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Abstract: With the rapid development of positioning techniques, a large amount of human travel
trajectory data is collected. These datasets have become an effective data resource for obtaining urban
traffic patterns. However, many traffic analyses are only based on a single dataset. It is difficult
to determine whether a single-dataset-based result can meet the requirement of urban transport
planning. In response to this problem, we attempted to obtain traffic patterns and population
distributions from the perspective of multisource traffic data using license plate recognition (LPR)
data and cellular signaling (CS) data. Based on the two kinds of datasets, identification methods of
residents’ travel stay point are proposed. For LPR data, it was identified based on different vehicle
speed thresholds at different times. For CS data, a spatiotemporal clustering algorithm based on
time allocation was proposed to recognize it. We then used the correlation coefficient r and the
significance test p-values to analyze the correlations between the CS and LPR data in terms of the
population distribution and traffic patterns. We studied two real-world datasets from five working
days of human mobility data and found that they were significantly correlated for the stay and move
population distributions. Then, the analysis scale was refined to hour level. We also found that
they still maintain a significant correlation. Finally, the origin–destination (OD) matrices between
traffic analysis zones (TAZs) were obtained. Except for a few TAZs with poor correlations due to the
fewer LPR records, the correlations of the other TAZs remained high. It showed that the population
distribution and traffic patterns computed by the two datasets were fairly similar. Our research
provides a method to improve the analysis of complex travel patterns and behaviors and provides
opportunities for travel demand modeling and urban transport planning. The findings can also help
decision-makers understand urban human mobility and can serve as a guide for urban management
and transport planning.

Keywords: urban transport planning; human mobility; data mining; data analysis

1. Introduction

Obtaining urban traffic patterns and the population distribution of urban residents is
the basis for urban transport planning. As a result of rapid urbanization and intelligen-
tization, the population distribution, travel demand, and travel characteristics of cities
are quickly changing. However, the traditional survey methods can only reflect the traffic
characteristics of a city within a fixed period of time. It is difficult to adapt these methods
to the rapid development of cities due to their long cycles and low sample sizes. This
brings challenges to urban transport planning and management. To fully understand the
urban traffic characteristics, urban management departments and service agencies need
to acquire urban travel characteristics data at low cost and high frequency to support the
needs of urban management and planning. Meanwhile, with the rapid development of
information collection technology, the acquisition of large-sample, multi-dimensional, and
fine-grained information is becoming easier and easier.
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New traffic data collection methods are generally divided into four categories [1]:

(1) Location-based traffic information acquisition techniques, such as floating cars with
global positioning systems (GPSs). It is collected by vehicles equipped with GPSs and
communication devices driving on the road.

(2) Radio frequency-based traffic information acquisition techniques, such as radio fre-
quency identification (RFID). RFID generally consists of readers, tags, and back-end
systems. Each label has a unique identification mark, which is often pasted or bound
to the body for tracking and management.

(3) Video-based traffic information acquisition techniques, such as license plate recogni-
tion (LPR) systems. LPR data are collected through the smart bayonet system. The
smart bayonet system is composed of front-end equipment, communication transmis-
sion network and back-end monitoring and management platform. When a vehicle
passes through the system, it will be photographed and recorded.

(4) Sensor-based traffic information acquisition techniques, such as microwave radar,
inductive loop detectors, and magnetometers. A set of ground-induction coils are
buried under the road, and the driving situation of the vehicle is obtained by detecting
the change of the coil inductance.

However, data acquired by location-based traffic information acquisition technology,
such as GPS data, can only be collected on vehicles equipped with GPSs and communication
devices, such as taxis and online car-hailing. RFID data can only be collected by vehicles
equipped with RFID equipment. They are relatively small as a sample size. Sensor-based
traffic information acquisition techniques, such as inductive loop detectors, can only collect
the passing record of the vehicle, but cannot collect any other characteristics, such as vehicle
color, license plate number, etc.

In recent years, automatic license plate recognition technology has been actively de-
veloped and promoted, and a huge amount of LPR data has been obtained. An LPR system
is a system that uses advanced photoelectric technology, image processing technology, and
pattern recognition technology to take images of each passing vehicle and automatically
recognize vehicle license plates. The LPR system is usually installed a few meters away
from the highway. When a vehicle is detected at a certain distance in front of the device,
the system begins to capture images of the vehicle. The image recognition algorithm is
used to identify the vehicle license plate number, vehicle type, color, and other vehicle
information. The data are then stored in the database and finally uploaded to the traffic
administration data center [2].

Scholars have conducted research based on LPR data. The LPR system is essentially
a network composed of cameras, which can take pictures of each passing vehicle and
automatically convert them into a detailed spatiotemporal record to capture vehicle data
in real time with high precision and wide coverage. The information in the LPR record
includes the detector ID (representing different camera mounts), the license plate number
(vehicle ID), the direction of the vehicle, and the time stamp when the camera captured
the vehicle. Therefore, the LPR system collects the spatiotemporal information of each
vehicle and reconstructs the travel track of each vehicle by linking a series of spatiotemporal
records [3]. As an important input for traffic demand management, the method of obtaining
the origin–destination (OD) matrix based on LPR data has become a popular research area.
In 2000, Dixon et al. proposed a model to estimate the OD information of vehicles based
on LPR data. The trajectory data left by the vehicle in the LPR system were used to
analyze the travel characteristics, and the OD matrix was obtained, which was verified on
a highway [4]. Antoniou et al. directly estimated the dynamic OD using the OD matrix
obtained from LPR data [5]. Sun et al. obtained the vehicle’s path node and travel time by
recognizing the vehicle license plate, completed the vehicle information with the missing
path through the Bayesian estimation model, obtained the initial OD matrix based on the
LPR data, and then corrected the initial OD matrix using the road traffic flow to obtain the
final OD matrix [6]. Zhou et al. used the vehicle trajectory data obtained by the Chongqing
RFID system to obtain vehicle travel OD information and compared the data with resident
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travel survey data. The vehicle travel stay point recognition, OD segmentation, and the
vehicle behavior portrait were used to obtain the vehicle OD [7]. Apart from obtaining
the OD, LPR also plays an important role in estimating the traffic flow [8], which is
essential for a wide range of intelligent transportation system (ITS) applications, such
as carpooling [9], travel behavior clustering [10], queue length estimation [11,12], traffic
state estimation [13], and trajectory reconstruction [14]. Thus, it can be seen that LPR has
become an indispensable data resource in transportation research and plays a crucial role
in promoting the development of intelligent transportation.

Another data source that provides an emerging and promising source of information
for urban transport planning is cellular signaling (CS) data. CS data are communication
data between mobile phone users and the transmitting base station or microstation. As
soon as the mobile phone is turned on, CS data begin to be generated. Due to its large
sample size, long observation period, short sampling period, and strong followability,
CS data have attracted widespread attention from researchers. The information in a CS
data record includes the data record number, base station location area code, traveler ID
(unique identity), base station identification code, communication time, GPS longitude,
GPS latitude, traveler gender, and traveler age. Therefore, the CS data contain the location
information of each user, allowing the trajectories of each traveler to be reconstructed by
summarizing a series of spatiotemporal records. Apart from individual mobility research,
CS data play an important role in calculating the regional population, estimating OD flows,
constructing traveler profiles, and analyzing the spatiotemporal distribution of an urban
population.

CS data have stimulated researchers to review the conventional research questions
about human mobility at an unprecedented spatiotemporal scale, with contents including,
but not limited to, traffic demand analysis and control, dynamic population spatial dis-
tribution analysis, road spatiotemporal uniformity management [15–17], occupation and
residence commuter channel analysis, external passenger flow channel analysis, transport
mode detection [18], large passenger flow analysis [19], and urban arterial traffic status
detection [20]. An in-depth understanding of human spatiotemporal flow patterns and
their interactions with the urban environment can be beneficial for various applications,
from urban planning and transportation to public health [21]. The human mobility patterns
are closely related to the population distribution and urban traffic patterns. Some attempts
have been made to analyze urban traffic. Jiang et al. used CS data to obtain the daily
activities and travel characteristics of Singapore residents [22]. Alexander et al. obtained
the travel matrix of residents in Boston based on CS data and inferred the travel purpose
of residents based on historical information [23]. Gao et al. used CS data to extract the
characteristics of the travel time and the space distribution of Beijing residents [24]. Liu et al.
analyzed how urban land use influences commuting flows in Wuhan from the perspective
of CS data [25].

Based on the above studies, LPR and CS data have become indispensable forms
of data in transportation research. However, their research mainly has the following
shortcomings: (1) Owing to the costs or difficulty in data acquisition, many scholars’ traffic
planning, OD analysis, and other traffic studies were only based on individual datasets.
An individual dataset has certain limitations in analyzing traffic patterns and population
distributions. (2) Although many scholars have conducted a lot of research using CS and
LPR data, they did not distinguish between stay population and move population. In
transportation research, the move population and stay population often have different
spatial and temporal patterns. Therefore, the identification of the move population and
stay population is of great importance in transportation research. (3) Owing to differences
in the data collection rules, data density, and data acquisition methods of different data
sources, it is difficult to determine whether there are significant differences in urban traffic
analysis results obtained using different data sources.

To deal with these problems, the CS and LPR datasets from five working days in Fos-
han, China, were used to analyze the population distribution and traffic patterns that are of
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most concern for urban transportation planning. First, based on the different characteristics
of CS and LPR data, algorithms were designed to identify the move population and stay
population. Then, the move population and stay population distribution were obtained.
Finally, the correlation degrees of the results were analyzed in terms of the correlation
coefficient and the significance level.

The remainder of this article is organized as follows. The LPR and CS datasets are
described in Section 2, respectively. The data preprocessing is also introduced in this
section. The LPR- and CS-based stay-point recognition methods are proposed in Section 3,
respectively. The correlation indices are also introduced in this section. The results and
discussion are presented in Section 4. Finally, Section 5 presents conclusions and future
research directions.

2. Data Description and Preprocessing

The study area of this research was Foshan, which is located in the southeastern part
of China. Currently, the total area of Foshan is approximately 3800 square kilometers and
is divided into five administrative districts, which can be further classified into 32 adminis-
trative streets/towns. The permanent population of Foshan is 7.35 million, of which the
registered population is 3.85 million. We used the CS and LPR data of five working days
from July 16 to 20, 2018, in Foshan to conduct this study. The number of mobile phone base
stations of operators providing CS data was about 5657, and the number of LPR systems in
Foshan was 1037. The road network and distribution of the LPR systems and base stations
in Foshan are shown in Figure 1, in which the lines represent the road network in Foshan,
the colored dots represent the LPR systems, and the colored pentagons are cell phone base
stations. As shown in Figure 1, the distribution of cell phone base stations and LPR systems
covered almost all of Foshan city. Therefore, it is feasible to use the two datasets to analyze
urban traffic patterns and the population distribution.

Figure 1. Road network and distribution of license plate recognition (LPR) system and cell phone
base station in Foshan.
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2.1. License Plate Recognition (LPR) Data

We used encrypted LPR data collected from Foshan, China. The LPR data are en-
crypted using MD5 algorithm. It is a hash algorithm. It has two important characteristics:
(1) the value of plaintext data after hashing is fixed; (2) the result of hashing any piece of
plaintext data must always be the same. In the dataset, each encrypted data point repre-
sented a unique license plate number. In summary, the dataset contained over 3.46 million
records from 1.49 million vehicles. According to incomplete statistics, by the end of 2018,
the number of vehicles in Foshan was over 2.53 million. Thus, the dataset covered over
half of the vehicle ownership in Foshan. Table 1 shows the format of the raw LPR data
collected by the LPR system in Foshan. As shown in Table 1, the vehicle ID was the unique
encrypted identity code of a vehicle. The record time was the exact time at which a vehicle
passed. The address represents the installation position of an LPR system. The drive
direction indicates the direction in which a vehicle was driving. The detector ID denotes
the identifier of the detector. Longitude and latitude represent the specific location of the
LPR system.

Table 1. Primary fields in the LPR dataset.

Fields Example Value

Vehicle ID 9og0bdur59f8b096
Record time 2018-07-18 12:15:56

Address Gaoming Road, Gaoming Bridge (East to West)
Drive direction 1

Detector ID 165897
Longitude 112.9625
Latitude 23.5614

Owing to multiple factors such as weather, visibility, light, and technology, some dirty
data inevitably appeared in the LPR system during collection. These dirty data needed
to be pre-processed to improve the accuracy of traffic analysis. The principles of the data
preprocessing were as follows:

(1) Only the vehicle ID, record time, longitude, and latitude were reserved for this study.
(2) Records with blank fields were deleted.
(3) Records with the wrong license plate numbers were removed.

2.2. Cellular Signaling (CS) Data

The CS data used in our study were acquired from a major mobile phone operator
in China. This dataset covered the footprints of nearly 3.27 million mobile phone users
within five workdays, which was close to 85% of the registered population and 44.5% of the
permanent population in Foshan. It contained more than 2168 million records. Generally,
traditional resident travel surveys can only cover about 1% of the urban population [22].
Therefore, the coverage of our data is much larger than that of traditional traffic surveys.

Table 2 shows the format of the raw CS data collected by the mobile operator. The user
ID was the unique encrypted identity code of a mobile phone. The cell ID represented the
base station identifier. The record time was the exact time of the CS data record. Longitude
and latitude represent the position of the corresponding cell phone tower to which the
phone was connecting. Age and gender are the personal information of the registered
user. For privacy protection, the user ID and cell ID were encrypted before being used for
analysis.
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Table 2. Instance of an individual’s cellular signaling (CS) data records in a day.

User ID Cell ID Record Time Longitude Latitude Age Gender . . .

8s5h37jdrt4rf E3g5y7k 00:14:21 112.1255 23.2351 25 M . . .
8s5h37jdrt4rf E3g5y7k 00:45:36 112.1255 23.2351 25 M . . .
8s5h37jdrt4rf E3g5y7k 00:58:13 112.5247 23.5832 25 M . . .
8s5h37jdrt4rf E3g5y7k 01:19:05 112.1255 23.2351 25 M . . .
8s5h37jdrt4rf . . . . . . . . . . . . . . . . . . . . .
8s5h37jdrt4rf E3g5y7k 23:54:29 112.5321 23.6523 25 M . . .

Owing to the influence of various factors, such as the weather, obstacle blocking, and
signal strength, some dirty data will appear in the CS data, which must be cleaned. Data
cleaning mainly included the following steps:

(1) Only the following data fields were retained: user ID, record time, longitude, and
latitude. The other fields were removed during preprocessing.

(2) The dirty data of the same user at different locations at the same time were deleted.
(3) Records with blank fields were removed.
(4) For records that appeared continuously in the same position, only the first and last

records were kept.

3. Methodology

To study the dynamic distribution of urban residents, mobile phone users and vehicles
were divided into move and stay states. The move state means that the user was in the
process of a trip, while the stay state indicates that the user was staying in a certain location
to engage in work, study, leisure, or entertainment activities. In contrast to the moving state,
people are usually in the staying state for most of the day. The move population was mainly
used to describe the characteristics of population mobility in the region, while the staying
population expressed the common characteristics of crowd gathering. By differentiating
the spatial and temporal information, we can further understand the differences in the
functional use of the city by the population.

3.1. Stay Point Recognition Algorithm Based on Different Speed Thresholds

The identification of the stay points of the vehicle using the LPR data can be divided
into two cases: (1) the end point of the previous trip (EPPT) and the start point of the next
trip (SPNT) are in different LPR systems; (2) the end point of the previous trip and the start
point of the next trip are the same LPR system. The identification of the staying locations
in these two cases should be handled separately. The basic idea of stay point recognition is
to judge whether the vehicle stays between two track points based on its speed [26].

In the first case, the steps to identify the stay point are as follows:
Step 1: First we use ArcGIS path matching algorithm to match the LPR system to the

road. Where ArcGIS provides users with a scalable, comprehensive geographic information
system platform. We then obtain the shortest path between LPR systems by requesting the
Baidu Map API, which is a set of free application interfaces for developers based on the
Baidu Map service, to establish the shortest distance matrix of the LPR systems.

Step 2: Based on the time series of the passing records of a vehicle, the timestamp and
location of adjacent records are collected, and the driving speed is calculated based on the
shortest distance and time difference:

vdrv =
dsht

tdown − tup
(1)

where vdrv represents the driving speed of the vehicle, dsht denotes the shortest distance
obtained from step 1, and tdown and tup are the timestamps of the downstream and the
upstream LPR systems, respectively.
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Step 3: Based on the travel times between different LPR systems in the statistical time
window T, the lower speed limit vlower is calculated, and the lower speed limit matrix is
obtained. As the volatility of the traffic flow within a day leads to fluctuations in the travel
time, the abnormal value during peak hours may be normal during peak hours. Therefore,
a statistical time window was set, and the travel time within the same time window was
considered to be stable. We set T from 00:00 to 06:00 as 60 min and T from 06:00 to 24:00 as
30 min. vlower was the maximum value of the lower 5% of the travel speeds between two
LPR systems and 5 km/h:

vlower = max{v5%, 5} (2)

Step 4: If the driving speed vdrv between two LPR systems was smaller than vlower,
we considered the vehicle to have stopped between the two LPR systems and marked the
previous LPR system as the stay point; otherwise, it was considered a moving point.

In the latter case, i.e., when the end point of the previous trip and the start point of the
next trip are in the same LPR system, if the time difference (TD) between two consecutive
records was greater than 20 min, we defined it as a stay point.

The above algorithm can be summarized by Algorithm 1.

Algorithm 1 Stay point recognition algorithm based on different speed thresholds

Input: LPR data of a vehicle, denoted as Olpr
Output: LPR Stay points (Osp) and Move points (Omp)
For each point in Olpr do:

If EPPT == SPNT:
If TD > 20 min: Osp ← SPNT
Else: Omp ← SPNT

Else:
If vdrv > vlower: Omp ← SPNT
Else: Osp ← SPNT

End for

3.2. Spatiotemporal Clustering Algorithm Based on Time Allocation

Different from traditional k-means and density-based spatial clustering of applications
with noise (DBSCAN) clustering algorithms, since different mobile phone users have
different spatiotemporal travel patterns, we need to first calculate the stay time of a user at
a certain base station. If the stay time exceeded the threshold tmin, the user was considered
to have stayed at the base station. Otherwise, the user may just pass by. We need to
design an algorithm to determine the potential location of the user. Hence, we proposed a
spatiotemporal clustering algorithm based on time allocation to calculate the user’s actual
stay position.

When the stay time of a user at a certain base station exceeded the threshold tmin, the
user was considered to have stayed at the base station, that is, the position of the base
station was the stay point of the user. When the user’s location switched back and forth
between different base stations in a time less than tmin, it was very likely that the user
was slowly moving or staying near the switched base stations, which was a potential stay
space–time mode. In this case, we need to calculate the user’s actual stay position, and the
calculation formula is as follows:{

lngnew = ∑n
i=1

ti
tn−t1

lngi

latnew = ∑n
i=1

ti
tn−t1

lati
(3)

In the formula, lngnew and latnew represent the longitude and latitude of the stay point,
t1 and tn represent the timestamps of the first and last points, respectively, and ti denotes
the stay time at the ith base station.

Based on Equation (3), we proposed a spatiotemporal clustering algorithm based on
time allocation, described as follows:
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Step1: The pre-processed CS data were input, with each user as the processing unit.
All the records of user i in one day were selected and sorted. The base stations passed by
the user i was named O1, O2, . . . , On according to the time sequence.

Step2: Points O1 and O2 were selected in sequence, and the user’s potential stay point
was calculated using Equation (3). We then obtained the new point with longitude lngnew
and latitude latnew. If both the distances from O1 to potential stay point O and from O2 to
O were less than distance threshold dmin, O1 and O2 may have constituted a stay. Three
consecutive points O1, O2, and O3 were then selected, and the new potential stay point O
was recalculated. We then reobtained the new point with longitude lngnew and latitude
latnew. If the distance from O1 to O, from O2 to O, and from O3 to O were less than dmin,
then O1, O2, and O3 may have constituted a stay. By analogy, when n consecutive points
O1, O2, . . . , On were selected, and there was a point whose distance from O was greater
than dmin, the loop stopped.

Step 3: The time interval from O1 to On−1 was calculated. If the time interval was
greater than the time threshold tmin, it was then considered to constitute a stay. The
longitudes and latitudes of the points O1, O2, . . . , On−1 were replaced with the longitude
and latitude of O, and they were marked as a stay position.

Step 4: If the time interval was smaller than the time threshold tmin, it could not
constitute a stay. Point O1 was marked as a moving point. Two points O2 and O3 were
selected in turn, and the process returned to step 2. The loop was continued until all points
of user i were traversed.

The above algorithm can be summarized by the following flowchart (see Figure 2).

Figure 2. The flowchart of spatiotemporal clustering algorithm based on time allocation.

In Figure 2, Oi and Oj+1 denote the ith and j + 1th point of user, respectively. doi
represents the distance from Oi to potential stay point O. Omv is the move point dataset
and Osp is the stay point dataset. The variables tmin and dmin are the time threshold and
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distance threshold, respectively. lngnew and latnew are the longitude and latitude of potential
stay point calculated by Equation (3).

3.3. Correlation Index

In traffic analysis, the commonly used spatial analysis unit is the traffic analysis zone
(TAZ). Thus, it is necessary to count the number of users/vehicles of two types (move
and stay) in the TAZ throughout a day. To compare the calculation results of different
datasets, the proportion of TAZ users/vehicles was used instead of the absolute number.
The calculation method was as follows:

Pi,Type =
Ni,Type

∑n
i Ni,Type

, Type = {stay, move} (4)

where Pi,Type represents the proportion of users of each type in the TAZ, Type is either stay
or move, Ni,Type represents the number of users of each type in TAZ i, and n is the number
of TAZs.

3.3.1. Correlation Coefficient

To quantitatively describe the differences in the population distribution and urban
traffic pattern calculated using the two datasets, the correlation coefficients and significance
levels were used as indicators. Correlation is a non-deterministic relation, and the corre-
lation coefficient is one of the indicators used to measure linear correlations between the
variables. The Pearson correlation coefficient (defined as r) is used to measure the degree
of correlation between two variables. It is generally believed that when 0 < |r| ≤ 0.3, the
two variables are weakly correlated; when 0.3 < | r| ≤ 0.5, the two variables are slightly
correlated; when 0.5 < |r| ≤ 0.8, the two variables are significantly correlated; when
0.8 < |r| ≤ 1, the two variables are highly correlated. r can be calculated by the following
formula:

r =
∑n

i=1
(

Pi,Type,A − PType,A
)(

Pi,Type,B − PType,B
)√

∑n
i=1
(

Pi,Type,A − PType,A
)2

∑n
i=1
(

Pi,Type,B − PType,B
)2

(5)

where r is the Pearson correlation coefficient of the two datasets, n denotes the number of
TAZs, Pi,Type,A and Pi,Type,B are the proportion of user types in the TAZs in datasets A and
B, respectively, PType,A and PType,B denote the average proportion of user types in the TAZs
in datasets A and B, respectively.

3.3.2. Significance Test

The correlation coefficient can only show that there is a correlation between the LPR
and CS data in these five working days. Since this is only a sample, there may be systematic
sampling errors in the correlation coefficients obtained. When the overall correlation
coefficient is 0, the calculated correlation coefficient may not be 0 due to sampling error.
Therefore, to judge whether the correlation coefficient is meaningful, it must be compared
with the overall correlation coefficient. This requires hypothesis testing on r to determine
whether it was caused by sampling errors or there was indeed a correlation between the
two variables. A significance test is based on a hypothesis related to the parameters of
the population (random variables) or the distribution form of the population formed in
advance, and the sample information is used to judge whether the hypothesis is reasonable,
i.e., to judge whether the true status of the population is significantly different from the
original hypothesis. The significance test of the Pearson correlation coefficient is the t-test.
Therefore, t-test was used in this analysis, and the steps were as follows:

Step 1: A hypothesis was established.

H0: r = 0, LPR and CS data are linearly independent;
H1: r 6= 0, LPR and CS data linearly related.

Step 2: A significance level was set.
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The significance level was established by convention. Generally, α = 0.05, or 0.01. This
means that the error rate of the significance test must be less than 5% or 1%, respectively
(in statistics, events with a probability of less than 5% in the real world are usually called
“impossible events”). We defined a significance level of α = 0.05 in this study.

Step 3: t-test statistics were calculated.
The t-test statistic can be calculated using the following formula:

t =
|r|
√

n− 2√
1− r2

(6)

By calculating t, we can obtain the p-value. If the observed value of the statistic t
obtained from the sample is t0, then the p-value can be obtained by the following formula:

p− value = P{|t| ≥ |t0|} = 2 ∗ P{t ≥ |t0|} (7)

The p-value reflects the probability of an event occurring. In statistics, the p-value
is obtained based on the significance test method. Generally, p < 0.05 is considered to be
statistically different, p < 0.01 is considered to be statistically significant, and p < 0.001
is considered to be extremely statistically significant. This means that the probabilities
that the difference between samples is caused by sampling error are less than 0.05, 0.01,
and 0.001, respectively. The p-value cannot assign any importance to the data, only the
probability of an event occurring. Since the calculation of the p-value is not the focus of
this article, readers can refer to the relevant literature [27].

4. Results and Discussions
4.1. Correlation Analysis of All-Day Population Distribution

The OD recognition methods proposed in Section 3 were used to calculate the stay and
move populations and to compare the urban population distribution of the two datasets.
We used the 32 administrative streets/towns in Foshan as TAZs. The average area of
the TAZ was 118.75 square kilometers, the average permanent population of the TAZ
was 229,700, and the average registered population of the TAZ was 120,300. The results
are shown in Figure 3. Figure 3a represents the all-day stay population distribution and
Figure 3b denotes the all-day move population distribution.

Figure 3. All-day population distributions with traffic analysis zone (TAZ) level. (a) All-day stay population distribution;
(b) all-day move population distribution.

As shown in Figure 3, although the two datasets were different, their user/vehicle
distributions were basically the same. The calculated r value of the stay population was
0.77, and the p-value was 2.32 × 10−7. The r value of move population was 0.74, and
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the p-value was 1.39 × 10−6. Since the r values of the stay and move populations were
both greater than 0.5 and less than 0.8, namely, 0.5 < |r| ≤ 0.8, the LPR and CS data were
considered to be significantly correlated. Furthermore, the p-values of the stay and move
populations were both less than 0.05. Therefore, the null hypothesis H0 was rejected, and
the LPR and CS data were considered to be significantly related, that is, the significance
test was passed.

4.2. Correlation Analysis of Per-Hour Population Distribution

To further analyze the difference between the LPR and CS data in traffic patterns, the
time scale was refined to the hour level. The results are shown in Figures 4 and 5. The move
and stay populations of the LPR and CS data were relatively small between 01:00 and 07:00.
This showed that most mobile phones were turned off during this time period or remained
at the same position for a long time. There were fewer vehicles traveling during this time
period, which is consistent with typical human behavior. For the move population, the
morning peak was identified readily by the CS data, while the evening peak was not as
easily identified. However, the move population identified by the LPR produced a morning
peak, noon peak, and evening peak, which showed that many workers went home for
lunch at noon. This is also consistent with the typical travel behaviors in small cities. As
this fraction of workers in the CS data was only a minority, there was no noon peak in the
CS data. The stay population identified by the CS data was evenly distributed in other
time periods except during the time window of 01:00–07:00, where the stay population
was lower. The stay population identified by the LPR also produced a morning peak, noon
peak, and evening peak. This was due to the mechanism of data generation. For CS, data
were collected regardless of whether the user was traveling or not. For the LPR, data were
collected only when the vehicle was traveling. Only when the vehicle was traveling could
it be recognized as a stay. Therefore, this phenomenon agreed the typical behaviors of
urban vehicle travel.

The stay and move populations identified by the CS were significantly higher in the
00:00–01:00 time window than in the 01:00–06:00 time window. In response to this problem,
the time when the first CS record appeared was counted. The result is shown in Figure 6.
The proportion of users whose records appeared between 00:00 and 01:00 was as high as
46.38%. The reason for this phenomenon may have been that (1) most mobile phone users
do not sleep between 00:00 and 01:00, and (2) the data collection mechanism of the base
station was involved.

Figure 4. Hourly move population distribution for TAZ levels. (a) CS hourly move population distribution; (b) LPR hourly
move population distribution.
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Figure 5. Hourly stay population distribution for TAZ levels. (a) CS hourly stay population distribution; (b) LPR hourly
stay population distribution.

Figure 6. Proportional distribution of the first record at the hour level.

The method proposed in Section 3.3 was used to calculate the correlation coefficients
and p-values of the move and stay population distributions, and the results are shown
in Figure 7. The correlation coefficient r of the move population was between 0.73 and
0.83, the r value of the No. 20 TAZ was as high as 0.83, which was in the highly correlated
range. The remaining r values were in the range of 0.5 < |r| ≤ 0.8, which was a significant
correlation. The p-values were all less than 0.05, so they passed the significance test. For
the stay population, the r values were between 0.69 and 0.81, and the r value was greater
than 0.8 in the No. 20 TAZ, which was in the highly correlated range. The remaining r
values were between 0.5 and 0.8, corresponding to significant correlations. Similarly, all
p-values were less than 0.05, so they also passed the significance test.

Figure 7. Population correlation analysis for TAZ levels. (a) Move population correlation; (b) stay population correlation.
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4.3. Travel Correlation Analysis

Obtaining the OD matrix between TAZs is the basis for constructing a traffic model.
Based on the OD recognition methods proposed in Section 3, the LPR and CS OD matrices
were obtained for various TAZ levels. For a better comparison, similar to the population
distribution, the ratio of the travel volume between TAZs to the total travel volume was
used instead of an absolute number to analyze the differences in the OD values between the
LPR and CS data. As shown in Figure 8, the OD matrices calculated by the LPR and CS data
were very similar. Most users/vehicles moved in the same TAZ, and only a few moved
across different TAZs. The OD matrix correlation coefficient r and p-value of the LPR and
CS data were also calculated. The results, which are shown in Figure 9, showed that 59.36%
of the r values were in the 0.8 < |r| ≤ 1 range, 18.75% were in the 0.5 < |r| ≤ 0.8 range,
9.38% were in the 0.3 < |r| ≤ 0.5 range, and 12.5% were in the 0.1 < |r| ≤ 0.3 range.
All the p-values, except for those in the No. 2, 9, 11, and 31 TAZs, were less than 0.05.
Therefore, in the No. 2, 9, 11, and 31 TAZs, the correlations between the CS and LPR data
were poor. The reason for the poor correlations was that there were fewer LPR systems
in these TAZs. Generally, LPR systems were installed densely in urban areas with heavy
traffic and sparsely installed in urban suburbs. As a result, the number of vehicle trips in
these TAZs was lower, and the individual characteristics of the high-frequency travelers
readily affected the calculation results.

Figure 8. TAZ level origin–destination (OD) matrix from the LPR and CS data for one day. (a) CS OD matrix; (b) LPR OD matrix.

Figure 9. OD matrix correlation of LPR and CS data for TAZ levels.

5. Conclusions

Compared with traditional survey methods, LPR and CS can quickly obtain the
population distribution and travel patterns of urban residents. However, most of the
analyses of the population distribution and urban traffic patterns are based on a single
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dataset. It is impossible to know whether there are differences in the analyses between
different datasets. In addition, they usually do not distinguish between move population
and stay population. It is critical to distinguish them in transportation research. As a result,
there is no guarantee that the calculation results based on a single datum can meet the
accuracy requirements of urban traffic analysis. To solve this problem, five working days
of the LPR and CS data in Foshan City were examined, and different stay point recognition
methods were used to calculate the population distribution and traffic patterns commonly
used in urban traffic planning. For LPR data, different stay point recognition methods were
designed according to whether the end point of the previous trip and the start point of the
next trip are the same. For CS data, a spatiotemporal clustering algorithm based on time
allocation is proposed to recognize stay points. Then, the correlations between the two
datasets were analyzed. The results showed that there was high similarity between the
population distribution and traffic patterns obtained from the two datasets. However, due
to the different collection mechanisms of the two datasets, the identifications of the stay
and move users/vehicles were slightly different. CS data should be collected regardless
of whether the mobile phone user is traveling or not, while LPR data should only be
collected when the vehicle is traveling. In addition, vehicle users who use mobile phones
are only a minority of mobile phone users. Therefore, although there was a noon peak in
the identification of vehicle users, since most mobile phone users do not travel at noon,
there was no noon peak in the identification of the CS data. Moreover, the coverage of the
LPR systems in some TAZs is low, and travel identification is greatly affected by individual
travel, resulting in low correlations, such as No. 2, 9, 11, and 31 TAZs.

In most cases, the results of the population distribution and traffic pattern calculated
between different traffic datasets and the extended conclusions were highly similar. The
experiment results confirm that our proposed method can learn more temporal and spatial
correlation among human mobility datasets to help urban transport planning. Our main
contributions can be summarized as follows:

(1) A spatiotemporal clustering algorithm based on time allocation was proposed to
identify stay points using cellular signaling data.

(2) Urban traffic patterns and population distribution were obtained from the perspective
of multisource traffic data.

(3) The correlation between cellular signaling data and license plate recognition data was
analyzed.

(4) The results revealed that cellular signaling data and license plate recognition data
were significantly correlated in population distribution and urban traffic patterns.

Through this data mining and analysis, it is known that under the condition that
the data quality is fully guaranteed, the fusion of different traffic datasets is more in line
with urban traffic laws for analyzing population distribution and traffic patterns. It shows
that the human travel data obtained through different data collection devices are not
independent but are significantly correlated. In our future work, we will integrate more
kinds of human mobility data for urban transport planning to support the development of
intelligent transportation systems. Meanwhile, the integration of more datasets will lead to
user privacy leakage, data privacy protection is one of our next research directions. Besides,
the same TAZ may include office areas and residential areas. The population distribution of
them must be different. Therefore, the population distribution characteristics of residential
and office areas are also the future research direction.
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