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Simple Summary: This study was designed to assess the epidemiology and antimicrobial resistance
of Campylobacter jejuni in swine processing at a slaughterhouse in the Valencia Region (Eastern Spain).
The results showed that all batches arrived at the slaughterhouse shedding Campylobacter in faeces,
and remained positive during processing, even just before delivery to the consumer. In addition,
96.3% of C. jejuni isolates, the main species involved in human infection from food origin, were
multidrug-resistant strains.

Abstract: Campylobacteriosis is the most commonly reported gastrointestinal disease in humans
in the EU, mainly from poultry meat consumption. C. jejuni is the main species involved in the
human disease. However, little is known about the role of swine meat in its epidemiology. Thus, the
aim of this study was to assess the epidemiology and antimicrobial resistance of C. jejuni on swine
processing at the slaughterhouse. To this end, a total of 21 pig herds were intensively sampled at
the slaughterhouse. Campylobacter isolation was based on official method ISO 10272-1:2018, specia-
tion was determined by the hippurate hydrolysis test, and antibiotic susceptibility was performed
according to standard disc diffusion assay. The results showed that all batches shed Campylobacter
in faeces upon arrival at the slaughterhouse and remained positive at the end of the slaughtering
process (42.8%). Moreover, 41.5% of Campylobacter strains isolated were C. jejuni and all of them were
resistant to at least one antibiotic, and 96.3% were multidrug-resistant strains. In conclusion, the
high level of multidrug-resistant C. jejuni swine batch contamination at the slaughterhouse makes it
necessary to include the swine sector in national control programmes to reduce the bacterium and
its resistance.

Keywords: multidrug resistance; Campylobacter; swine; antimicrobial resistance; slaughterhouse

1. Introduction

Antimicrobial resistance (AMR) is one of the most important threats to public health
worldwide [1]. While antimicrobial agents (AMAs) have been enormously beneficial since
their peak in the mid-1950s, their inappropriate use led to AMR, one of the biggest global
issues [2]. The World Health Organisation (WHO) published that by 2050, AMR will cause
10 million deaths and economic losses of $100 trillion annually [3]. In Europe, every year,
33,000 people die as a result of AMR [4]. Under the One Health concept, whereby livestock
and agri-food systems are at the crossroads of human, animal, and environmental health,
it is widely acknowledged that the use of antimicrobials in veterinary medicine has an
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impact on AMR transmission between farms, animals, and ultimately humans [5,6]. In
this sense, the WHO published the priority list of 12 antibiotic-resistant bacteria, which
includes Campylobacter [7].

Thermophilic Campylobacter is widely recognised as one of the major causes of food-
borne illness worldwide, and the most commonly reported zoonotic pathogen in the Euro-
pean Union (EU), with approximately 220,000 confirmed cases occurring each year [8–10].
This situation is compounded by the fact that AMR Campylobacter strains emerge as a
potential concern for public health safety, with implications of increased disease severity,
longer hospitalisations, and higher cost rates [11,12]. In human outbreaks, Campylobacter
jejuni (C. jejuni) is the main species involved, and pork is considered the major source of
infection, after poultry meat [10,13].

Spain is the second largest swine producer in the EU and the fourth worldwide [14,15].
However, in this country, the swine industry administers approximately 75% of the AMAs
used in veterinary medicine [16]. In the near future, an increase in the consumption of pork
meat is expected; and a proper knowledge of the epidemiology of AMR Campylobacter in
last steps of swine production chain is needed to control the bacteria [17,18]. Added to
this, there is no legislation implemented in Europe for Campylobacter control in pork meat,
in contrast to poultry production where, since 2018, the European Regulation (EC) No
2017/1495 has been implemented at poultry slaughterhouses to control the bacteria [19].

Studies have demonstrated that swine Campylobacter prevalence is higher at their
arrival to the slaughterhouse than at farm level [17]. Thus, processing could increase
this prevalence, especially the stages of scalding and evisceration, with the production of
contaminated airborne droplets and the spilling of intestinal content, respectively [20–25].
The implementation of efficient measures at critical points at the slaughterhouse level could
therefore improve control of the pathogen and its AMR in the final product [22,26,27].
However, it is difficult to implement proper control measures at slaughterhouse level if
the epidemiology of Campylobacter in swine is unclear [28,29]. Traditionally, C. jejuni has
been linked to food infection from chicken meat consumption [30], while Campylobacter coli
(C. coli) has been linked to food infection by swine [31]. In this context, the aim of this
study is to assess the epidemiology and AMR of C. jejuni in swine processing at the
slaughterhouse.

2. Materials and Methods

Since only non-experimental clinical veterinary practices were performed and no
handling of animals related to research was carried out, a formal ethics approval from the
Welfare Body of the University CEU Cardenal Herrera with regard to the EU Directive
2010/63/EU was not required.

2.1. Study Design

This study was carried out in swine slaughterhouses in the Valencia Region (n = 8),
Eastern Spain. The processing plants involved in this study slaughter 90% of the swine
production in the Valencia Region [28]. During one year, 21 visits to the slaughterhouse
were done to intensively sampling 21 different batches of swine. The batch was a group of
swine coming from a single farm on a specific day. All farms were finishing farms, with
swine of minimum age of 9 months and with an average live weight of 160 kg.

2.2. Sample Collection

From each batch sampled, faecal samples were aseptically collected, pooling faecal
material (500 g) from five different points over the lairage pens at the slaughterhouse. It is
important to highlight that cleaning and disinfection was carried out between batches; thus,
the samples collected in pens were linked to a specific batch. Five swine were randomly
selected from each batch. At the evisceration stage, the caecum from each animal selected
was aseptically collected and placed into a sterile bag. To collect the caecal content, they
were incised with a sterile scalpel blade and the content was placed in a sterile jar. Then,
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carcass samples were collected at two moments during processing: before and after cooling.
To this end, a 100 cm2 area of the ham, belly, rump, and jowl from each swine selected
were swabbed—rubbing a sterile swab (bioMerieux, Madrid, Spain) 10 times vertically and
horizontally [28]. Moreover, environmental samples were taken from two sites (knives,
whips) and from the slaughtering staff (operators) by vigorous swabbing of the surfaces
with swabs. Finally, scalding water was collected directly into a sterile jar (1 L).

2.3. Campylobacter Isolation

Samples collected were tested by direct culture and enrichment culture based on
official method ISO 10272-1:2018 for the isolation of Campylobacter [32]. In addition, faeces
and caecal samples were analysed in parallel by direct culture. From the homogenised
samples, direct culture was performed onto mCCDA agar (Modified Charcoal Cefopera-
zone Deoxycholate agar, Biolife, Sarasota, FL, USA) and Preston agar (AES-Biomerieux,
Marcy-l’Etoile, France). The plates were incubated at 41.5 ◦C for 44 ± 4 h in modified
atmosphere (5% O2, 85% N2, 10% CO2, CampyGen, Oxoid).

First, pre-enrichment of all samples was performed in Bolton broth (OXOID, Dardilly,
France) (dilution 1:10). These samples were incubated at 37 ◦C for 5 ± 1 h and subsequently
at 41.5 ◦C for 44 ± 1 h in a microaerobic atmosphere (5% O2, 85% N2, 10% CO2, CampyGen,
Oxoid). After incubation, 100 µL of the pre-enriched broth were transferred to mCCDA
agar and Preston agar (AES laboratories®, BruzCedex, France). These plates were incubated
at 41.5 ◦C for 44 ± 4 h in microaerobic atmosphere. The confirmation of Campylobacter was
performed by a mobility test using a dark field microscope, biochemical tests of oxidase
and catalase, and streaking at different temperatures and atmospheres on Columbia Blood
Agar (AES laboratories®, BruzCedex, France). The isolates were stored in duplicate at
−80 ◦C for future speciation.

2.4. Campylobacter Speciation

All strains isolated were unfrozen and revived (Columbia Blood Agar, Oxoid Ltd., Bas-
ingstoke, UK). Plates were incubated at 41.5 ◦C for 44 ± 4 h in modified atmosphere (5% O2,
85% N2, 10% CO2, CampyGen, Oxoid, Basingstoke, UK). Finally, the hippurate hydrolysis
test (Oxoid, Madrid, Spain) was used to determine the species of the Campylobacter [33,34].

2.5. Antimicrobial Susceptibility

C. jejuni strains isolated were unfrozen and revived (Columbia Blood Agar (Oxoid Ltd.,
Basingstoke, UK). Plates were incubated at 41.5 ◦C for 44 ± 4 h in modified atmosphere (5%
O2, 85% N2, 10% CO2, CampyGen, Oxoid, Basingstoke, UK). The antimicrobial resistance
was evaluated by a standard disc diffusion assay in Müeller-Hinton Agar medium (Schar-
lau, Barcelona, Spain) enriched with 5% defibrinated horse blood (Oxoid Ltd., Basingstoke,
UK). The turbidity of the inoculums of each isolate was adjusted to a concentration of
2.0 on the McFarland scale, and they were incubated at 41.5 ± 1 ◦C for 44 ± 4 h, specific
for Thermophilic Campylobacter, under microaerobic atmosphere (84% N2, 10% CO2 and
6% O2) (CampyGen, Oxoid Ltd., Basingstoke, UK) [35]. C. jejuni isolates were tested
against nine antimicrobials belonging to six families of antimicrobials selected for being
commonly used for the treatment of campylobacteriosis in humans [35–38]; two quinolones
(QNL): ciprofloxacin (CIP, 5 µg) and nalidixic acid (NAL, 30 µg); two β-lactamases (βLAC):
ampicillin (AMP, 10 µg) and amoxicillin-clavulanic acid (AMC, 3 µg); two aminogly-
cosides (AMG): gentamycin (GEN, 10 µg) and streptomycin (S, 10 µg); one macrolide
(MCL): erythromycin (E, 15 µg); one tetracycline (TET): tetracycline (TE, 30 µg); and
one polymyxin (PMX): colistin (CST, 10 µg) (OXOID antimicrobial susceptibility testing
disc dispenser; Antimicrobial Susceptibility Test Disc, OXOID Ltd., Basingstoke, UK).
The source for zone diameters used for interpretation of the test and plates after incu-
bation was the European Committee on Antimicrobial Susceptibility Testing (EUCAST)
(http://www.eucast.org/clinical_breakpoints/ accessed on 6 February 2020), and where
not possible, according to Clinical and Laboratory Standards Institute (CLSI) indications

http://www.eucast.org/clinical_breakpoints/
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for Enterobacteriaceae (https://clsi.org/media/2663/m100ed29_sample.pdf accessed on
6 February 2020) [39], and the GIDEON guide to antimicrobial agents for CST [40]. The
isolates strains were categorised as susceptible (S) or resistant (R), based on EUCAST
imperative criteria [41]. Multidrug resistance (MDR) was defined as acquired resistance to
at least one agent in three or more antimicrobial classes [12].

2.6. Statistical Analyses

A generalised linear model (GLM), which assumed a binomial distribution for Campy-
lobacter presence, was fitted to the data to determine whether there was an association
between sample type collected (faeces, caeca, carcass, whips, operator, and knives) and
Campylobacter status of the batch after cooling. A batch was considered infected upon
arrival at the slaughterhouse if at least one of the five samples collected from caeca was
positive. A batch was considered positive before or after cooling if at least one of the five
samples collected from the carcasses was positive. For this analysis, the error was desig-
nated as having a binomial distribution, and the probit link function was used. Binomial
data for each sample were assigned as one if they were positive for Campylobacter or as zero
if they were not. Moreover, a GLM was performed to study the relationship between C.
jejuni and their AMR. A p-value of less than 0.05 was considered to indicate a statistically
significant difference. Data are presented as least squares means ± standard error of the
least squares means. All statistical analyses were carried out using a commercially available
software program (SPSS 21.0; SPSS Inc., Chicago, IL, USA).

3. Results

During this study, a total of 418 samples were collected from different points of the
slaughterhouse (Figure 1). Samples were collected from lairage pens (faeces, n = 21), caecal
content (n = 103), carcasses before and after cooling (n = 105, respectively), whips (n = 21),
operators (n = 21), working knives (n = 21), and scalding water (n = 21).
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Figure 1. Samples taken during the study.

According to the different batches sampled (n = 21), all batches that arrived at the
slaughterhouse were colonised by Campylobacter (caecal samples), and 42.8% (9/21) re-
mained positive after cooling. From all samples collected at the slaughterhouse, 41.9%
(175/418) were positive for Campylobacter, with all samples collected from scalding water
being negative. Thus, the scalding water samples were discarded from the analysis.

Statistically significant differences were observed between the type of sample col-
lected at the slaughterhouse with respect to the percentage of Campylobacter isolated
(p-value < 0.05). Data are represented in Table 1. Regarding to Campylobacter speciation,
11 strains from the 175 isolates could not be revived. A total of 41.5% (68/164) strains of
Campylobacter were speciated into C. jejuni, and statistically significant differences were
found between the type of sample collected with respect to the percentage of C. jejuni
isolated (p-value < 0.05) (Table 1). Finally, according to an MDR study of C. jejuni strains
isolated throughout de different slaughter processing steps, no statistically significant
differences were observed between the type of sample collected at the slaughterhouse with
respect to the MDR C. jejuni (p-value > 0.05) (Table 1).

https://clsi.org/media/2663/m100ed29_sample.pdf
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Table 1. Frequency of Campylobacter spp. isolated according to the sample type collected and the relationship with C. jejuni
and MDR C. jejuni isolated.

Sample Type nT
Campylobacter

spp. (%) nc C. jejuni (%) ncj
MDR C.

jejuni (%)

Animal
samples

Faeces 21 57.0 ± 10.8 ab 12 75.0 ± 12.5 a 8 100 ± 0.0
Caeca 103 70.0 ± 4.5 a 65 31.0 ± 5.7 c 18 89.0 ± 7.4

Carcass BC 105 49.0 ± 4.9 b 50 38.0 ± 6.9 bc 14 100 ± 0.0
Carcass AC 105 27.0 ± 4.3 c 28 54.0 ± 9.4 ab 11 100 ± 0.0

Environmental
samples

Whips 21 14.0 ± 7.6 c 3 67.0 ± 27.2 abc 2 100 ± 0.0
Operator 21 29.0 ± 9.9 bc 5 60.0 ± 21.9 abc 1 100 ± 0.0

Knives 21 14.0 ± 7.6 c 1 0 d - -

p-value <0.001 0.000 >0.05

Data are presented as least squares means ± standard error of the least squares means. nT: total samples collected, nc: total Campylobacter
samples speciated, ncj: total C. jejuni analysed. BC: before cooling, AC: after cooling. MDR: multidrug-resistant. a–d: different superscripts
in the same column with uncommon letters are different (p-value < 0.05).

Antimicrobial Susceptibility

From the 68 C. jejuni cryovials selected, 54 strains were viable after culture and
included in the antimicrobial susceptibility study. All strains analysed were resistant to at
least one out of the nine antibiotics tested. The highest percentages of AMR were found to
CIP and TE (96.3%, 52/54, both), followed by NAL (88.9%, 48/54), AMP (79.6%, 43/54),
and S (77.8%, 42/54). Moreover, the lowest percentages of AMR were found to E (57.4%,
31/54), followed by GEN (27.8%, 15/54), and finally CST (5.6%, 3/54) (p-value = 0.000). No
resistance was shown against AMC. In addition, statistically significant differences were
observed between sample type collected and antimicrobial resistance of C. jejuni strains
(p-value < 0.05) (Table 2).

Table 2. C. jejuni antibiotic resistance rates according to the antibiotic and the type of sample collected.

Type of Sample n CIP NA AMP AMC GEN S E TE CST

Faeces 8 87.5 87.5 87.5 ab 0 12.5 c 100 a 62.5 b 100 12.5
Caeca 18 100 88.9 77.8 b 0 22.2 bc 88.9 ab 55.6 b 88.9 5.6

Carcass before
cooling 14 92.9 92.9 85.7 ab 0 14.3 c 64.3 bc 42.9 b 100 0

Carcass after
cooling 11 100 81.8 72.7 b 0 54.5 b 54.5 c 63.6 b 100 9.1

Whips 2 100 100 50 ab 0 50 abc 100 a 100 a 100 0
Operator 1 100 100 100 a 0 100 a 100 a 100 a 100 0

p-value >0.05 >0.05 0.012 - 0.000 0.000 0.000 >0.05 >0.05
a–c: Different superscripts in each column means significant differences with a p-value < 0.05. n: Number of samples. The resistance was
determined by disc diffusion. CIP: ciprofloxacin (5 µg); NAL: nalidixic acid (30 µg); AMP: ampicillin (10 µg); AMC: amoxicillin-clavulanic
acid (3 µg); GEN: gentamycin (10 µg); S: streptomycin (10 µg); E: erythromycin (15 µg); TE: tetracycline (30 µg); CST: colistin (10 µg).

Furthermore, a total of 96.3% (52/54) C. jejuni isolates were resistant to three or more
antimicrobial classes (Table 1). Moreover, no significant differences were found between
the sample type collected and C. jejuni MDR carriage (p-value > 0.05).

Overall, the 13 different resistance patterns observed were summarised in Figure 2.
The combination of QNL-βLAC-AMG-MCL-TET (35.2%, 19/54) was the most frequently
observed pattern, followed by QNL-βLAC-AMG-TET (29.6%, 16/54).
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4. Discussion

The acquisition of MDR is today one of the most important public health concerns. In
addition, campylobacteriosis is the main prevalent zoonosis in Europe [10], transmitted
mainly by meat consumption. This study demonstrated that MDR C. jejuni accounted
for 75% of the strains isolated at the animal’s arrival to the slaughterhouse (lairage pens),
and at the end of processing 100% of the isolated C. jejuni were MDR, constituting a great
concern for consumers [42].

The high level of MDR strains detected in this study could be explained due to the
absence of a mandatory Campylobacter control programme in swine production [43]. More-
over, stressful management practices, such as transport or long stays in lairage pens, may
promote higher rates of bacterium increase due to a disturbance in the intestinal func-
tions [17]. In addition, contaminated trucks or contaminated lairage pens from previous
batches may induce MDR C. jejuni cross-contamination with free-batches [21,44].

In this study, the bacterium was found mainly in swine caecal samples collected.
These findings are in agreement with previous results reported by Scanlon et al. [44],
with a prevalence of 26% of Campylobacter in caecal samples after studying three Irish
slaughterhouses. Moreover, there is a strong association between Campylobacter status of
the batch upon arrival at the slaughterhouse and swine carcass contamination [21]. In this
sense, Abley et al. [45] described the association between the contamination of the meat
product with the shedding of Campylobacter before slaughter. Indeed, the authors found
a prevalence of 90% in faeces, which is somewhat higher than our findings (75%) [45].
During evisceration, the carcass contamination could take place by direct contact with
intestinal content and could also be re-contaminated after the scalding step [20,22,25]. On
the other hand, the percentage of Campylobacter carcass contamination before processing
was within the range reported previously, from 50 to 100% [31,46]. Nevertheless, previous
researches showed higher prevalence of Campylobacter in swine carcasses, due to its ability
to survive at refrigeration temperatures [45,47]. Moreover, this study showed a significant
reduction of Campylobacter after cooling, although C. jejuni remained constant despite the
refrigeration temperature. This fact could be explained because MDR C. jejuni has been
demonstrated to be more resistant than other Campylobacter species, due to its virulence
and survival capacity [48].
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Although the bacterium is extremely sensitive to the extra-intestinal environment, in
this study, it has been isolated from operators, whips, and knives. These results could be
explained by the fact that Campylobacter has been described as being able to survive adverse
condition due to its biofilm forming ability, promoting the maintenance of foodborne
pathogens throughout the food chain [20,21,49]. In this sense, a recent study of different
Italian swine slaughterhouses showed similar results in the carcass contamination before
cooling (50.4%) [31]. The authors of the study related them with the cross-contamination
during the slaughter process between batches [31]. Conversely, regarding water sam-
ples, Trigui et al. [50] showed water could be an important source of Campylobacter cross-
contamination in the slaughter line, although our results demonstrated that water is not a
risk under our production conditions.

One of the most relevant outcomes of this study is the level of AMR isolated from
swine, the most frequently resistance patterns observed being QNL-βLAC-AMG-MCL-TET
and QNL-βLAC-AMG-TET. In this line, the latest data from the European Food Safety
Authority [12] highlighted the presence of very high levels of resistance against CIP, NA,
and TE in Campylobacter isolates from humans and pigs, and this situation is notable
in Spain. These results are in line with those reported by Mencía-Ares et al. [18], who
highlighted the importance of AMR to TET, AMG, and QNL in Campylobacter isolates from
Spanish swine farms. Although antibiotic treatments these days are controlled in the field,
this fact could be explained due to the widespread use of antibiotics in animal production to
treat infections in recent years [51–53]. In the case of poultry production, Notario et al. [54]
found a percentage of resistance for C. jejuni below 40%, and in the same line, Rivera
et al. [55] observed a resistance below 12%, which highlights the importance of C. jejuni and
its AMR in the swine production system. This fact is critically important because QNL (e.g.,
CIP and NA) are drugs of choice for invasive campylobacteriosis infections in humans, and
MCL (e.g., E) are the second choice [56], being implicated in reduced treatment effectiveness
against Campylobacter [56]. Moreover, fluoroquinolone-resistant Campylobacter has been
included in the WHO priority list of 12 antibiotic-resistant bacteria [7]. In addition, in Spain,
levels of Campylobacter resistant to E in humans are among the highest in Europe, behind
only Portugal and Malta [56]. The same results have been observed in swine production,
where these resistances have increased since 2009; however, it should be noted that these
data refer to C. coli [56].

On the other hand, the level of resistance to GEN and CST in swine C. jejuni strains
was relatively low. Currently, PMX such as CST represents the last line of defence against
resistant severe infections in humans [57]. Thus, it is severely restricted for animal infection
treatments, and it is expected that resistance against this antibiotic will decrease in the
coming years [58,59].

It is important to highlight that MDRs are important from a public health point of view,
but also animal health [60,61]. The high presence of MDR observed at the slaughterhouses
also indicates the therapeutic limitations that veterinarians may find on farms to treat
common diseases. Furthermore, strains with MDR can lead to horizontal transmission of
the resistances between the intestinal microbiota of animals and the environment, causing
the MDRs to persist between batches [61,62].

5. Conclusions

In conclusion, there is a high level of MDR C. jejuni swine batch contamination upon
arrival at the slaughterhouse, as well as at the end of the slaughtering process. The
difficult control of the bacteria during processing makes it necessary to implement a control
programme to reduce the bacterium and their AMR in on-farm and at slaughterhouse
level. Further studies are needed to highlight the importance of MDR C. jejuni in the swine
sector, to assess the bacteria presence in the carcasses, and therefore, to assess the risk for
consumers.
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