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Abstract

and visualizing all three questions in a unified interface.

Background: Life science research is moving quickly towards large-scale experimental designs that are comprised
of multiple tissues, time points, and samples. Omic time-series experiments offer answers to three big questions:

what collective patterns do most analytes follow, which analytes follow an identical pattern or synchronize across
multiple cohorts, and how do biological functions evolve over time. Existing tools fall short of robustly answering

Results: Functional Heatmap offers time-series data visualization through a Master Panel page, and Combined page
to answer each of the three time-series questions. It dissects the complex multi-omics time-series readouts into
patterned clusters with associated biological functions. It allows users to identify a cascade of functional changes
over a time variable. Inversely, Functional Heatmap can compare a pattern with specific biology respond to multiple
experimental conditions. All analyses are interactive, searchable, and exportable in a form of heatmap, line-chart, or
text, and the results are easy to share, maintain, and reproduce on the web platform.

Conclusions: Functional Heatmap is an automated and interactive tool that enables pattern recognition in time-series
multi-omics assays. It significantly reduces the manual labour of pattern discovery and comparison by transferring
statistical models into visual clues. The new pattern recognition feature will help researchers identify hidden trends
driven by functional changes using multi-tissues/conditions on a time-series fashion from omic assays.

Background

Many diagnostic and therapeutic studies are rapidly
adopting a time-series experimental design including
microarray gene expression and RNA-seq. The number
of time-series transcriptome data sets have grown expo-
nentially over the last decade, enabling researchers to
identify the complete set of activated genes in a bio-
logical process, to infer rates of change or causal effects,
and to model dynamic events in the cell [1]. Researchers
are particularly interested in transcriptomic patterns that
correlate with clinical or experimental observations.
However, the traditional hierarchical clustering heatmap
[2], k-means clustering [3], or biclustering [4] do not
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consider time dependent patterns innately, and thus are
inadequate to search specific patterns that underpin
mechanisms of biology. Few common statistical models
are currently used to fit time series data on other obser-
vations. These tools include autoregressive models [5, 6],
Bayesian approaches [7], self-organizing maps [8], and
triclustering [9]. All of these models result in global
parent clusters of components, while many distinct sub-
patterns may be neglected or over fitted due to assump-
tions and inherent biases built in the statistical models
of choice. For example, lower degree polynomial autore-
gressive models tend to have only few patterns while
higher degree polynomial modes can lead to over fitting
in short time-series. Phang et al. proposed a trajectory
clustering method that defined gene profiles by the dir-
ection of change between adjacent time points, and
concatenated the direction into a key [10]. This trajec-
tory method is an example of the symbolic
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representation method that has been popularly used in
video streaming. The symbolic representation discretizes
the profile and maps it to symbols, thus gene profiles
can be represented as a concatenation of symbols. The
discrete representation becomes very powerful in match-
ing and comparing patterns. For example, we have sec-
tional gene expression data, and the genes may be
discretized into three levels of Fold Change (FC)
between treatments and controls: “+” if FC>2; “-” if
FC<-2; and “0” if - 2<FC < 2. However, one can also
design more levels or designate the slope of adjacent
time points as symbols, and use different cutoffs for
levels. Most researchers compute differentially expressed
genes (DEGs) in terms of the t-test p-value at individual
time points and compare the common DEGs across
time. This is also an example of symbolic representation,
such as up-/down-regulated DEGs that are “+” and “-”,
respectively, and the rest are “0”. When all these charac-
ters are concatenated into a string, such as ‘“++-, then
the string means a temporal profile ‘up’ ‘up’ ‘down’. We
then group the genes by their profile and display in a
heatmap. This heatmap can help researchers answer, but
are not limited to, the following questions: 1) the collect-
ive trends (the patterns that most genes follow), 2) the
consistent trends (the genes that exhibit identical pat-
terns across multiple datasets), 3) the sequential trends
(the cascade response of genes across time or across
conditions) and 4) the stage trends (early-responsive or
late-responsive genes). Answering these questions in
multi-tissue and multi-condition time-series data
becomes a multi-dimensional comparison problem
(e.g., N-dimension Venn diagram) and it is difficult to
trace genes with the same pattern of expression in current
tools. In this paper, we developed a comprehensive inter-
active transcriptomics analysis and visualization tool,
Functional Heatmap, based on the concept of symbolic
representation. Functional Heatmap offers time-series
data visualization through a Master Panel page and a
Combined page to answer each of the multi-dimensional
time-series questions. All analyses are interactive, search-
able, and exportable in the form of heatmap, line-chart,
and text, and the results are easy to share, maintain, and
reproducible on the web platform. The pathway

Table 1 Comparison to existing tools
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enrichment can also be conducted based on a merged
pathway database that collapses highly similar pathways
curated from different resources, including KEGG version
80 [11], Wiki pathway [12], Biocarta [13], Reactome [14],
and GSEA [15]. To avoid the potential bias of super large
pathways such as cancer pathway and duplicate pathways
curated from different resources, we trimmed and merged
the pathway database before further pathway enrichment.
First, we filtered out the super large pathways with
thousands of genes. Next, we calculated the overlap rate
(Eq. 1) between each pathway pair i and j,

Overlap(i, j) = min (Lengthi,Lengthj) / (Lengthi + LengthjfLength(W))
(1)

Then the overlap rates were used as the distance
matrix in hierarchical clustering with average linkage.
All the tree under height 1.5 (roughly corresponding to
85% overlap rate) were merged into new pathways. The
pathway enrichment was conducted by standard
one-side hypergeometric test.

Implementation

Functional Heatmap is hosted online at https://bioinfo-
abcc.ncifcrf.gov/Heatmap/. It is written in PhP 5 and
open-source JavaScript libraries D3.js and jquery.js. Since
the Functional Heatmap software application is com-
pletely web-based, there are no installation requirements
and no restrictions on operating systems. The software
can be launched on any computer system that is con-
nected to the internet and capable of running one of the
current web browser applications with JavaScript cap-
abilities enabled (ie., Internet Explorer, Google Chrome,
Mozilla Firefox, Safari). Mozilla Firefox or Google
Chrome are recommended for use with the tool. Func-
tional Heatmap efficiently incorporates robust clustering
of genes based on expression profiles, heatmap visualiza-
tions, and annotation of like-groups together in one
web-based tool as compared to other tools (Table 1).
Functional Heatmap supports abstraction of data
multi-dimensionality by representing observations (e.g.,
individuals or time points) as a primary heatmap, and
displaying relative correlations with a feature of interest.

Multi-dimensional

Software Clustering method comparison
Functional Heatmap Symbolic Representation Yes
PESTS [3] K-means; PAM No
BiGGESTS [4] Biclustering No
SEA [6] Regression No
BATS [7] Bayesian approach No
STEM [8] Self Organizing Map No

Times Vector [9] Triclustering Yes

Functional

Chart type Platform  Enrichment Interactivity
Heatmap; Line chart Web Yes Full

Table Desktop No Limited
Heatmap; Line chart Desktop Yes Full

Line chart Web Yes Limited
Table Desktop No Limited
Line chart Desktop Yes Full

Line chart Desktop No Limited
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Each panel in the primary heatmap encapsulates a sub-
pattern of the individual gene expression values unique
to that data point (Fig. 1a).

The users must provide an input file that contains ID,
Entrez Gene (optional), Symbol (optional), P-value
(optional), and fold change (FC) for each time point (see
Additional file 1: Supporting Material User Manual,
Additional file 2: Sample input file S2). The users can se-
lect different significance cutoffs in the filter menu to
down-select genes for the clustering analysis. The users
also can apply other DEG analysis tools, such as EDGE
[16], and upload the DEG list the Functional Heatmap.
Users may notice that there are many miscellaneous appli-
cations for Functional Heatmap besides genetics. These
include multi-dimensional continuous time-series data
from biological analytes (protein, metabolite, microbiome,
etc.), financial data, or engineering data.

Availability and requirements
Functional Heatmap is publicly available at https://bioin-
fo-abce.ncifcrf.gov/Heatmap/. An illustrative video for
Functional Heatmap is available in Additional file 3.

Operating systems: Windows/OSX

Programming language: PHP and JavaScript

Browsers: IE 9, Firefox 31, Chrome 31, Safari 5.1,
Opera 24, Opera Mini 8, iOS safari 7.1, Android Browser
4.4, or later.

Results
Functional Heatmap offers two pages: 1) Master Panel
page, and 2) Combined page. The Master Panel page
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(Fig. 1a) displays the patterns from each file uploaded side
by side. The Combined page (Fig. 1b.) combines the con-
tents of each file in the Master Panel and displays genes
that follow the same pattern across cohorts. These clusters
of genes behave the same and are synchronized independ-
ent of the conditions being evaluated. Patterns of associ-
ation with a measured statistic (such as disease severity)
can be visualized in the primary heatmap (Fig. 1b, far left
panel), while the corresponding gene expression patterns
can be simultaneously viewed on the Subpatterns heat-
maps (Fig. 1b, far right 2 panels). Additionally, each pat-
tern in the primary heatmap can be further broken down
into trends and the heatmap trends for that pattern are
displayed between the primary and subpattern heatmaps
(Fig. 1b). The trends show the expression difference across
time points. If there is a gene with fold changes 2, 3 and 4
at time points 1, 2, and 3, respectively, this would have an
upward trend because the values are increasing. Con-
versely if there was a gene with fold changes 5, 4, 3 at time
points 1, 2, and 3, respectively, this would have a down-
ward trend. Both of these genes would be in the primary
pattern of “up up up” or “+++” symbol, which is why this
further breakdown is necessary to distinguish between the
complex behavior of genes-of-interest in a more precise
manner. By selecting a particular trend, such as the down-
ward trend, the genes in the subpattern with a matching
trend will be displayed. This allows the user to view the
groups of trends that genes follow based on a particular
higher level parent pattern and can filter out all other
trends to see exactly which genes of the primary pattern
follow a particular trend-of-interest. As illustrated in the
example, such a capability allows the user to see particular

A Master Panel B combined Page
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Fig. 1 Available display modes in Functional Heatmap. a Master panel page displays side-by-side visualizations of several heatmaps simultaneously. A
given row can be selected to display pathway enrichment. b Combined page displays the primary heatmap of all the patterns combined on the left,
with trends in the middle and the subpatterns of gene expression to the side. Below are the flipped subpatterns to display line charts of the data
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sets of genes that may have had a spike in expression early
on but were on a steady decline or back to a normal state
after a given time point. The user can also toggle the sub-
group heatmaps (Fig. 1b) to show data in the form of a
line chart of expression levels. The rest of the genes from
the primary heatmap will still be visible as faded lines,
when a trend is selected. A searchable list of genes
comprised of each level of the heatmap is dynamically
displayed when the user selects a pattern in the primary
heatmap.

To further illustrate the capabilities of the Functional
Heatmap as compared to traditional Venn diagrams, we
present data from a study in rats which evaluated gene
expression differences in the cingulate cortex across days
1, 3, 7, 14 and 21, post-injury in a chronic pain model.
Here, one can use the traditional Venn diagram to show
the overlap in DEG identities at the different time points
in this tissue (Fig. 2a). However, the Venn diagram is
neither able to stratify those genes into different expres-
sion patterns, nor can the identities of the genes be read-
ily displayed. Using Functional Heatmap’s Combined
page, we can see that the 72 DEGs common on days 1,
3, and 21 within the cingulate cortex can be further
stratified into eight different combinations of up/down-
regulation across the three selected time points (Fig. 2b).
While a Venn diagram only shows the total number of
DEGs in that group (Fig. 2a), Functional Heatmap allows
the user to discern trends within those 72 genes that
may signify underlying biological functions. This func-
tion enables the user to dynamically select the type of

Avenn Diagrams BPrimary Patterns Selected

Cingulate Cortex D3

D14
D21

D. Line Charts

C. Heatmap Split by Tissue

6.0 6.0

40

6.0 6.0 6.0

0 0.0
Num: 72 -2.0 i_ X0~ ~220 X 20
-4.0

-6.0

-8.0 -8.0 -8.0 -8.0

Fig. 2 Viewing Overlap. a Traditional Venn diagrams showing the
overlap between genes across time for two different tissues. The
circled overlap is what is displayed in sections ¢ and D.B) Primary
patterns selected which have expression +/— on columns 1, 2 and 5.
c Shows the gene expression heatmaps split out by tissue. d Line
charts for the heatmaps above where each column is day 1, 3,7, 14
and 21, respectively. The y-axis is log base 2-fold change values. Line
colors represent the corresponding row selected in b
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overlap of interest such as genes that overlap across
time, but are highly upregulated, and then return that
particular subset of genes and pattern information to the
user. The user can further see the identity and expres-
sion pattern of these overlapping genes (Fig. 2c), as well
as the corresponding line chart (Fig. 2d), by selecting the
flip heatmap option.

In addition, automatic pathway enrichment informa-
tion for sets of genes is generated at each level of
analysis, allowing users to efficiently interpret the se-
lected patterns and view the biological processes
underlying the data in greater detail and more quickly
than with any previous tools. Data can be sorted in a
variety of ways quickly and intuitively revealing pat-
terns that would otherwise remain undetected using
traditional static visualization tools. In additional,
Functional Heatmap can consolidate differing num-
bers of data points with their mean. For example,
suppose an experiment compares multiple mouse
strains with differing numbers of time points for each
mouse. Functional Heatmap can consolidate the time
points by taking the mean values at the two time
points seamlessly within the analysis, removing the
need for extensive data preprocessing. Once each ex-
periment has an identical number of time points, they
can easily be compared.

Functional Heatmap application provides users with a
robust automated, yet interactive, analytical framework
that requires no prior computational expertise. Re-
searchers and bioinformaticians alike can easily access a
combination of powerful computational tools without
having to develop a customized code to handle each use
case. By intuitively answering the three most widely
sought after questions from time-series experiments,
Functional Heatmap allows scientists to rapidly and re-
producibly extract biological meaning and create
publication-quality figures from their time-series data
simultaneously by using a single tool. Functional Heat-
map represents a one-stop shop for analyzing
high-throughput gene expression experiments. Further-
more, by encapsulating all the computational elements
of the tool on a remote server, Functional Heatmap is
universally compatible, and offers high-resolution and
comprehensive gene expression analysis resources to any
scientist with an internet connection regardless of their
local resource availability. Finally, by alleviating the need
for the user to write and maintain customized analysis
scripts, Functional Heatmap presents a greatly simplified
platform for reproducing large-scale data analyses. A de-
tailed comparison to available time-series tools is listed
in Table 1.

In the future, Functional Heatmap will connect to the
time-series network suite PanoromiX (https://bioinfo-
abcc.nciferf.gov/panormics/), which allows the users to
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review dynamic changes of different functional modules
in the progression of biological conditions. Furthermore,
more statistical comparison and pattern recognition
tools will be implemented to the back-end server.

Example from an ongoing multidimensional study

The following provides an actual example of the use
of Functional Heatmap to facilitate analysis of a
multidimensional transcriptomic dataset. Recently, in-
vestigators at our institution, along with collabora-
tors, have conducted a radiation dose response (1, 3,
and 6 Gy [Gy] X-ray exposure) and time course (2h,
and 4, 7, 21, and 28 days post-exposure) experiment
in mice, in an effort to gain detailed insight into the
effects of ionizing radiation (IR) on skin. A compre-
hensive assessment of the transcriptome of the skin
was conducted across all doses and time points,
using DNA microarrays [manuscript under review].
The differentially expressed genes (DEGs) were iden-
tified as log fold mRNA expression values for each
dose and time point, comparing irradiated to
time-matched non-irradiated controls. The DEG lists
(FC>2, P>0.05) for each dose were used to generate
the Master Panel of expression patterns, and then
combined to generate the primary heatmap of all
patterns (Fig. 3a, depiction of Combined Page). The
primary patterns were sorted by descending DEG
number (Sort by count), and the most abundant pat-
tern, containing 296 genes, was chosen for identifica-
tion of trends (Fig. 3b). Genes fitting this pattern
have a differential expression of less than 2-fold be-
tween irradiated and non-irradiated controls at every
time point (black color) except for the last time
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point at day 28 (blue color), where expression was
twofold or less in the irradiated group compared to
controls. The first and second most abundant trends,
containing 99 and 54 DEGs, respectively, were next chosen
for assessment of subpatterns for each dose (Fig. 3c).
Interestingly, the 99 DEGs having the trend of + - + — -,
were predominantly contained in the 3Gy and 6Gy
treated skin groups, with only five genes matching this
trend for the 1Gy treated skin. Conversely, the 54 DEGs
having the trend of ++ — --, were predominantly present
in the 1Gy treated skin (45 of the 54 DEGs). This com-
parison reveals a striking difference in expression trend
between the 1Gy dose and the others. Further analysis
of these specific DEGs, as well as others that are being
identified using the Functional Heatmap, is ongoing. It
is anticipated that this tool will both focus the effort
and speed the discovery of the underlying biology and
the corresponding gene networks that are most import-
ant for understanding the effects of varying doses of IR
on skin over time.

Conclusions

Functional Heatmap is an automated and interactive
tool to enhance pattern recognition on time-series
multi-omics assays. It reduces the manual labour of
pattern discovery and comparison by transferring
statistical models into visual clues. The new pattern
recognition will greatly help the researchers identify
hidden trends of functional changes using
multi-tissues/condition time-series omic assays. Re-
searchers can easily access a combination of powerful
computational tools without having to develop cus-
tomized code to handle each use case.

-
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Fig. 3 Combined Page with Example. a The primary heatmap of all the patterns sorted by number of genes per pattern, highest to lowest. b The
trends which come from the selected pattern in the Primary Patterns heatmap. The trends make up the 296 genes in the selected pattern. ¢ The
subpatterns filtered by the 99 and 54 genes from the trends. This allows the user to visualize which subpatterns of the 54 and 99 genes are associated
with. This figure shows that most of the 54 genes showing a spike up then a drop are mostly from the 1Gy dose. The most abundant trend of 99
genes are mostly from the high 6Gy dose followed closely by the 3Gy dose
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