, created Nov.

20, 2006). Additional custom gene sets representing the human cell

division cycle [49] and lymphocyte subsets [64] were created

specifically for this study. The human cell division cycle gene set

was created from the genes found to periodically expressed in

human HeLa cells [49]. Genes found to show peak expression at

the five different cell cycle phases G1/S, S, G2, G2/M and M/G1

were each put into their own independent gene list. Gene sets

representing different lymphocyte populations, T cells (total

population, CD4+, CD8+), B cells, and granulocytes, were derived

for this study from the genes expressed in isolated lymphocyte

subsets by Palmer and coworkers [64].

All 75 microarray experiments and 28,495 DNA probes were

included in the module map analysis. The 28,495 probes were

collapsed to 14,448 unique LocusLink Ids (LLIDs) [84]. Only gene

sets with at least three genes but fewer than 1000 genes were

analyzed. A gene set was considered enriched on a given array if at

least 3 genes from that set were considered to be significantly up-

regulated or down-regulated (minimum 2-fold change, p,0.05,

hypergeometric distribution) on at least four microarrays. Each

gene set was corrected for multiple hypothesis testing using an

FDR correction of 0.1%.

Correlation to clinical parameters
Pearson correlations were calculated between each clinical

parameter and the gene expression data in Microsoft Excel.

Pearson correlations between the diagnosis of dSSc, lSSc and

healthy controls and the gene expression data were calculated by

creating a ‘diagnosis vector’. The diagnosis vector was created by

assigning a value 1.0 to all dSSc samples and 0.0 to all remaining

samples for the dSSc vector; lSSc and healthy controls were

treated similarly creating a vector for each. Pearson correlations

were calculated between the gene expression vector and the

diagnosis vector for dSSc, lSSc and healthy controls. Correlations

between the gene expression and clinical data were plotted as a

moving average of a 10-gene window.

Immunohistochemistry (IHC)
IHC was performed on paraffin embedded sections at the

University of California, San Francisco in the Immunohistochem-

istry and Molecular Pathology core facility. All immunostaining was

completed via a semi-automated protocol utilizing an automated

immunostainer (DAKO Corp, Carpenteria, CA). Slides were

heated, deparaffinized and then hydrated. Protease digestion was

completed followed by antigen retrieval via pressure cooker as per

standard protocols. After an endogenous peroxidase block with 3%

H202, slides were loaded on to the automated immunostainer. A

primary antibody cycle of 30 min was followed by a secondary

antibody cycle using the ENVISION+ system. Color development

was completed using DAB followed by counterstaining with Gills #2

Hematoxylin. Specific conditions for the antibodies utilized were as

follows: anti-CD20 (DAKO) was used at 1:600 for 30 minutes in

citrate buffer (pH 6.0); anti-CD3 (DAKO) at 1:400 for 30 minutes in

Tris buffer (pH 9.0), and anti-Ki67 (MiB1; DAKO) was used at

1:1000 for 30 minutes in Tris buffer (pH 9.0). Marker positive cells

were enumerated by tissue compartment in equal sized images of n

skin biopsies, with the observer blinded to disease state and array

results of the specimens (Table 4).

Quantitative Real-Time PCR. Each quantitative real time

PCR assay [85] was performed with 100–200 ng of total RNA.

Each sample was reverse-transcribed into single-stranded cDNA

using SuperScript II reverse transcriptase (Invitrogen, San Diego,

CA). 96-well optical plates were loaded with 25 ml of reaction

mixture which contained: 1.25 ml of TaqManH pre-designed

Primers and Probes, 12.5 ml of TaqManH PCR Master Mix, and

1.25 ng of cDNA. Each measurement was carried out in triplicate

with a 7300 Real-Time PCR System (Applied Biosystems). Each

sample was analyzed under the following conditions: 50uC for
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2 min and 95uC for 10 min, and then cycled at 95uC for 15 sec and

60uC for 1 min for 40 cycles. Output data was generated by the

instrument onboard software 7300 System version 1.2.2 (Applied

Biosystems). The number of cycles required to generate a detectable

fluorescence above background (CT) was measured for each sample.

Fold difference between the initial mRNA levels of target genes

(TNFRSF12A, CD8A and WIF1) in our experimental samples were

calculated with the comparative CT method using formula 22DDCT

[86] and median centered across all samples analyzed.

Data Access
The full dataset, figures in both red/green and blue/yellow

format, as well as searchable versions of figures 1 and 2 are available

at website maintained by the authors: http://whitfieldlab.dart-

mouth.edu/SScSubsets/. Raw data is available from the UNC

Microarray Database (https://genome.unc.edu/) and has been

deposited to NCBI’s Gene Expression Omnibus (GEO; http://

www.ncbi.nlm.nih.gov/geo/; accession Number: GSE9285).

Supporting Information

Figure S1 Gene expression signatures in scleroderma. 4,149

probes that changed at least 2-fold from their median value on at

least two microarrays were selected from 75 microarray hybrid-

izations representing 61 biopsies. Probes and microarrays were

ordered by 2-dimensional average linkage hierarchical clustering.

This clustering shows that the dSSc, lSSc, morphea samples form

distinct groups largely stratified by their clinical diagnosis. A. The

unsupervised hierarchical clustering dendrogram shows the

relationship among the samples using this list of 4,149 probes.

Samples names have been color-coded by their clinical diagnosis:

dSSc in red, lSSc in orange, morphea and EF in black, and

healthy controls (Nor) in green. Forearm (FA) and Back (B) are

indicated for each sample. Solid arrows indicate the 14 of 22

forearm-back pairs that cluster next to one another; dashed arrows

indicate the additional 3 forearm-back pairs that cluster with only

a single sample between them. Technical replicates are indicated

by the labels (a), (b) or (c). 9 out of 14 technical replicates cluster

immediately beside one another. B. Overview of the gene

expression profiles for the 4,149 probes. Each probe has been

centered on its median expression value across all samples

analyzed. Measurements that are above the median are colored

red and those below the median are colored green. The intensity

of the color is directly proportional to the fold change. Groups of

genes on the right hand side indicated with colored bars are shown

in greater detail in panels C ÿ¢§through H. C. Immunoglobulin

genes expressed highly in a subset of patients with dSSc and in

patients with morphea, D. proliferation signature, E. collagen and

extracelluar matrix components, F. genes typically associated with

the presence of T-lymphocyes and macrophages, G. Genes

showing low expression in dSSc, H. Heterogeneous expression

cluster that is high in lSSc and a subset of dSSc. This figure shows

all gene names associated with the panels in figure 1 and is

designed to be viewed in a digital format only so that one can

zoom in to read the gene names.

Found at: doi:10.1371/journal.pone.0002696.s001 (3.00 MB PDF)

Figure S2 Cluster analysis using the scleroderma intrinsic gene

set. The 995 most ‘intrinsic’ genes selected from 75 microarray

hybridizations analyzing 34 individuals. Two major branches of

the dendrogram tree are evident which divide a subset of the dSSc

samples from all other samples. Within these major groups are

smaller branches with identifiable biological themes, which have

been colored accordingly: blue for diffuse 1, red for diffuse 2,

purple for inflammatory, orange for limited and green for normal-

like. Statistically significant clusters (p,0.001) identified by

SigClust are indicated by an asterisk (*) at the lowest significant

branch. A. Experimental sample hierarchical clustering dendro-

gram. Black bars indicate forearm-back pairs which cluster

together based on this analysis. B. Scaled down overview of the

intrinsic gene expression signatures. C. Limited SSc gene

expression -cluster. D. Proliferation cluster. E. Immunoglobulin

gene expression cluster. F. T-lymphocyte and IFNc gene

expression cluster. This file shows all gene names associated with

the panels in figure 2 and is designed to be viewed in a digital

format only so that one can zoom in to read the gene names.

Found at: doi:10.1371/journal.pone.0002696.s002 (6.69 MB PDF)

Figure S3 Robustness of intrinsic clustering. Hierarchical

clustering was performed with two different sets of intrinsic genes.

A. 995 intrinsic genes (weight ,0.3; 4% FDR), B. 2071 intrinsic

genes (weight ,0.35, 5% FDR). Statistically significant clusters

(p,0.05) as determined by SigClust are indicated by an asterisk

(*). Transparent bars indicate the movement of groups of samples.

The major clusters are recapitulated with this larger set of genes.

Found at: doi:10.1371/journal.pone.0002696.s003 (1.07 MB TIF)

Figure S4 Scleroderma Module Map. Module map of the Gene

Ontology (GO) Biological Processes differentially expressed among

the scleroderma samples is shown. Each column represents a single

microarray and each row represents a single GO Biological

process. Patient samples are organized as described in Figure 2.

Only modules that were significantly enriched (minimum 2-fold

change, p,0.05) on at least 4 micoarrays are shown. The average

expression of the gene hits from each enriched gene set is displayed

here. Only gene sets that show significant differences after multiple

hypothesis testing were included. This figure is best viewed in PDF

format in order to read all modules names.

Found at: doi:10.1371/journal.pone.0002696.s004 (2.41 MB TIF)

Figure S5 Immunohistochemistry for lymphocyte subsets and

proliferating cells in scleroderma skin. Lymphocyte subsets in forearm

biopsies of six dSSc patients, the leg and back specimens of two

morphea patient and forearm samples of two healthy control were

analyzed by immunohistochemistry. Paraffin sections were stained for

T cells (CD3), B cells (CD20) and proliferating cells (KI67).

(Magnification: 6200). See table 4 for detailed quantification.

Found at: doi:10.1371/journal.pone.0002696.s005 (9.60 MB TIF)

Data File S1 4,149 probes shown in figure 1 that changed at

least 2-fold from their median value on at least two microarrays

were selected from 75 microarray hybridizations representing 61

biopsies.

Found at: doi:10.1371/journal.pone.0002696.s006 (2.44 MB

TXT)

Data File S2 995 intrinsic genes shown in figure 2. An intrinsic

gene identifier algorithm was used to select a set of intrinsic

scleroderma genes. A gene was considered ‘intrinsic’ if it showed

the most consistent expression between forearm-back pairs and

technical replicates for the same patient, but had the highest

variance in expression across all samples analyzed.

Found at: doi:10.1371/journal.pone.0002696.s007 (0.59 MB

TXT)

Data File S3 Supporting data file for figure 5F. Genes the

differentiate dSSc group 1 vs. group 2

Found at: doi:10.1371/journal.pone.0002696.s008 (0.09 MB TDS)

Data File S4 Supporting data file for figure 6. Included are the

177 genes correlated with modified rodnan skin score.

Found at: doi:10.1371/journal.pone.0002696.s009 (0.10 MB

TXT)
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