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Abstract: The focus of this review is to examine the importance of quantifying total HIV DNA to
target the HIV reservoir and the clinical implications and challenges involved in its future application
in clinical practice. Despite intrinsic limitations, the quantification of total HIV DNA is currently the
most widely used marker for exploring the HIV reservoir. As it allows estimating all forms of HIV
DNA in the infected cells, total HIV DNA load is the biomarker of the HIV reservoir that provides
most of the insights into HIV pathogenesis. The clinical role of total HIV-DNA in both untreated and
treated patients is extensively supported by important lines of evidence. Thus, predictive models that
include total HIV DNA load together with other variables could constitute a prognostic tool for use in
clinical practice. To date, however, this marker has been primarily used in experimental evaluations.
The main challenge is technical. Although the implementation of droplet digital PCR could improve
analytical performance over real-time PCR, the lack of standardization has made cross-comparisons
of the data difficult. An effort by investigators to compare protocols is needed. Furthermore, the
main effort now should be to involve the biomedical industry in the development of certified assays
for in vitro diagnostics use.
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1. Introduction

In most patients infected with HIV, the use of combined antiretroviral therapy (ART)
results in sustained control of viral replication [1]. However, the virus persists in some
specific, latently infected cell-lineages that carry HIV-integrated DNA in their host genome,
thus forming the viral reservoir [2,3].

If ART is interrupted, the virus reemerges from the reservoir, leading to a rebound in
viremia [4].

Therefore, at the moment HIV cannot be eradicated from the body, and treatment
must be maintained indefinitely. Since the reservoir constitutes the major obstacle to
eradication of the HIV infection, an accurate and precise measurement of the HIV reservoir
is needed to assess strategies for a cure, i.e., a functional or a sterilizing cure [5], and for
pilot eradication studies [6]. Quantifying the HIV reservoir is crucial to assess the efficacy
of treatments aimed at reducing it and monitoring its changes following specific treatment
strategies in studies of intensification, interruption or switching of ART [7]. In particular,
measuring the HIV reservoir could be crucial for evaluating patients who are candidates
for a simplification of ART, because reducing the drug pressure might be safer in patients
who have a small sample-size reservoir. This is noteworthy given the growing importance
of less-drug regimens (such as dual regimens) in the management of HIV infection [8].

Thus, a reliable and practical marker is needed to analyze the reservoir persistence and
dynamics in HIV-infected subjects. Several markers have been proposed, but there is no

Diagnostics 2022, 12, 39. https://doi.org/10.3390/diagnostics12010039 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12010039
https://doi.org/10.3390/diagnostics12010039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-5757-8346
https://doi.org/10.3390/diagnostics12010039
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12010039?type=check_update&version=2


Diagnostics 2022, 12, 39 2 of 18

consensus regarding the marker that can best measure the reservoir [9–11]. Indeed, there
are several main questions and difficulties that need to be addressed to define and measure
the HIV reservoir. Primarily, according to one definition that has been proposed, the HIV
reservoir can be considered “the cells where HIV persists in latent form but can reactivate
in the form of a replication-competent virus” [12]. However, it should be considered that
only some of these latently infected cells contain replication-competent HIV DNA and can
be induced ex vivo to produce the virus; in fact, most of these cells harbor defective viral
genome [11,13–16]. Memory CD4+ T cells are those most infected, even though different
T-cell subsets have been found to harbor latent infection and residual virus has also been
detected in different cells during ART [17,18].

Furthermore, the different species of HIV DNA include integrated HIV DNA and
unintegrated forms such as the linear pre-integration complex and the 1-long terminal
repeat (LTR) and 2-LTR circles [19,20].

Moreover, the latently infected cells are disseminated throughout the body but are
more concentrated in sites such as the so-called “anatomical reservoirs” (or “sanctuaries”)
than in the blood, which is the most accessible organ for sampling [21,22].

Considering these main questions and difficulties concerning the different markers
of the HIV reservoir, to date total HIV DNA is the marker that is most widely used and
studied. Total HIV DNA is considered an imperfect marker of the HIV reservoir as it is
a global biomarker that includes integrated and non-integrated viral genomes, without
differentiating the defective forms from the latent ones that can produce infectious viruses.
In any case, the clinical role of total HIV DNA has been evaluated in important studies and
is supported by the most evidence.

The focus of this review is total HIV-1 DNA—here we examine the importance of
quantifying total HIV-1 DNA to target the HIV reservoir, and the clinical implications and
challenges involved in its future application in clinical practice.

2. Why Is Total HIV DNA the Most Widely Used Marker of the HIV-Reservoir?

The assay that has been considered to represent the gold standard for measuring the
latent, but replication competent, virus is the quantitative viral outgrowth assay (QVOA);
it quantifies the number of resting CD4+ T cells releasing infectious virus after in vitro
stimulation and subsequent co-culture with feeder cells [23–26].

The great value of this assay is that it can detect individual latently infected cells that
release the replication-competent virus, thus providing a valuable estimation of blood
reservoir productive activity. However, the major limitations of using this technique are
that it is expensive and very labor intensive, even with shortened protocol [23–25].

It also involves large amounts of blood (120–180 mL), often requiring leukapheresis.
Moreover, it cannot be performed with tissue biopsies and has been demonstrated to have
a wide coefficient of variation, indicating that it is unreliable for detecting small differences
in the size of the HIV reservoir [27]. Finally, this technique tends to measure only the “tip
of the iceberg”, thus underestimating the reservoir, because not all replication-competent
latently infected cells can be induced by stimulation [15].

Given these limitations, more reliable, less complex methods are certainly needed for
serial measurement of the HIV reservoir in patient management and in clinical studies.

Intracellular HIV RNA load, or cell-associated HIV RNA, is another marker which
has been proposed as a marker of HIV transcription in latently infected cells [28]. Indeed,
its expression has been used to demonstrate that several drugs could induce latently
infected cells from patients under suppressive ART to make HIV transcripts [29]. Therefore,
quantification of multiple spliced, singly spliced and unspliced HIV RNA has also been
proposed as a marker of the “active HIV reservoir”, i.e., of a subset of the total viral
reservoir containing cells in which HIV sequences are actively transcribed, and as a marker
of residual virus replication [28].

However, whether some transcription is consistent with the latent status or represents
ongoing low-level replication must still be determined. Several assays have also been
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developed to quantify intracellular HIV RNA [28], but their reliability and reproducibility
must still be fully evaluated.

The quantification of total HIV DNA permits estimating all forms of HIV DNA in the
infected cells (i.e., resting or activated) that are present in blood as well as in biopsies and
tissues. One of the major criticisms regarding the quantification of total HIV DNA is that it
does not distinguish between latent defective and replication competent forms.

It has been hypothesized that defective proviruses are probably generated during the
initial rounds of replication after transmission, because defective proviruses are generated
at a high frequency from the process of reverse transcription. Similarly, it has been hypothe-
sized that defects such as deletions probably occur during minus strand synthesis before the
second strand transfer event of reverse transcription [11,15,16]. The most common defects
are internal deletions, which varied in size and in location in the genome. The very large
deletions (>6Kb) can encompass most of the HIV genome. Some proviruses show 3′ dele-
tions affecting the env, tat, rev and nef genes, other proviruses show 5′ deletions affecting gag
and pol genes. A small percentage of proviruses can have small deletions at the packaging
signal and the major splice donor site represented. These latter proviruses are probably
replication defective owing to a failure to correctly make spliced HIV-RNAs or to package
genomes into virions [15,16]. Some clones can contain multiple deletions. A percentage of
proviruses harbor guanine-to-adenine (G-to-A) hypermutations. An additional percentage
of proviruses can contain both deletion and hypermutation indicating that these processes
can occur contextually during the reverse transcription. Hypermutation in turn can alter
start codons and/or introduce stop codons in the larger open-reading frames (ORFs) (gag,
gag–pol, env and nef ). All these defects and deletions affecting key viral ORFs probably
prevent many defective proviruses from being eliminated either by viral cytopathic effects
or by eradication strategies that depend on viral protein expression [15,16].

However, if quantifying all forms of HIV-DNA in the infected cells can be considered
a structural limit on one hand, on the other it can be considered an advantage. In fact,
each of the various forms that are quantified in total HIV DNA play a different role in
HIV pathogenesis [30]. This participation can occur through the creation of new cycles
of infection and infected cells, with the maintenance /amplification of the reservoir by
homeostatic proliferation and through viral transcription, thus producing viral antigens
and incomplete viruses without any new production of virions. These proteins can thus
induce immune activation/inflammation, thereby participating in maintaining the cycle of
HIV pathogenesis and in facilitating the persistence of HIV reservoirs [30].

From this point of view, the key question is how to consider the reservoir. If the
HIV reservoir can be defined as all infected cells and tissues containing all forms of HIV
persistence, the quantification of total HIV DNA is the biomarker of the HIV reservoir that
provides most of the insights into HIV pathogenesis.

On the other hand, several studies have shown that the total HIV DNA load seems
to correlate well with the frequency of cells containing the replication-competent virus.
Studies by Eriksson et al. [11] and Kiselinova et al. [31] pointed out a correlation between
total HIV DNA load in resting cells and quantification of the replication-competent virus.
In a different study, Noel et al. reported that a low level of total HIV DNA correlated with
low efficiency of virus production after activation [32]. The second main criticism is that the
quantification of total HIV DNA does not discriminate between integrated and unintegrated
forms. Although the integrated DNA (provirus) is transcribed and leads to synthesis of viral
proteins and completion of the viral replication cycle [33], the unintegrated forms cannot
lead to a productive infection by themselves [34]. These unintegrated species include linear
DNA, which is a component of a pre-integration complex [33], and circular forms, which
derive from the previous by means of several mechanisms. The two main circular forms are
1-LTR and 2-LTR, which harbor one and two LTR extremities of cDNA, respectively [34].
Although the proportion between integrated and unintegrated forms can vary in vitro [35],
in vivo during ART it appears to be very similar, given the clearance of non-integrated HIV
DNA when ART is initiated [35–37]. On the other hand, an accumulation of unintegrated
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forms has been observed in ART-naïve subjects [38]. Although the unintegrated forms
cannot be copied during cell division, transcription activity has also been shown from
linear DNA and 1-LTR and 2-LTR circles [34,39].

Circular forms of DNA are more stable than linear forms, even though unintegrated
forms are generally much more labile compared to integrated DNA and have a short
half-life [35]. Thus, the quantification of integrated DNA, which is the most stable form of
HIV-DNA and serves as the main template for gene transcription and viral replication and
is important for viral latency is thought to be the best indicator of the HIV reservoir size.
However, it presents several main concerns. The first is technical. Indeed, assays specifically
targeting integrated HIV DNA are complex to set up and require extensive replicate
testing [11,40]. Furthermore, it has been demonstrated that extrachromosomal forms can
be associated with transcription and can contribute to HIV pathogenesis [34,39,41], thus
making total HIV DNA a better indicator of HIV persistence. Moreover, due to the clearance
of unintegrated forms during ART [35–37], it should be considered that total and integrated
HIV DNA levels became generally equal in effective ART [37].

Therefore, even though the quantification of integrated and unintegrated forms can
provide information in select studies, it does not appear reliable for routine use as an HIV
reservoir marker. Instead, the quantification of unintegrated forms has been proposed as
indicative of ongoing viral replication [42,43]; in any case, controversies remain.

Through comparison with these markers, total HIV DNA has the advantage of easier
quantification by the quantitative real-time (qPCR) or digital droplet PCR (ddPCR) assays.
The measure of total HIV DNA load by the PCR-based assays is quick, easy to perform and
has a large dynamic range of quantification. Compared to other assays, the quantification
of total HIV DNA can be carried out in blood, other body fluids and in tissue biopsy
specimens. It requires a small amount of the sample and is unaffected by freeze-thawing;
it also seems to be more cost-effective, less time consuming and easy to implement in the
laboratory [44–55].

Therefore, total HIV DNA cannot be considered a perfect maker as it is neither a
marker of the replication-competent reservoir, such as the QVOA, a marker of the latent
reservoir, such as the integrated HIV DNA, nor a marker of the active reservoir, as is the
cell-associated HIV RNA. However, for the above-mentioned reasons, the quantification of
total HIV DNA is currently the most widely used marker for exploring the HIV reservoir.

Novel approaches such as IPDA [56] Q4PCR [57] and TILDA [58] represent major
advances in quantifying and characterizing intact/replication-competent HIV reservoir.
The implementation of these assays might constitute innovative methods for the analysis
of the viral reservoir in the future.

Emerging PCR-based techniques used to quantify HIV DNA such as the intact provi-
ral DNA assay (IPDA) and quadruplex quantitative PCR (Q4PCR), distinguish intact
proviruses from defective ones, therefore providing a better resolution for studying the dy-
namics of defective and intact HIV-proviral DNA and requiring a relatively small number
of cells.

IPDA is a high-throughput assay that uses two probes to exclude the majority of
defective proviruses and to determine the frequency of intact proviruses, albeit without
sequence confirmation.

The IPDA utilizes ddPCR to measure proviruses with probes targeting conserved
regions. This duplexed ddPCR assay simultaneously targets two HIV-1 regions, the Pack-
aging Signal (Ψ) near the 5′ end of the viral genome and the Rev Responsive Element (RRE)
within Envelope (env), which when amplified together in the same provirus, includes only
genomically intact provirus and excludes the majority of defective proviruses. Input cells
are directly measured by a simultaneous ddPCR reaction, enabling the IPDA to report
the total frequency of intact and defective proviruses per million input cells. This assay
enables much more specific quantification of intact proviral DNA than single-probe assays.
However, the Ψ and env probe combination may not be entirely predictive of a fully intact
provirus [56,59].
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Recent studies have described instances of assay failure, attributable to natural HIV
polymorphism in primer and/or probe binding regions. [60].

The Q4PCR assay employs long distance PCR at limiting dilution to amplify proviruses,
followed by interrogation with four qPCR probes for Ψ, env, pol, and gag in a multiplex
reaction to detect amplified HIV genomes. Cell inputs are estimated by quantification of
input DNA, and the frequency of intact proviruses is reported after sequence verification
through near-full-length genome sequencing (nFGS). Because the Q4PCR employs limiting
dilution near-full-length proviral amplification, these nFGS results can be used to provide
insight into the clonal composition of intact proviruses [57]. However, inefficiencies in
long-distance PCR amplification of proviruses in Q4PCR may lead to underestimates of
intact proviral frequencies [57,59].

Notably, proviral intactness does not guarantee virion production and the fraction of
intact proviruses that can be induced to produce virions cannot be determined by these
assays, IPDA and Q4PCR, which is a critical limitation given that many intact proviruses
exhibit low inducibility [15,61].

The transcription-competent (inducible) HIV reservoir can be quantified by several
methods including a well-established inducible reservoir assay, tat/rev induced limiting
dilution assay (TILDA). Data indicate that there are circuits enabling control of viral
transcription without cellular activation and showing specifically that Tat positive feedback
is sufficient to regulate latency independent of cellular activation [62]. TILDA measures the
frequency of cells that harbor viral genomes, and which produce tat/rev multiply-spliced
HIV RNA upon maximal stimulation, reducing the likelihood of quantifying defective
genome. This method allows to measure the frequency of cells capable of being induced
to produce HIV RNA transcripts by combining ultra-sensitive detection of msRNA and
maximal activation of CD4+ T cells in a limiting dilution format [58].

However, due to post-transcription blocks in RNA processing not all cells producing
tat/rev msRNA transcripts will yield infectious virus; therefore, quantifying these cells can
result in overestimating the replication-competent HIV reservoir size [63,64].

TILDA holds great promise for application in clinical trials because it requires less
than 1 million viable target cells per condition and can be completed within two days.

Figure 1 summarizes and compares pros/cons of total HIV DNA quantification vs
pros/cons of other approaches for quantifying the HIV reservoir.
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Figure 1. Total HIV DNA vs other approaches for quantifying the HIV-reservoir.

3. Technical aspects

Technical concerns regarding measurement of total HIV DNA include the specimens
and the assays.

3.1. The Specimens

One of the major criticisms concerning measurement of the HIV reservoir is the
distribution of latently infected cells in the different organs and tissues. Blood is the most
accessible organ as it can easily be obtained by venipuncture; other tissues are not as easily
sampled. Therefore, most studies have explored blood-associated total HIV DNA despite
concerns as to whether it is representative of the latent reservoir size in the whole body.
In fact, it has been shown that most infected cells can be found in the lymph nodes and
the gastrointestinal tract [65–68], and the activation status of the latently infected CD4+ is
higher in these sites than in the blood [67]. However, a phylogenetic analysis carried out
by Josefsson L. et al. revealed genetic similarity of HIV DNA in CD4+ T-cells from lymph
nodes and peripheral blood, which indicates an interchange of infected cells among these
compartments during infection [69]. Furthermore, in a different study it was noted that
total HIV DNA load in rectal cells correlated with the blood-associated total HIV DNA
levels [70]. However, this finding was not confirmed in other reports [66,67]. On the other
hand, some authors considered how the blood HIV DNA could be generally accepted as a
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reflection of the entire HIV reservoir in the same way that blood HIV RNA or the CD4+ T cell
count are generally accepted as a reflection of virus activity in the whole body [71].

Quantification of the total HIV-DNA levels in the blood can be performed directly
on whole blood cells or can require a more laborious step by separation of PBMCs or by
purification of CD4+ T cells. Depending on the method used the results are expressed as
copies/leukocytes, copies/PBMCs or copies/ CD4+ T cells, respectively. Some studies
found a good correlation between the results of the whole blood sample tests for total HIV
DNA and those of PBMC samples [49,72]. Another study found that HIV DNA load could
predict disease progression regardless of the mode of results expression [73].

3.2. The Assays

Historically, the method most used to measure total HIV DNA is qPCR. In this assay,
amplification is carried out with primers and probe targeting of a conserved region of the
HIV genome; quantification is assessed to calculate the frequency of infected cells based on
a standard curve prepared by serial dilution of a standard (i.e., 8E5 cell line) [44–53].

However, there are no certified methods for in vitro diagnostic use and several in-
house protocols have been developed. These homebrew HIV DNA quantification protocols
may differ in the different genomic regions analyzed and in the different standards, probes
and control genes used.

Total HIV-DNA quantification protocols have been developed using both Taqman
probes and SYBR green-based PCR, targeting LTR region, gag-pol junction, gag gene or
pol gene [44–53]. An alternative method uses two sets of primers that target the genomic
regions of LTR and gag by molecular beacon probes [74].

The methods that target the conserved region of the long terminal repeat have been
reported to have more sensitivity, specificity, and reproducibility than the others [75,76].
Other protocols that have been proposed to quantify total HIV DNA using technologies
such as Nested- PCR or semi-nested PCR [53,77] are used less frequently. Thus, in the
last two decades the qPCR has become the tool most used for the quantification of total
HIV-DNA. Despite its success, qPCR remains an indirect measurement tool. It requires
a validated standard curve and is susceptible to small changes in the efficiency of the
reaction, exponentially amplifying the noise and making it difficult to differentiate target
low levels from assay noise. dPCR is a more recent alternative to real-time PCR for the
measurement of total HIV DNA load. This technology allows for absolute quantification
of the target nucleic acid without reliance on the use of an external standard. Indeed, in
this technique each sample is divided into thousands of independent microscopic “end-
point” PCR reactions so that only one or no nucleic acid molecule will be found in each
partition [78]. In such a this sufficiently diluted sample, the template follows the POISSON
distribution, which can be used to derive the target concentration based on the frequency
of the positive and negative distributions. The high costs and labor-intensive procedure
underlying the micro partitioning have historically limited the use of dPCR. Developments
in the field of microfluidics have made digital PCR platforms commercially available in a
low-cost and practical format.

Micro partitioning can be achieved by emulsification of the aqueous PCR reaction
mixture in a thermostable oil, as in droplet digital PCR (ddPCR) [79]. This technique was
applied to total HIV DNA quantification and showed high accuracy and precision [54,55].

When qPCR and ddPCR techniques were compared in a study conducted by Hein-
rich et al. [80], they showed a similar level of analytical sensitivity. In a different study,
ddPCR provided a significant increase in precision compared to qPCR; moreover, additional
benefits of the ddPCR over the qPCR assay included relative insensitivity to mismatches in
primer and probe sequences [54]. Accordingly, Bosman et al. compared ddPCR platforms
with a semi-nested qPCR and showed a higher reproducibility for ddPCR than qPCR;
however, some false-positive signals were observed with ddPCR [81]. The sensitivity of the
ddPCR assay makes it advantageous for analyzing molecules with a rare frequency, i.e., in
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the presence of a high background of non-target molecules. Theoretically, this makes it an
ideal model for studying the HIV reservoir.

4. The Clinical Relevance of Total HIV-DNA Load

Multiple studies have demonstrated the clinical relevance of quantifying total HIV-
DNA load. This marker has been used extensively in studies of HIV reservoir dynamics in
both treated and untreated subjects.

4.1. During Infection

Results of several relevant studies support the predictive value of the measure of total
HIV DNA level during the natural history of HIV infection. In fact, total HIV DNA load
has been shown to be predictive of disease progression independently of HIV RNA load
and the CD4+ T cell count in untreated HIV-positive subjects [82–87].

Rouzioux et al. showed that total HIV DNA level was a major predictor of progression
to AIDS independently of HIV RNA level and CD4+ T cell count from 6 to 24 months after
seroconversion [82].

A meta-analysis of six studies of untreated patients reported that total HIV-DNA was
a better predictor of progression to AIDS and of all-cause mortality than plasma HIV-RNA
load in untreated patients [86].

In another more recent study, N’takpe et al. analyzed the association between blood-
associated total HIV DNA load and long-term mortality in African adults who started ART
early. The authors found that patients with a high HIV DNA level at baseline had a higher
6-year mortality risk than other patients, irrespective of plasma viral load, CD4+ T cell
count and ART [87].

A different study showed that total HIV DNA in blood can be detected very early after
infection, with high levels seeded in primary infection at the peak and with the HIV- DNA
set point rapidly established [88,89]. Furthermore, total HIV DNA load has been shown to
be significantly lower in patients with primary infection, i.e., at stage Fiebig I versus Fiebig
II–IV [90]. In the ANRS PRIMO cohort, the median HIV DNA load was significantly higher
in patients who had a symptomatic primary infection [91].

Elite controllers and long-term non progressors are characterized by a very low and
stable cell-associated HIV-DNA level [32,92,93]. Total HIV DNA levels in the blood corre-
lated positively with plasma viremia and negatively with CD4+ T cell count [82]. Moreover,
a link has been observed between HIV DNA levels and T-cell activation [94] and in primary
infection early levels of HIV DNA predict the extent of T-cell proliferation [95]. Further-
more, the HIV DNA load plays an important role in the pathogenesis of HIV-associated
neurological disorders. In fact, some studies reported that the blood-associated total HIV
DNA level is associated with the occurrence and severity of HIV-associated neurological
disorders [96,97].

Finally, of note, the quantification of total HIV DNA load in the peripheral reservoir of
monocytes was shown to be predictive of cognitive performance in an elegant study by
Valcour VG et al. [98].

4.2. During ART

There is evidence that the earlier ART begins, more prominent is the decrease in total
HIV DNA load [88,89]. Furthermore, unlike the slow decrease that is observed in patients
treated at the chronic stage, this decay is faster in acutely infected patients receiving ART.
Indeed, several studies showed that total HIV DNA levels dropped rapidly during the first
year of ART and then showed a subsequent slower decline from years 1 to 4 until they
reached a plateau phase where no further decay was observed [99,100]. However, several
more recent studies reported that after several years of suppressive ART, HIV DNA levels
could continue to slowly decline [101–103]. The authors suggest that this decay of HIV
DNA during effective ART could reflect the ongoing loss of HIV-infected cells partially
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counterbalanced by clonal proliferation of infected cells [101,102]. In any case, this point
needs further investigation.

It has been shown that total HIV- DNA load during ART reflects pre-ART characteris-
tics of infection, such as baseline HIV- DNA load, pre-ART HIV-RNA load and the CD4+
cell count nadir [104–106]. Furthermore, total blood-associated HIV- DNA levels correlated
with the levels of residual plasma viremia in patients under suppressive ART [107,108].

It has also been reported that the presence of X4-tropic viral DNA variants is related to
a larger size of the HIV DNA blood reservoir compared to the presence of R5-tropic viruses
in patients fully responding to ART [109]. In a different setting, total HIV-DNA load was
not associated with soluble biomarkers of inflammation in treated patients [110].

Lower baseline HIV-DNA levels were predictive of achieving a sustained virological
response on ART [108,111], whereas several reports showed that baseline HIV DNA load
predicted the level of residual plasma viremia during effective ART [112,113].

In a recent study baseline total HIV-DNA and CD4+ T cell count resulted to be
independent predictors of total HIV-DNA after treatment [114].

Of note, it has been demonstrated that the measurement of total HIV DNA load is
informative when measured at the time of treatment interruption, as it is the only biomarker
predictive of the time to plasma HIV RNA rebound after treatment interruption, both in
patients treated early during primary infection and in patients treated late during chronic
infection; low levels predict a higher probability of maintaining viral control [84,115–117].

In particular, the study by Williams JP. et al. measured total HIV DNA load in a
highly characterized randomized population of individuals with primary HIV infection.
Results showed that those with higher levels of HIV DNA when the treatment was stopped
experienced faster viral rebound than those with lower levels of HIV DNA [84].

Instead, the study by Assoumou L. et al. evaluated whether HIV replication could
be controlled following interruption of treatment started early in the course of infection,
but not during the primary infection. In this study, patients who had low HIV DNA levels
at the time of treatment interruption maintained viral control for long periods [116]. In
addition, the study by Piketti C. et al. predicted a shorter time to treatment resumption,
independently of the CD4 nadir in patients treated during chronic infection [117].

A specific topic deserves discussion here, i.e., the strategies of de-escalation therapies
and the role of HIV DNA load in this setting. The use of less-drug regimens seems to
indicate a new era of significant changes in the management of ART for people living with
HIV. These therapies aim to combine virological efficacy with the limited long-term toxicity
associated with use of the nucleos(t)ide reverse transcriptase inhibitors (NRTIs), limited ad-
verse effects and reduced costs when compared to standard three-drug ART [8,118]. Within
this context, the quantification of total HIV DNA levels could prove helpful for choosing
the best candidates, in whom it may be safer to reduce drug pressure. Furthermore, it could
be useful for evaluating these new strategies in terms of effective action on the reservoir.

Of note, several studies have demonstrated the predictive value of total HIV DNA load
on the risk of virological failure following treatment de-escalation. Indeed, the total HIV
DNA levels at the time of a switch to ritonavir-boosted darunavir (DRV/r) monotherapy
predicted the risk of viral rebound at week 96 in the MONOI trial [119].

Accordingly, in the MONET randomized study Geretti et al. showed that baseline HIV
DNA levels were higher in patients who switched to DRV/r monotherapy and who had at
least a viral rebound during the 144 weeks of follow-up [120].

In addition, higher blood-associated HIV DNA copy number at the time of a dolute-
gravir (DTG)-based monotherapy initiation, was associated with virological failure in the
DOMONO trial [121].

In the setting of virological suppression, some two-drug regimens (2DRs) have demon-
strated comparable effectiveness to standard triple ART for maintenance therapy. Thus,
several studies evaluated the impact of 2DRs as maintenance/switch treatment on the
cellular reservoir size [8,118]. A sub study of the ATLAS-m trial compared the impact of
48 weeks of atazanavir/ritonavir plus lamivudine dual therapy versus maintaining the
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atazanavir/ritonavir plus two NRTIs regimen on total HIV DNA levels and found a similar
decline in the two study groups [122].

When compared to other virologically effective 2DRs, the combination of DTG plus
lamivudine (3TC) had several advantages in terms of lower risk of drug interactions and
metabolic complications. Furthermore, it has shown excellent viro-immunological proper-
ties in both naïve and ART-experienced HIV-infected patients [8–118]. Thus, this strategy
currently constitutes the most widely prescribed two-drug regimen. An observation from
the single arm ANRS167 LAMIDOL trial suggests that, in virally suppressed patients, the
treatment switch to DTG plus 3TC from a standard triple regimen could have a favorable
effect on the cellular reservoir in terms of control of total HIV DNA levels in the blood after
48 weeks [123]. A different longitudinal, matched, controlled study by Lombardi F. et al.
showed that after 48 weeks of treatment this simplification strategy had the same impact
on the cellular viral reservoir as the triple regimen [103]. In fact, similar changes in total
blood-associated HIV DNA levels were observed in the dual therapy group and the triple
therapy group.

The same group conducted a different study on the HIV DNA decay in ART-naïve
patients starting treatment with DTG plus 3TC versus a standard DTG-based triple regimen.
The preliminary study findings seem to suggest that, at least in the short term, using DTG
plus 3TC is not detrimental for controlling the HIV reservoir [124].

Figure 2 summarizes the main studies supporting the clinical role of total HIV DNA.

Figure 2. Main studies supporting the clinical role of total HIV-DNA.
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5. What Are the Challenges Now?

Despite intrinsic limitations, the quantification of total HIV DNA load is broadly
accepted as a measure of the viral reservoir as well as a promising marker for monitoring
its changes following specific treatment strategies.

Since it has been demonstrated that measuring the levels of total HIV-DNA makes
it possible to estimate the spread of the infection and reflects the ability of antiretroviral
therapy to purge reservoirs, it could be an important factor in establishing disease progres-
sion and predicting the outcome of ART. It could also be a useful biomarker for monitoring
the efficacy of ART, particularly for such novel treatment as long-acting injectable treat-
ments [125,126], as well as novel strategies aimed at reducing or eliminating HIV reservoirs.
Furthermore, measuring total HIV DNA load could help identify candidates for therapeutic
strategies such as simplification and structured interruption of therapy.

However, data suggest that HIV DNA should not be the only marker used for these
clinical purposes. For example, it has been observed that subjects with low HIV DNA levels
are not always able to control the infection after interruption of therapy or after simplification.

Therefore, even though HIV DNA should be considered a marker that provides
information about the size of the viral reservoir that is not available with the standard
markers of HIV RNA load and CD4+ T cell count, this information must necessarily be
integrated with that provided by traditional markers and other parameters that are now
available (i.e., ultrasensitive plasmatic viremia), as well as clinical data, to better evaluate
the disease and to optimize the management of ART.

Predictive statistical models that include HIV DNA together with the other variables
might constitute a useful and truly prognostic tool in clinical practice. For example, in this
regard some teams derived a predictive score for virological failure to define an appropriate
selection of patients for treatment simplification to a dual ART [127]. The inclusion of an
important variable, such as total HIV DNA load, could improve the predictive value of the
derived score as well as allow validation for clinical purposes.

Although HIV DNA load might be part of clinical practice in the future, to date it is a
marker that is mainly used in experimental evaluations. There are no established clinical
cut-offs or referencing intervals with a clinical relevance. The main challenge seems to
be technical. In fact, to date no certified assay to measure total HIV DNA load has been
developed. Few commercial assays have been developed, but they have not been certified
for in vitro diagnostic use.

Several “in-house” PCR methods have been used to quantify total HIV DNA world-
wide. The assays typically differ as to the standard used, the genomic regions analyzed
and/or technique performed, such as real time PCR or droplet digital PCR.

The implementation of droplet digital PCR could improve the accuracy and precision
of the total HIV DNA quantification over real-time PCR. However, the heterogeneity of
methods has made it difficult to interpret the data generated by different labs because of
different levels of sensitivity, accuracy, and precision. Thus, the lack of standardization has
made it difficult to carry out cross-comparisons of the data.

There is a need for investigators to compare protocols to permit the validation and
standardization of the different methods. In this regard, an effort was made by some teams
through multicenter quality controls evaluating the inter-laboratory reproducibility of total
HIV DNA quantification [128–130].

In any case, the main effort now should be to involve the biomedical industry. The
development of certified systems could be the key for implementing the use of total HIV
DNA load in routine diagnostic settings.
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