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Fermentative nitrogen-fixing bacteria have not yet been examined in detail in thermal environments. In the present study,
we isolated the thermophilic fermentative bacterium, strain YA01 from a hot spring. This strain grew at temperatures up to
78°C. A phylogenetic analysis based on its 16S rRNA gene sequence indicated that strain YA01 belonged to the genus
Caldicellulosiruptor, which are fermentative bacteria in the phylum Firmicutes, with 97.7–98.0% sequence identity to its
closest relatives. Strain YA01 clearly exhibited N2-dependent growth at 70°C. We also confirmed N2-dependent growth in
the relatives of strain YA01, Caldicellulosiruptor hydrothermalis 108 and Caldicellulosiruptor kronotskyensis 2002. The
nitrogenase activities of these three strains were examined using the acetylene reduction assay. Similar activities were
detected for all tested strains, and were slightly suppressed by the addition of ammonium. A genome analysis revealed that
strain YA01, as well as other Caldicellulosiruptor, possessed a gene set for nitrogen fixation, but lacked the nifN gene,
which encodes a nitrogenase iron-molybdenum cofactor biosynthesis protein that is commonly detected in nitrogen-fixing
bacteria. The amino acid sequences of nitrogenase encoded by nifH, nifD, and nifK shared 92–98% similarity in
Caldicellulosiruptor. A phylogenetic tree of concatenated NifHDK sequences showed that NifHDK of Caldicellulosiruptor
was in the deepest clade. To the best of our knowledge, this is the first study to demonstrate the nitrogen-fixing ability of
fermentative bacteria at 70°C. Caldicellulosiruptor may have retained an ancient nitrogen-fixing enzyme system.
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Nitrogen is one of the most abundant and important ele‐
ments for life. Nitrogen-fixing microorganisms play signifi‐
cant roles in converting atmospheric N2 gas to ammonia in
ecosystems. According to a review by Postgate (1998), the
first nitrogen-fixing bacteria or diazotrophs were discovered
by Winogradsky in 1893. Nitrogen-fixing microorganisms
have been reported in 16 phyla in Bacteria and 1 phylum in
Archaea from various environments (Mus et al., 2019).
Aerobic free living and symbiotic Proteobacteria and photo‐
trophs have been widely reported (Martinez-Romero, 2006;
Flores et al., 2015; Wasai and Minamisawa, 2018), and the
nitrogen-fixing ability of anaerobic respiratory bacteria,
such as Anaeromyxobacter in soil, has recently been
attracting increasing attention (Masuda et al., 2020). In
1988, fermentative nitrogen-fixing bacteria were reported in
the genus Clostridium in Firmicutes (Leschine et al., 1988);
however, limited information is currently available on
fermentative nitrogen-fixing bacteria. Nitrogen fixation by
fermentative metabolism utilizing polysaccharides (e.g., cel‐
lulose) has been suggested to play an important role in nitro‐
gen cycles in soil and animal intestines (Monserrate et al.,
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2001; Yamada et al., 2007).
Nitrogen fixation is achieved by multiple proteins

encoded by nif genes (Raymond et al., 2004). Phylogenetic
examinations indicated that nitrogenase genes originated in
archaea and were horizontally transferred to bacteria (Boyd
et al., 2011a). The nifH gene encoding the nitrogenase
reductase subunit of nitrogenase is widely regarded as an
indicator of the existence of diazotrophs (Zehr et al., 2003).
The diversity and distribution of nifH genes have been ana‐
lyzed in natural ecosystems, including thermal environments
(Mehta et al., 2003; Hamilton et al., 2011; Zehr, 2011;
König et al., 2016; Pajares and Bohannan, 2016; Nishihara
et al., 2018c). The nitrogen-fixing methanogenic archaeon,
Methanocaldococcus FS406-22, was isolated from a deep-
sea hyperthermal vent and its nitrogen-fixing ability was
demonstrated at temperatures up to 92°C (Mehta and
Baross, 2006). In 1986, nitrogen-fixing ability was reported
in a thermophilic cellulose-degrading fermentative bacte‐
rium that grew at 60°C (Bogdahn and Kleiner, 1986a).
Nishihara et al. (2018b) recently reported the nitrogen-
fixing ability of H2-oxidizing aerobic bacteria in the genus
Hydrogenobacter sp. in the deeply branching phylum
Aquificae at 70°C; this is the highest temperature observed
for N2 fixation in Bacteria. However, thermophilic isolates
that grow at temperatures higher than 70°C are still limited.

In Nakabusa Hot Spring (Nagano, Japan), a sulfidic and
slightly alkaline hot spring, chemosynthetic microbial com‐
munities develop well at temperatures higher than 70°C
(Nakagawa and Fukui, 2002, 2003; Kimura et al., 2010;
Nishihara et al., 2018a), and these communities are domi‐
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nated by H2-/sulfur-oxidizing bacteria in Aquificae
(Tamazawa et al., 2012, 2016). The nitrogenase activity of
the communities was detected ex situ at 70°C under anaero‐
bic conditions (Nishihara et al., 2018a). Nishihara et al.
(2018c) also performed a nifH gene amplicon analysis of
chemosynthetic microbial communities at temperatures
between 72 and 77°C, and the findings obtained showed that
the relative abundance of the nifH gene from
Caldicellulosiruptor were 7.42, 48.97, 73.12, and 94.58% in
the four samples analyzed. The genus Caldicellulosiruptor
comprises thermophilic fermentative bacteria that exhibit
cellulolytic activities (Zverlov et al., 1998; Blumer-Schuette
et al., 2012; Brunecky et al., 2013) and is widely distributed
in globally diverse thermal environments (Lee et al., 2018;
Blumer-Schuette, 2020). Genes related to nitrogen fixation
are found in the genomes of some species in this genus
(CP002330.1, CP002326.1, CP002219.1, CP003001.1,
CP000679.1, LACO01000001.1, LACM01000001.1, and
LACN01000001.1); however, their nitrogenase activities
and dinitrogen-dependent growth have not yet been demon‐
strated.

In the present study, we isolated thermophilic fermenta‐
tive bacteria using a combined nitrogen-poor medium from
microbial communities developed at approximately 80°C in
Nakabusa Hot Spring and characterized their nitrogen-fixing
abilities and genetic features in comparisons with their clos‐
est relatives.

Materials and Methods

Isolation of bacteria under nitrogen-fixing conditions
Pale tan-colored microbial mats developed in hot spring water at

78.3°C were collected at Nakabusa Hot Springs (36° 23′ 20″ N
137° 44′ 22″ E), Nagano, Japan on January 8th, 2018. Hot spring
water was slightly alkaline (pH 8.5–8.9) and contained 5.0–
6.1 μmol L–1 of ammonia (Kato et al., 2004), but not nitrate or
nitrite (Kato et al., 2004; Kimura et al., 2010). Samples were
immediately injected into the anoxic medium in glass vials (see
below) with attempts to avoid oxygen contamination at the sam‐
pling site. The vials were stored in hot spring water at 60–75°C for
7 h during transportation to our laboratory and then incubated at
70°C.

Winogradsky’s nitrogen-poor mineral medium (Tchan and New,
1984) was prepared with a slight modification and used for the cul‐
tivation and isolation of bacteria (L–1): 0.28 g K2HPO4, 0.053 g
KH2PO4, 0.12 g MgSO4·7H2O, 0.125 g NaCl, 0.05 g yeast extract,
0.01 g CaCl2·2H2O, 2.5 mg FeSO4·7H2O, 2.5 mg MnSO4·5H2O,
2.5 mg Na2MoO4·2H2O, 2.5 g glucose, 2.5 g sucrose, and 2.5 g Na-
pyruvate. The pH of the medium was adjusted to 7.5. Twenty milli‐
liters of the medium was placed into a 70-mL glass vial. The vial
was sealed with a butyl rubber stopper and aluminum cap, and then
autoclaved after the gas phase had been replaced with N2. In total,
0.5 mL of the culture was repetitively sub-cultured every week in
fresh medium. After 10 sub-cultivations, an isolate was obtained
by the twice dilution-to-extinction technique. The single morphol‐
ogy of microbial cells was confirmed under a phase-contrast
microscope (Axio Imager 2; Carl Zeiss).

Cultivation and maintenance of bacteria
Caldicellulosiruptor hydrothermalis 108, Caldicellulosiruptor

bescii DSM 6725, and Caldicellulosiruptor kronotskyensis 2002
were obtained from DSMZ (Germany) (Miroshnichenko et al.,
2008; Yang et al., 2010). Bacterial strains were cultivated at 70°C

under the N2:CO2 (8:2) gas phase in medium containing the
following (L–1): 0.068 g KH2PO4, 0.087 g K2HPO4, 2.09 g MOPS,
0.33 g KCl, 0.25 g NH4Cl, 0.6 g MgSO4·7H2O, 0.4 g NaCl, 0.1 g
CaCl2·2H2O, and 10 mL trace minerals. Twenty milliliters of the
medium was prepared in 50-mL glass vials sealed with a butyl rub‐
ber stopper and aluminum cap. After autoclaving, 0.8 mL of a
filter-sterilized 10% cellobiose solution, 0.2 mL of a 5% NaHCO3
solution, and 0.2 mL of a vitamin solution were injected into the
vials. The trace minerals solution comprised the following (L–1):
1.5 g nitrilotriacetic acid, 3.0 g MgSO4·7H2O, 0.5 g MnSO4·5H2O,
1.0 g NaCl, 0.1 g FeSO4·7H2O, 0.1 g CaCl2·2H2O, 0.1 g
CoCl2·6H2O, 0.13 g ZnCl2, 0.01 g CuSO4, 0.01 g AlK(SO4)
·12H2O, 0.01 g H3BO3, 0.025 g Na2MoO4·2H2O, 0.024 g
NiCl2·6H2O, and 0.025 g Na2WO4·H2O. The components of the
vitamin solution were as follows (L–1): 2 mg biotin, 2 mg folic
acid, 10 mg pyridoxine HCl, 5 mg riboflavin, 5 mg thiamine, 5 mg
nicotinic acid, 5 mg pantothenic acid, 0.1 mg vitamin B12, p-
aminobenzoic acid, and 5 mg thioctic acid.

16S rRNA gene sequence analysis
Bacterial cells were collected by centrifugation and total DNA

was extracted according to a method reported by Noll et al. (2005).
A DNA fragment of the 16S rRNA gene was PCR-amplified using
the 27F and 1492R primers (Lane et al., 1985; Lane, 1991), and
amplified DNA after purification by the LaboPass PCR purifica‐
tion Kit (CosmoGenetech) was directly sequenced using BigDye
terminator kit v3.1 on an ABI3130 Genetic Analyzer (Applied Bio‐
systems). Sequences were compared using the BLAST program
(Altschul et al., 1997) with those available in the DDBJ/EMBL/
GenBank databases.

Genome analysis
Total DNA was extracted from bacterial cells by Qiagen

Genomic-tip 100/G for bacterial cells (Qiagen) and sequenced by
Bioengineering Lab. using the combination of DNBSEQ-G400
(MGI Tech) and GridION with the flow cell-type R9.4.1 (Oxford
Nanopore Technologies) platform. Regarding DNBSEQ-G400,
DNA was fragmented using a Covaris S2 ultrasonicator (Covaris)
to obtain 500-bp DNA fragments. The DNBseq DNA library was
prepared according to the manufacturer’s instructions and
sequenced using DNBSEQ-G400 (pair-end 150-bp reads). In Grid‐
ION, the library was prepared using the Ligation Sequence Kit
(SQK-LSK109) after barcoding using Native Barcoding Expansion
(Oxford Nanopore Technologies EXP-NBD104) and was then
sequenced. In the DNBSEQ-G400 analysis, 3,500,000 read pairs
(1.05 Gbp) were sampled using Seqkit (v. 0.11.0) (Shen et al.,
2016) and quality filtered using Sickle (v. 1.2.3) (Joshi and Fass,
2011) with the parameters -q 20 -l 127. In the GridION analysis,
adaptors of the reads obtained were trimmed using Porechop (v.
0.2.3) (Wick et al., 2017) and quality filtered using Filtlong (v.
0.2.0) (https://github.com/rrwick/Filtlong) with the parameters
--min_length 1000 --target_bases 250000000, and processed error-
prone reads using Canu v1.8 (Koren et al., 2017). A total of
3,033,015 reads (DNBSEQ) and 67,859 reads (GridION) were
obtained after quality filtering and subjected to use for hybrid
assembly by Unicycler (v. 0.4.7) (Phillippy et al., 2017) with the
default setting. The assembled genome was annotated using
Prokka v1.14.0 (Seemann, 2014). Proteins involved in nitrogen
fixation were visualized using ‘gggenes’ (https://CRAN.R-
project.org/package=gggenes) with ‘ggplot2’ in R package (R
Foundation, Vienna, Austria) (https://www.R-project.org/)
(Seemann, 2014; Wickham, 2016).

Nitrogen fixation gene cluster and phylogenetic analysis
A concatenated phylogenetic tree of Nif/Anf/VnfHDK was con‐

structed using 276 Nif/Anf/VnfHDK protein homologs, which
were located in operons in 235 genomes including the genome
newly analyzed in the present study. Genomes harboring Nif/Anf/
VnfHDK homologues were examined using AnnoTree v1.2 (Boyd
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et al., 2011b; Mendler et al., 2019; Garcia et al., 2020), collected
from the National Center for Biotechnology Information database,
and annotated using Prokka v1.14.0 (Seemann, 2014). Amino acid
sequences were aligned using Mafft v7.427 (Katoh et al., 2002).
Maximum likelihood trees were constructed using RAxML-NG v.
0.9.0 with the LG+F+G4 model and 100 bootstrap replicates
(Kozlov et al., 2019). Bootstrap support values were recalculated
by BOOSTER (v0.1.2) (Lemoine et al., 2018). The MarHDK pro‐
tein in Rhodospirillum rubrum ATCC11170 (WP_011388553.1,
WP_011388552.1, and WP_011388551.1) was used as the out‐
group (North et al., 2020).

Growth capability in nitrogen-poor media
Modified Winogradsky’s nitrogen-poor mineral medium (descri‐

bed above) was used to assess N2-dependent growth. Ten milliliters
of medium was prepared in 32-mL glass test tubes sealed with
butyl rubber stoppers and screw caps and the gas phase of the cul‐
ture tube was filled with N2 or argon (Ar) gas. In total, 0.5 mL of
bacterial cultures pre-cultivated in nitrogen-poor medium were
inoculated into fresh nitrogen-poor medium. To test the growth
capability of C. bescii DSM 6725, a pre-cultivation was conducted
using medium supplemented with 2 mmol L–1 of NH4Cl. Growth in
the culture was assessed by measurements of optical density (OD)
at 660 nm (miniphoto 518R; Taitec). Cultivation medium
containing 2 mmol L–1 NH4Cl was also used to compare N2-
dependent growth with growth on ammonium.

Nitrogenase activity by the acetylene reduction assay
Nitrogenase activity was detected using the acetylene reduction

assay method (Leschine et al., 1988). In total, 0.5 mL of bacterial
pre-cultures in modified Winogradsky’s nitrogen-poor mineral
medium was inoculated into 10 mL of the same medium in 25-mL
glass vials and cultivated under a N2 gas atmosphere. At the expo‐
nential growth phase, a portion (0.5 mL) of the culture solution
was removed and mixed with 0.05 mL of 10% Formalin Neutral
Buffer Solution (pH 7.4–7.5, Fujifilm Wako Pure Chemical) to fix
cells for the cell number count. The gas phase of culture vials was
then replaced with N2 gas and 1.5 mL of 99.9999% acetylene gas
was injected into each vial. Vials were incubated at 70°C and, after
a 24-h incubation, 1 mL of 37% neutralized formaldehyde was
added to stop the reaction. The production of ethylene by the
reduction of acetylene was quantified using a GC-2014 gas chro‐
matograph equipped with a flame ionization detector (Shimadzu)
and 80/100 Porapak T (GL Science) column. Analysis conditions
were as follows; carrier gas, N2 gas; column temperature, 70°C;
injection temperature, 100°C; detector temperature, 100°C. Fresh
medium containing no bacterial cells was prepared in the vial as a
negative control to confirm abiotic ethylene production under the
same conditions.

Nucleotide sequence accession number
The 16S rRNA gene sequence was deposited in the DDBJ/

EMBL/GenBank databases with the accession number LC603168.
The accession numbers of the genomic sequences of strain YA01
were AP024480 (chromosome) and AP024481 and AP024482
(two plasmids).

Results

Bacterial isolate from the hot spring under anaerobic
nitrogen-fixing conditions

Pale tan-colored microbial mats collected at 78.3°C from
Nakabusa Hot Spring were directly inoculated into glass
vials with modified Winogradsky’s nitrogen-poor mineral
medium and anaerobically incubated at 70°C. After several
sub-cultivations at one-week intervals, a stable enrichment

culture was obtained. A pure culture containing cells of a
single morphotype, i.e., short rods (Fig. S1), was obtained
by dilution-to-extinction and the isolate was designated as
strain YA01. Strain YA01 grew at temperatures up to 78°C.
The 16S rRNA gene sequence of strain YA01 (1,474 bp)
showed 98.0, 97.7, and 97.7% identities to those of its clos‐
est relatives, C. hydrothermalis 108, C. bescii DSM 6725,
and C. kronotskyensis 2002, respectively. This result
indicated that strain YA01 was a species of the genus
Caldicellulosiruptor.

Nitrogen-fixation related genes in Caldicellulosiruptor
DNBSEQ-G400 and GridION runs resulted in the genera‐

tion of approximately 12,782,840 reads with a total of
1,917 Mbp and 155,919 reads with a total of 255 Mbp,
respectively. The complete genome of strain YA01 consisted
of a single chromosome with a length of 2,592,764 bp and
two plasmids with lengths of 3,514 and 1,547 bp. The G+C
content of the genome was 34.8%. Coding potential predic‐
tions identified 2,412 protein-coding genes, three rRNA
operons, and 47 tRNA genes. Three 16S rRNA genes had
the same sequence, which was identical to the 16S rRNA
gene sequence amplified by PCR. Average nucleotide iden‐
tity (ANI) between strain YA01 and its close relatives (C.
hydrothermalis 108, C. bescii DSM 6725, and C.
kronotskyensis 2002) calculated using an ANI calculator
(http://enve-omics.ce.gatech.edu/ani/) (Rodriguez-R, L.M.,
and Konstantinidis, K.T. 2016 The enveomics collection: a
toolbox for specialized analyses of microbial genomes and
metagenomes. PeerJ Preprints 4: e1900v1) ranged between
90.31 and 91.10%.

Annotation results showed that the chromosome of strain
YA01 contained at least seven proteins involved in nitrogen
fixation: three genes for nitrogenase structural proteins
(NifH, NifD, and NifK), two proteins involved in the bio‐
synthesis of MoFe protein cofactors (NifB and NifE), and
two proteins of the PII family involved in posttranslational
nitrogenase regulation (NifI1 and NifI2) (Arcondéguy et al.,
2001; Dodsworth et al., 2005; Burén et al., 2020) (Fig. 1).
These seven genes were also identified in eight out of the 14
genomes in the genus Caldicellulosiruptor available in
GenBank; C. morganii Rt8.B8 (accession no.
LACO01000001.1), C. naganoensis NA10 (accession no.
LACN01000001.1), C. danielii strain Wai35.B1 (accession
no. LACM01000001.1), C. lactoaceticus 6A (accession no.
CP003001.1), C. kronotskyensis 2002 (accession no.
CP002330.1), C. kristjanssonii I77R1B (accession no.
CP002326.1), C. hydrothermalis 108 (accession no.
CP002219.1), and C. saccharolyticus DSM 8903 (accession

Fig. 1. Nitrogen fixation gene clusters for strain YA01 and its closest
relatives, Caldicellulosiruptor hydrothermalis 108 and
Caldicellulosiruptor kronotskyensis 2002. The arrow indicates the
transcriptional direction.
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no. CP000679.1) (Van De Werken et al., 2008; Kataeva et
al., 2009; Blumer-Schuette et al., 2011; Wai et al., 2015;
Blumer-Schuette, 2020). NifN was not found in the
genomes based on the annotation using eggNOG-mapper v2
(Huerta-Cepas et al., 2017; 2019).

The amino acid sequences of the nitrogenase structural
proteins were similar among the genus (NifH, 98.37±0.41%;
NifD, 96.58±1.54%; NifK, 92.05±5.26%). A concatenated

NifHDK phylogenetic tree was constructed for all
Caldicellulosiruptor species possessing nitrogen fixation-
related genes (Fig. 2). Strain YA01 clustered with all other
members of the genus Caldicellulosiruptor within the
cluster Nif-C (Fig. 2). The NifHDK sequences of
Caldicellulosiruptor formed a monophyletic lineage, were
placed in the deepest clade in the branch of the Anf/Vinf/
Nif-D/Nif-C/Unknown lineage (Boyd and Peters, 2013;

Fig. 2. Phylogenetic tree of concatenated NifHDK sequences
The phylogenetic tree was constructed by the Maximum Likelihood method with 100 bootstrap replicates. The newly isolated strain, strain YA01
is highlighted in yellow. Among the 276 sequences used, 130 representative taxa are shown. Bootstrap values of more than 50% are indicated at
the respective nodes. MarHDK protein sequences in Rhodospirillum rubrum ATCC11170 were used as the outgroup. Abbreviations: Nif, Mo-
nitrogenase; Anf, Fe-nitrogenase; Vnf, V-nitrogenase; Unknown, uncharacterized nitrogenase homologues. The cluster for Nif (Nif-A, B, C, and
D) is shown according to the definition by Poudel et al., 2018.
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Poudel et al., 2018; Garcia et al., 2020), and were distantly
related to those in other thermophilic bacteria, such as
Thermoanaerobacterium thermosaccharolyticum (Nif-A lin‐
eage) and Hydrogenobacter sp. (Nif-B lineage) (Boyd and
Peters, 2013). The thermophilic features of NifHDK did not
appear to correlate with the primary structure.

Growth capability under nitrogen-fixing conditions
Strain YA01 and its three relatives, C. hydrothermalis

108, C. bescii DSM 6275, and C. kronotskyensis 2002, were
cultivated in nitrogen-poor medium and ammonium-
containing medium under the N2 or argon (Ar) gas phase
(Fig. 3). C. bescii, which did not possess nitrogen-fixing
genes, did not grow in nitrogen compound-free medium
(Fig. 3D). Strain YA01, C. hydrothermalis 108, and C.
kronotskyensis 2002 showed marked increases in OD in
nitrogen compound-free medium under N2 gas, but not
under the Ar gas phase (Fig. 3A, B, and C). These three
strains reached the stationary phase within 2 to 3 days and
final OD were 0.05 to 0.14 under N2-fixing conditions, cor‐
responding to 1.06×107 to 2.27×107 cells mL–1. In

ammonium-containing medium, the growth of all these
strains was faster than in the absence of ammonium and
final OD were 0.20 to 0.35. In C. hydrothermalis 108 and C.
kronotskyensis 2002, growth yields in ammonium-
containing medium were slightly higher under N2 gas than
under Ar gas.

Nitrogenase activity
To test nitrogenase activity, strain YA01 and its relatives

C. hydrothermalis 108 and C. kronotskyensis 2002 were cul‐
tivated to the exponential growth phase in nitrogen-poor
medium and ammonium-containing medium under the N2
gas phase. Acetylene was injected into the vials and incu‐
bated at 70°C. The results of ethylene production after a
24-h incubation are summarized in Table 1. Ethylene pro‐
duction was observed in all tested strains, even in the pres‐
ence of ammonium. Strain YA01 showed the highest value
among the three strains in the absence of ammonium. The
amount of ethylene produced in the presence of ammonium
for 24 h was lower than that in its absence in all strains. The
suppressive effects of ammonium on C. kronotskyensis 2002
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Fig. 3. Growth of strain YA01 (A) and its closest species, Caldicellulosiruptor hydrothermalis 108 (B), Caldicellulosiruptor kronotskyensis 2002
(C), Caldicellulosiruptor bescii DSM 6275 (D) with (open symbols) or without (closed symbols) ammonium under a N2 or Ar atmosphere. Error
bars indicate the standard deviation of three replicates.
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Table 1. Acetylene-reducing activities of strain YA01 and its closest relatives, Caldicellulosiruptor hydrothermalis 108 and Caldicellulosiruptor
kronotskyensis 2002 in the absence and presence of ammonium at 70°C.

Strains YA01 C. hydrothermalis 108 C. kronotskyensis 2002
Conditions* +ΔNH4

++NH4
+ΔNH4

++NH4
+ΔNH4

++NH4

Acetylene-reducing activity (nmol C2H4 106 cells–1 24 h–1)** 610±246 18.8±14.3 107±18.3 0.257±0.0694 363±74.4 216±156

*, ΔNH4
+, modified Winogradsky’s nitrogen-poor mineral medium; +NH4

+, ammonium-containing medium (2 mmol L–1 of NH4Cl).
**, values were obtained from three culture vials and shown with standard deviations.

were weak (approximately 60% of that in its absence).
Acetylene-reducing activities were also observed under an
incubation at 78°C for all strains: 9.50±5.05, 8.37±5.53, and
15.0±12.1 nmol C2H4 106 cells–1 24 h–1 by strain YA01, C.
hydrothermalis 108, and C. kronotskyensis 2002, respec‐
tively. Activities at 78°C were weaker than those at 70°C.

Discussion

In the present study, we isolated a bacterial strain by culti‐
vation in nitrogen-poor medium from Nakabusa Hot Spring,
Japan. The results of the phylogenetic analysis based on the
16S rRNA gene sequence suggested that this isolate, strain
YA01, is a new species in the genus Caldicellulosiruptor
and is closely related to C. hydrothermalis, C. bescii, and C.
kronotskyensis. The results of the genomic analysis indi‐
cated that strain YA01 as well as C. hydrothermalis 108 and
C. kronotskyensis 2002 possess a set of nitrogen fixation-
related genes (Fig. 1) and their NifHDK formed a monophy‐
letic lineage in the deeply branching group of the NifHDK
tree (Fig. 2). Growth capability with N2 gas as the sole nitro‐
gen source and acetylene-reducing activity were success‐
fully demonstrated for the new isolate, C. hydrothermalis
108, and C. kronotskyensis 2002 (Fig. 3 and Table 1). To the
best of our knowledge, this is the first study to detect
nitrogen-fixing ability in the genus Caldicellulosiruptor.
The nitrogenase activities of bacteria were previously
reported at temperatures up to 70°C by Nishihara et al.
(2018b) in the chemolithoautotrophic bacteria,
Hydrogenobacter sp. in the phylum Aquificae. The nitroge‐
nase activities of Caldicellulosiruptor were detected at tem‐
peratures higher than 70°C, i.e., 78°C, which was the
maximum growth temperature of strain YA01.

The nif gene operons of strain YA01 and its relatives, C.
hydrothermalis 108 and C. kronotskyensis 2002 basically
comprised nifHDKEB (Fig. 1). Commonly known nif gene
operons contain the additional gene, nifN; however, a
homologous gene to nifN was not identified in
Caldicellulosiruptor. nifN encodes subunits of the tetra‐
meric protein NifEN (2NifE 2NifN), which is required for
the biosynthesis of the iron molybdenum co-factor of Mo-
type nitrogenase (Hu et al., 2005, 2006, 2008; Corbett et al.,
2006; Burén et al., 2020). Evolutionary studies based on
molecular phylogram and comparative analyses of amino
acid sequences suggested that nifN and nifK are paralogous
genes that were derived through gene duplication (Raymond
et al., 2004; Boyd et al., 2011b). Similar to Caldicellulosiruptor,
the diazotrophic archaeon, Methanocaldococcus sp.
FS406-22 also lacks nifN (Mehta and Baross, 2006). This
finding indicates that the protein coded by nifK in these
thermophiles performs the same function as NifN. Alterna‐

tively, NifE may work without an NifN subunit, as sug‐
gested by Garcia et al. (2020), because NifE in
Caldicellulosiruptor showed low similarity with other
known NifE (Fig. S2). The phylogenetic trees of NifHDK
(Fig. 2) and NifE (Fig. S2) indicated that
Caldicellulosiruptor has an ancient nitrogen-fixing enzyme
system. As proposed in the phylogenetic study of nitrogen
fixation-related genes by Garcia et al. (2020), Mo-
nitrogenase in the genus Caldicellulosiruptor may have
emerged earlier and then evolved into modern nitrogenases
in wide lineages of prokaryotes.

The nitrogenase activities of the Caldicellulosiruptor
strains were not completely suppressed by the addition of
ammonium (Table 1); however, the inhibition of nitrogenase
activity by ammonium has been traditionally reported in
most diazotrophic bacteria (Dixon and Kahn, 2004). In cel‐
lulolytic fermentative diazotrophic bacteria, Clostridium sp.
in Firmicutes, acetylene-reducing activity decreased under
the detection limit when ammonium was added (Bogdahn
and Kleiner, 1986a, 1986b). However, this activity was not
suppressed by ammonium for the thermophilic relative,
Clostridium thermocellum (now Hungateiclostridium
thermocellum) (Bogdahn and Kleiner, 1986a; Tindall,
2019). Although the protein, NifA has been shown to regu‐
late the expression of nif genes in nitrogen-fixing aerobes in
Proteobacteria (Merrick, 1992), most anaerobic diazo‐
trophs, including Caldicellulosiruptor and Clostridium, do
not possess the nifA gene (Boyd et al., 2015). The evolution
of Nif regulation systems from anaerobic to aerobic metabo‐
lism is still debatable (Boyd et al., 2015). Further transcrip‐
tional and enzymological studies are required to elucidate
responses to ammonium in these thermophilic diazotrophs.

Caldicellulosiruptor are frequently detected from micro‐
bial mats in geothermal springs (Lee et al., 2018; Blumer-
Schuette, 2020). Microbial mats are stratified communities
of microorganisms with thicknesses of 3 to 5 mm and ther‐
mophilic microbial mats have been utilized as a model
microbial community to investigate the development and
maintenance of ecosystems (Taffs et al., 2009; Klatt et al.,
2013; Kim et al., 2015; Lindemann et al., 2016; Bernstein et
al., 2017; Haruta, 2020). Previous studies focused on pri‐
mary production in communities in hot spring streams and
reported a spatial and temporal distribution and the co-
occurrence of carbon-fixing metabolism via oxygenic and
anoxygenic photosynthesis, aerobic chemosynthesis (e.g.,
H2 and sulfide oxidation), and anaerobic chemosynthesis
(e.g., sulfur disproportionation) (Rothschild and Mancinelli,
1990; Kimura et al., 2010; Kojima et al., 2016; Tamazawa
et al., 2016; Sharrar et al., 2017; Gutiérrez-Preciado et al.,
2018; Kawai et al., 2019). Dinitrogen fixation is also
required for community development in spring waters that
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are poor in nitrogen compounds (Kato et al., 2004; Steunou
et al., 2006; Kimura et al., 2010; Hamilton et al., 2011;
Loiacono et al., 2012). However, possible thermophilic
diazotrophs at temperatures higher than 70°C in terrestrial
springs have not been clarified. The present results provide
important insights into the development of micro-
ecosystems in thermal environments. Caldicellulosiruptor
may utilize organic compounds derived from primary pro‐
ducers at the anoxic layer of microbial mats and provide
ammonium to the communities. Caldicellulosiruptor
possessing the ancient type of nitrogenase may play impor‐
tant roles in carbon and nitrogen cycles not only in modern
thermal springs, but also in the early Earth.
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