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Abstract: Sulfonylurea herbicides are widely used as acetolactate synthase (ALS) inhibitors due
to their super-efficient activity. However, some sulfonylurea herbicides show toxicity under crop
rotation due to their long degradation time, for example, chlorsulfuron. Our research goal is to
obtain chlorsulfuron-derived herbicides with controllable degradation time, good crop safety and
high herbicidal activities. Based on our previously reported results in acidic soil, we studied the
degradation behaviors of 5-dialkylamino-substituted chlorsulfuron derivatives (NL101–NL108) in
alkaline soil (pH 8.39). The experimental data indicate that addition of the 5-dialkylamino groups on
the benzene ring of chlorsulfuron greatly accelerated degradation in alkaline soil. These chlorsulfuron
derivatives degrade 10.8 to 51.8 times faster than chlorsulfuron and exhibit excellent crop safety on
wheat and corn (through pre-emergence treatment). With a comprehensive consideration of structures,
bioassay activities, soil degradation and crop safety, it could be concluded that 5-dialkylamino-
substituted chlorsulfuron derivatives are potential green sulfonylurea herbicides for pre-emergence
treatment on both wheat and corn. The study also provides valuable information for the discovery of
new sulfonylurea herbicides for crop rotation.

Keywords: sulfonylurea herbicides; chlorsulfuron; soil degradation; alkaline soil; DT50

1. Introduction

Sulfonylureas were found to have super herbicidal activities in 1987 and have been
used worldwide due to their high activity and low toxicity to mammals [1]. They are
acetolactate synthase (ALS) inhibitors and can block the first reaction in the pathway of
branched-chain amino acid biosynthesis in weeds [2].

In order to meet the large demand of food for the growing population, crop rotation
mode has been implemented in some countries, including China [3]. For example, the
wheat–corn rotation mode is widely used in northern China. However, different sulfony-
lurea herbicides show different toxicities on different crop varieties. Especially, the widely
used chlorsulfuron exhibits good safety on wheat through pre-emergence treatment, but
the residue in soil causes a certain degree of damage to the subsequent corn. The large-scale
use of sulfonylurea herbicides has caused serious economic losses [3–5]; thus, in 2014, the
Ministry of Agriculture of China suspended the field application of chlorsulfuron [6].

Previous studies have demonstrated that the soil degradation of sulfonylurea her-
bicides is pH dependent [7–10]. Fredrickson et al. reported that the DT50 (half-life of
degradation) of chlorsulfuron was 12.5 weeks in soil with pH 8.0 and 1.9 weeks at pH 5.6 [8].
Thirunarayanan et al. reported that the DT50 of chlorsulfuron was 88.5 days in soil with
pH 6.2 at 20 ◦C and 144 days at pH 8.1 [9]. Walker et al. also reported that the DT50 of
chlorsulfuron was 22 days in soil with pH 5.6 and 124 days at pH 7.4 [10]. The results
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show a strong negative correlation between DT50 and pH [10]. In addition, sulfonylurea
herbicides have a long residual period in alkaline soils.

From the point of view of “ecology-friendly pesticides”, the development of herbicides
with controllable degradation is quite important.

In our previous study, we found that 5-substituents on the benzene ring of chlor-
sulfuron had a critical influence on their degradation rates in soils. In 2016, Li firstly
concluded that electron-donating substituents accelerated the degradation, while the
electron-withdrawing ones prolonged the degradation time in acidic soil [11,12]. In order
to further study the substitute-degradation relationship, Ma and Li introduced various
N-methylamido and dialkylamino substituents on the 5-position of the benzene ring in
chlorsulfuron and studied the structure-DT50 relationship in soil with pH 5.52 [13].

The soil in most of northern China is alkaline (pH 7.5–8.5), and sulfonylureas degrade
slowly and will cause harm to other subsequent crops [10]. In 2018, Li studied the degra-
dation of dimethylamino- and diethylamino-substituted chlorsulfuron derivatives NL101
and NL106 in alkaline soil (pH 8.46) and showed that the degradation rate of NL101 and
NL106 was nearly 15–30 times faster than that of chlorsulfuron, which was too fast for
practical use [14].

It was found that most 5-dialkylamino-substituted chlorsulfuron derivatives main-
tained high herbicidal activities against both dicotyledons and monocotyledons through
pre- and post-emergence treatment (Figure 1) [13]. However, their alkaline soil degradation
and crop safety on wheat and corn have not been studied systematically.
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Figure 1. The herbicidal activity of 5-dialkylamino-substituted compounds against both dicotyledons
and monocotyledons at 15 g·ha−1. (The full data can be found in Table S1).

In order to obtain sulfonylurea herbicides with good crop safety and a controllable
degradation time for wheat–corn rotation in alkaline soil, 5-dialkylamino-substituted
chlorsulfuron derivatives that maintain high herbicidal activities were selected and system-
atically studied under alkaline conditions.

2. Materials and Methods
2.1. Instruments and Materials

All reagents for high-performance liquid chromatography (HPLC) were chromato-
graphic grade, reaction reagents were analytical grade and the water phase was double-
distilled water. TU-1810 ultraviolet–visible spectrophotometer (Persee General Analysis
Co., Beijing, China) was used to detect wavelength. HPLC data were obtained on a
SHIMADZU LC-20AT (SHIMADZU Co., Kyoto, Japan), equipped with a binary pump (Shi-
madzu, LC-20AT), a UV–vis detector (Shimadzu, SPD-20A), an auto sampler (Shimadzu,
SIL-20A), a Shimadzu shim-pack VP-ODS column (5 µm, 250 × 4.6 mm, C18 reversed
phase chromatography) connected to a Shimadzu shim-pack GVP-ODS (10 × 4.6 mm)
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guard column, a column oven (Shimadzu, CTO-20AC) and a computer (model Dell) for
carrying out the experimental data analysis. Column chromatography purification was
carried out using silica gel (200–300 mesh). A SHZ-88 thermostatic oscillator (Jintan Medical
Instrument Factory, Changzhou, China), Thermo Scientific Legend Mach 1.6 R centrifuge
(Thermo Fisher Scientific Inc, Waltham, MA USA) and SPX-150B-Z biochemical incubator
(Boxun Industrial Co., Shanghai, China) were used in the degradation experiment.

2.2. Compounds NL101-NL108

The structure of 5-substituted chlorsulfuron compounds is shown in Figure 2.
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Figure 2. The Structure of 5-dialkylamino substituted compounds.

The synthetic procedure of 5-dialkylamino-substituted compounds is shown in Figure 3,
which was reported in our previous papers [11–13].
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Figure 3. The synthesis of 5-dialkylamino-substituted compounds. Reagents and conditions: (a) H2O,
HCl, NaNO2→H2O, HCl, CuCl2, NaHSO3, −5 ◦C; (b) 28% NH3·H2O, THF, 0 ◦C→RT (room tem-
perature), overnight; (c) Fe, HCl, C2H5OH, H2O, reflux; (d) DMF-DMA (N,N-dimethylformamide
dimethyl acetal), CH2Cl2; (e) TFAA (trifluoroacetic anhydride), CH2Cl2, 0 ◦C; (f) ICH3, K2CO3,
DMF, 50 ◦C; (g) Haloalkane, K2CO3, CH3CN, reflux; (h) Haloalkane, K2CO3, CH3CN, reflux; (i) 80%
H2NNH2·H2O, C2H5OH; (j) 60% NaH, THF, 0 ◦C→RT; (k) DBU (1,8-Diazabicyclo[5.4.0]undec-7-
ene), CH3CN.
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2.3. Soil Degradation Assay

The methods for the analysis of soil degradation were reported in previous stud-
ies [13–16]. The detailed experimental procedure, including soil selection, HPLC conditions,
the establishment of standard curve, measurement of the recovery rate and the cultivation
of samples, can be found in the Supplementary Materials.

Soil degradation steps are briefly described here. Soil with pH 8.39 was selected
from Cangzhou, Hebei Province, to develop degradation studies [15]. Additionally, the
properties of tested alkaline soil are listed in Table 1. For the analysis of target compounds
by HPLC, chromatographically pure methanol, acetonitrile and ultrapure water (pH 3.0)
were used as the mobile phase. The standard curves were established at 20 ◦C with a
concentration range between 200 and 0.025 ug·mL−1. In addition, the retention time was
no more than 20 min. The concentrations of the test compounds in the conical flask were
0.5, 2 and 5 mg·kg−1 (in acetonitrile) for 20 g of soil. Each concentration of sample was
repeated 5 times. The recovery rates remained between 70 and 110% with a coefficient of
variation less than 5%. For cultivation of samples, 3.5 mL of water was added to adjust 60%
of the holding capacity of the sample. The concentration of each sample was 5 mg·kg−1

in soil and the samples were cultivated in the dark with 80% humidity at 25 ± 1 ◦C by a
biochemical incubator. Soil samples of three replicates were collected at six different times.
Finally, DT50 values were calculated according to the formula: DT50 = ln2/k. The analytical
data for alkaline soil degradation are listed in Tables 2 and 3.

Table 1. Analytical data of soils.

Soils Soil
Texture pH

Cation
Exchange
Capacity

(cmol+·kg−1)

Organic
Matter

(g·kg−1)
Soil Separation (mm)/Mechanical Composition (%)

Alkaline
soils loam 8.39 7.30 19.4

1–2 0.5–1 0.025–0.5 0.05–0.02 0.02–0.002 <0.002 0.25–0.05 2.0–0.05 0.05–0.002

0.795 2.46 2.33 7.90 28.6 28.2 29.7 35.3 36.5

Table 2. Analytical data on the recovery rates of three concentrations (in soil with pH 8.39).

Compound
HPLC Analysis Condition
(Wavelength, Flow Rate,

Mobile Phase (v:v))
Extraction Solvent (v:v)

Additive
Concentration

(mg·kg−1)

Average
Recovery Rate

(%)

Coefficient of
Variation RSD

(%)

NL101
235 nm, 0.65 mL·min−1,

CH3OH: H3PO4 (aq)
(pH 3.0) = 60: 40

CH3COCH3: CH2Cl2: THF:
H3PO4 (aq)

(pH 1.5) = 30: 10: 10: 10

5 82.42 2.39

2 72.52 1.94

0.5 73.51 1.41

NL102
235 nm, 0.90 mL·min−1,

CH3OH: H3PO4 (aq)
(pH 3.0) = 78: 22

CH3COCH3: CH2Cl2:
H3PO4 (aq)

(pH 1.5) = 40: 5: 5

5 86.87 1.27

2 84.24 2.34

0.5 81.43 2.89

NL103
235 nm, 0.80 mL·min−1,

CH3OH: H3PO4 (aq)
(pH 3.0) = 75: 25

CH3COCH3: CH2Cl2:
H3PO4 (aq)

(pH 1.5) = 40: 5: 5

5 88.74 0.74

2 87.24 0.83

0.5 97.58 2.05

NL104
235 nm, 1.0 mL·min−1,
CH3OH: H3PO4 (aq)

(pH 3.0) = 77: 23

CH3COCH3: CH2Cl2:
H3PO4 (aq)

(pH 1.5) = 40: 5: 5

5 81.41 2.46

2 89.43 1.93

0.5 86.03 2.08

NL105
235 nm, 0.80 mL·min−1,

CH3OH: H3PO4 (aq)
(pH 3.0) = 78: 22

CH3COCH3: CH2Cl2:
H3PO4 (aq)

(pH 1.5) = 40: 5: 5

5 95.94 0.71

2 99.87 1.14

0.5 105.60 1.19
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Table 2. Cont.

Compound
HPLC Analysis Condition
(Wavelength, Flow Rate,

Mobile Phase (v:v))
Extraction Solvent (v:v)

Additive
Concentration

(mg·kg−1)

Average
Recovery Rate

(%)

Coefficient of
Variation RSD

(%)

NL106
235 nm, 0.90 mL·min−1,

CH3OH: H3PO4 (aq)
(pH 3.0) = 77: 23

CH3COCH3: CH2Cl2:
H3PO4 (aq)

(pH 1.5) = 40: 5: 5

5 82.55 1.39

2 85.47 2.19

0.5 89.19 2.84

NL107
235 nm, 0.90 mL·min−1,

CH3OH: H3PO4 (aq)
(pH 3.0) = 80: 20

CH3COCH3: CH2Cl2:
H3PO4 (aq)

(pH 1.5) = 40: 5: 5

5 95.07 1.32

2 90.97 1.31

0.5 92.90 1.19

NL108
235 nm, 1.0 mL·min−1,
CH3OH: H3PO4 (aq)

(pH 3.0) = 82: 18

CH3COCH3: CH2Cl2:
H3PO4 (aq)

(pH 1.5) = 40: 5: 5

5 91.53 0.88

2 91.39 0.89

0.5 96.42 1.63

Chlorsulfuron
235 nm, 0.70 mL·min−1,

CH3OH: H3PO4 (aq)
(pH 3.0) = 62: 38

CH3COCH3: CH2Cl2:
CH3OH: H3PO4 (aq)

(pH 1.5): = 40: 5: 10: 10

5 73.54 1.09

2 73.53 2.40

0.5 81.09 1.16

Table 3. Kinetic parameters for alkaline soil (pH 8.39) degradation.

Compound Kinetic Equations of
Soil Degradation

Correlation
Coefficient (R2) DT50 (Days)

NL101 Ct = 4.95e−0.229t 0.969 3.03

NL102 Ct = 4.58e−0.123t 0.990 5.66

NL103 Ct = 4.56e−0.0895t 0.991 7.74

NL104 Ct = 3.88e−0.0476t 0.994 14.6

NL105 Ct = 4.97e−0.109t 0.999 6.38

NL106 Ct = 5.03e−0.108t 0.973 6.39

NL107 Ct = 4.92e−0.0845t 0.997 8.20

NL108 Ct = 5.10e−0.0509t 0.991 13.6

Chlorsulfuron Ct = 4.30e−0.00440t 0.990 158

The analytical data for verification of recovery rates in various concentrations are
listed in Table 2.

2.4. Crop Safety Assay

Chlorsulfuron is a crop-selective sulfonylurea herbicide for wheat fields, but its soil
residue seriously affects the growth of seedlings to the subsequent crops. We selected corn
as the subsequently planted crop after wheat and studied the safety of synthesized com-
pounds on wheat (Xinong 529) and corn (Xindan 66). The culture method was consistent
with previous reports [13,16].

Methods of plant cultivation: Artificially mixed soil (loam, vermiculite and fertilizer
soil (v/v/v = 1:1:1)) was packed into paper cups (250 mL) with a diameter of 7.0 cm. The
crop seeds (0.6 cm deep) were planted in the mixed soil. The cups were covered with plastic
wrap to keep them moist until the plants sprouted, and plants were grown at 25 ± 1 ◦C in
the green house. Plants were watered regularly to ensure the normal growth of the crops.

Wheat safety assay: The wheat was tested with the target compound through pre- and
post-emergence treatment via pot trials at the concentration of 30 and 60 g·ha−1. The fresh
weight of the cover crops was measured after 22 days for pre-emergence treatment. For
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post-emergence treatment, the safety assay began when the wheat grew to the 4-leaf stage.
After spraying the compounds, the fresh weight of the cover crops was measured after
28 days for post-emergence treatment.

In the case of corn, the detailed crop safety assay was consistent with wheat. The fresh
weight of the cover crops was measured after 16 days for pre-emergence treatment. For
post-emergence treatment, the safety assay began when the wheat grew to the 3-leaf stage.
After spraying the compounds, the fresh weight of the cover crops was measured after
23 days for post-emergence treatment.

The fresh weight of the cover crops was measured after several days, and the inhibition
rates of fresh weight were used to represent the safety of crops. The data were analyzed
through Duncan multiple comparison by SPSS 22.0.

3. Results
3.1. Soil Degradation Results

The degradation of compounds was firstly examined in alkaline soil (pH 8.39) with
chlorsulfuron as the control. The degradation curves of the first-order kinetic equation of
tested compounds were established according to the data from six samplings. The DT50 of
the test compounds was calculated, as shown in Table 3.

As shown in Table 3, the degradation data from alkaline soil (pH 8.39) indicate that
the DT50 of NL101–NL108 was reduced to 3.03–14.6 days, while the DT50 of chlorsulfuron
was 158 days (Figure 4).
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Figure 4. Degradation curve of target compounds (alkaline soil, pH 8.39). (a–i): Chlorsulfuron,
NL101-NL108.

The degradation time of NL101–NL108 was 10.8–51.8 times faster than that of chlor-
sulfuron. The DT50 of NL101 was 3.03 days, which was 51.8 times faster than that of



Molecules 2022, 27, 1486 7 of 11

chlorsulfuron. For the other compounds, DT50 of NL102 was 5.66 days (27.9 times faster),
DT50 of NL103 was 7.74 days (20.4 times faster), DT50 of NL104 was 14.6 days (10.8 times
faster), DT50 of NL105 was 6.38 days (24.8 times faster), DT50 of NL106 was 6.39 days
(24.7 times faster), DT50 of NL107 was 8.20 days (19.3 times faster) and DT50 of NL108 was
13.6 days (11.6 times faster).

3.2. Crop Safety Results

The crop safety of the target compounds is shown in Table 4 (for wheat) and Table 5
(for corn).

Table 4. Crop safety of target compounds on wheat.

Compound Concentration
(g·ha−1)

Wheat (Xinong 529)

Pre. (22 Days after Treatment) Post. (28 Days after Treatment)

Fresh Weight
g/10 Strains

Analysis of
Variance a Inhibition

(%)
Fresh Weight g/10

Strains

Analysis of
Variance a Inhibition

(%)5% 1% 5% 1%

0 3.107 ab AB - 3.576 a A -

Chlorsulfuron
30 3.301 ab A 0 3.323 a A 7.1

60 3.263 ab A 0 2.152 b B 39.8

NL102
30 3.041 ab AB 2.1 0.57 def CDE 78.8

60 2.952 abc AB 5.0 0.463 ef DE 87.0

NL103
30 2.967 ab AB 4.5 1.170 cde BCDE 67.3

60 2.786 abc ABC 10.4 1.130 cde BCDE 68.4

NL104
30 3.357 a A 0 1.700 bc BC 52.5

60 3.165 ab AB 0 1.601 bcd BCD 55.2

NL106
30 2.095 def CD 32.6 1.137 cde BCDE 68.2

60 2.025 def CD 34.8 0.870 cdef CDE 75.7
a Among the averages, the same letter indicates that there was no significant difference, and different letters
indicate that there was a significant difference.

Table 5. Crop safety of target compounds on corn.

Compound Concentration
(g·ha−1)

Corn (Xindan 66)

Pre. (16 Days after Treatment) Post. (23 Days after Treatment)

Fresh Weight
g/5 Strains

Analysis of
Variance a Inhibition

(%)
Fresh Weight g/5

Strains

Analysis of
Variance a Inhibition

(%)5% 1% 5% 1%

0 11.599 a AB 9.214 a A -

Chlorsulfuron
30 7.813 b BC 32.6 5.928 bc BCD 35.7

60 4.463 c C 61.5 4.771 bcde BCD 48.2

NL102
30 11.548 a AB 0.4 5.146 bcde BCD 44.1

60 10.949 ab AB 5.6 4.291 cde BCD 53.4

NL103
30 12.590 a A 0 5.813 bc BCD 36.9

60 10.593 ab AB 8.7 3.571 de CD 61.2

NL104
30 11.832 a AB 0 6.517 b B 29.3
60 11.922 a AB 0 5.620 bcd BCD 39.0

NL106
30 11.770 a AB 0 5.915 bc BCD 35.8

60 11.058 ab AB 4.7 5.428 bcd BCD 41.1
a Among the averages, the same letter indicates that there was no significant difference, and different letters
indicate that there was a significant difference.
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As the data show, the crop safety was screened through pot experiments at 30 and
60 g·ha−1 with chlorsulfuron as the control. The inhibition rates of NL102, NL103, NL104
and NL106, presented in Tables 4 and 5, indicate that these compounds were safe on wheat
and corn through pre-emergence treatment.

4. Discussion
4.1. Soil Degradation Rates

In 1995, DuPont reported that flupyrsulfuron-methyl (DPX-KR-459) could accelerate
degradation in alkaline soils [17]. Flupyrsulfuron-methyl degraded rapidly at 25 ◦C in
pH 5–9 with a DT50 of 0.42–44 days [18]. Subsequently, iodosulfuron-methyl and foram-
sulfuron were also reported to exhibit faster degradation [19–21]. Tang et al. reported that
the DT50 of iodosulfuron-methyl was 15.6 days in soil with pH 7.29 at 25 ◦C and 25.1 days
at pH 9.42 [20]. Wu et al. reported that DT50 of foramsulfuron was 10.8 days in soil with
pH 5.29 at 25 ◦C and 31.5 days at pH 7.86 [21]. Compared with chlorsulfuron, which has a
longer degradation time, these sulfonylurea herbicides containing 5th substituents on the
benzene ring exhibit faster degradation rates.

Chlorsulfuron degraded slowly in alkaline soil. Fredrickson et al. reported that the
DT50 of chlorsulfuron in silty clay loam was 10 weeks at pH 7.5 and 12.5 weeks at pH 8.0 [8].
Thirunarayanan et al. reported that the DT50 of chlorsulfuron was 144 days in soil with
pH 8.1 at 20 ◦C [9].

In this research, the degradation of NL101–NL108 in alkaline soil was 10.8–51.8 times
faster than that of chlorsulfuron. For 5-dialkylamino-substituted chlorsulfuron derivatives,
any changes on the amino moiety will affect their soil degradation rates. For symmetric
saturated alkane-substituted compounds, the DT50 of NL101, NL106 and NL107 was 3.03,
6.39 and 8.20 days, respectively. It seemed that the degradation half-life of the target
compounds increases as the number of carbon atoms on the nitrogen atom increases.
Additionally, the DT50 of the target compounds increased as the volume of 5-dialkylamino
groups on the benzene ring of chlorsulfuron increased (e.g., DT50 of NL101, NL102, NL106,
NL107 and NL108 was 3.03, 5.66, 6.39, 8.20 and 13.6 days, respectively). NL102, NL103
and NL106 contained the same number of carbon atoms bonded to the nitrogen atom,
while the DT50 of NL103 (7.74 days) was more than that of NL102 (5.66 days) and NL106
(6.39 days). It was speculated that saturated substituted structures might degrade faster
than unsaturated substituted structures. Based on the alkaline soil degradation results, we
could conclude that 5-dialkylamino-substituted chlorsulfuron derivatives could greatly
accelerate the degradation in alkaline soil (with pH 8.39).

In 2020, Li reported that the DT50 of NL101-NL108 varied from 3.57 to 9.76 days in
acidic soil (pH 5.52), which was 1.34–3.67 times faster than chlorsulfuron (13.1 days) [13].

A comparison of the degradation results of target compounds in acidic and alkaline
soil is listed in Table 6.

Table 6. Comparison of acidic and alkaline soil degradation results of target compounds.

Compound
DT50 (days)

Acidic Soil (pH = 5.52) Alkaline Soil (pH = 8.39)

NL101 3.57 3.03

NL102 5.06 5.66

NL103 5.78 7.74

NL104 8.45 14.6

NL105 9.00 6.38

NL106 7.30 6.39

NL107 9.76 8.20
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Table 6. Cont.

Compound
DT50 (days)

Acidic Soil (pH = 5.52) Alkaline Soil (pH = 8.39)

NL108 7.45 13.6

Chlorsulfuron 13.1 158

Compared with the degradation rates in acidic soil, we found that 5-dialkylamino-
substituted groups could greatly accelerate the degradation both in acidic and alkaline soil
in comparison with chlorsulfuron. Moreover, the degradation speed in alkaline soil was
faster than that in acidic soil.

4.2. Crop Safety

Chlorsulfuron is a popular sulfonylurea herbicide applied to wheat fields, but it causes
a certain degree of damage to corn [22]. Iodosulfuron-methyl and foramsulfuron, kinds of
sulfonylurea herbicides that contain 5th substituents on the benzene ring, are safe for the
growth of crop seedlings in corn and grain fields [19,23,24]. It appears that 5th substituents
on the benzene ring are potential herbicides to improve crop safety.

In 2018, Zhou reported that a dimethylamino-substituted chlorsulfuron derivative was
less safe on wheat (Jima 22) but could improve safety on corn (Xindan 66) (Figure 5) [25].
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Figure 5. Crop safety of NL101 on wheat (Jima 22) and corn (Xindan 66).

In this research, 5-dialkylamino-substituted chlorsulfuron derivatives were tested for
a crop safety assay on wheat and corn.

The inhibition rates of target compounds indicated that most compounds showed
safety for wheat growth through pre-emergence treatment. At 30 g·ha−1, the inhibition rate
of chlorsulfuron was 0%. For NL102, NL103 and NL104, the inhibition rates were 2.1, 4.5 and
0%, respectively. On the contrary, they exhibited poor safety for post-emergence treatment.

In the case of corn, it was noted that the inhibition rates were greatly reduced through
pre-emergence treatment. For the pre-emergence treatment of corn, at 30 and 60 g·ha−1,
the inhibition rates of chlorsulfuron were 32.6 and 61.5%, respectively. The inhibition rate
of NL102 decreased from 32.6 and 61.5% to 0.4 and 5.6%, the inhibition rate of NL103
decreased to 0 and 8.7%, the inhibition rate of NL104 decreased to 0 and 0% and the
inhibition rate of NL106 decreased to 0 and 4.7%, respectively. However, post-emergence
treatment could seriously endanger the normal growth of the corn seedlings. It was
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speculated that 5-dialkylamino-substituted groups on the benzene ring could improve the
crop safety of chlorsulfuron on corn through pre-emergence treatment.

Based on the above results, we believe that compounds such as NL102, NL103 and
NL104 are potential green sulfonylurea herbicides for the pre-emergence treatment on
wheat and corn.

5. Conclusions

Followed by our previously reported studies on herbicidal activities and acidic soil
degradation, we systematically studied the degradation and crop safety of 5-dialkylamino-
substituted chlorsulfuron derivatives in alkaline soil (pH 8.39) for the first time. We found
that 5-dialkylamino-substituted groups on the benzene ring of chlorsulfuron could greatly
accelerate the degradation both in acidic and alkaline soil in comparison with chlorsulfuron.
Especially in alkaline soil, the degradation rate of the target compounds accelerated by
10.8–51.8 fold as compared with chlorsulfuron. Moreover, the DT50 of the target compounds
increased as the number of carbon atoms bonded to the nitrogen atom increased. For crop
safety, it was noted that 5-dialkylamino derivatives exhibited good crop safety through
pre-emergence on wheat. Additionally, they could greatly improve the safety on corn
compared with chlorsulfuron. We strongly believe that compounds such as NL104 are
potential green sulfonylurea herbicides for the pre-emergence treatment on both wheat and
corn and will exhibit advantages in rotation mode. It is a preliminary exploration in this
new field. Further research will include the synthesis of new sulfonylurea derivatives and
studies of their bioassay activities, controllable degradation and crop safety. We hope to
find new sulfonylurea herbicides that can be used on a wider range of crops and in crop
rotation mode.

Supplementary Materials: The following are available online. Table S1. The herbicidal activity of
5-dialkylamino-substituted compounds against both dicotyledons and monocotyledons; Soil degra-
dation assay.word; Crop safety assay.word; Herbicidal Activity of Compounds NL101- NL108.word;
Report of soil analysis (in Chinese and English). pdf.
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