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Abstract

Parent-of-origin–dependent gene expression resulting from genomic imprinting plays an important role in modulating
complex traits ranging from developmental processes to cognitive abilities and associated disorders. However, while gene-
targeting techniques have allowed for the identification of imprinted loci, very little is known about the contribution of
imprinting to quantitative variation in complex traits. Most studies, furthermore, assume a simple pattern of imprinting,
resulting in either paternal or maternal gene expression; yet, more complex patterns of effects also exist. As a result, the
distribution and number of different imprinting patterns across the genome remain largely unexplored. We address these
unresolved issues using a genome-wide scan for imprinted quantitative trait loci (iQTL) affecting body weight and growth in
mice using a novel three-generation design. We identified ten iQTL that display much more complex and diverse effect
patterns than previously assumed, including four loci with effects similar to the callipyge mutation found in sheep. Three
loci display a new phenotypic pattern that we refer to as bipolar dominance, where the two heterozygotes are different
from each other while the two homozygotes are identical to each other. Our study furthermore detected a paternally
expressed iQTL on Chromosome 7 in a region containing a known imprinting cluster with many paternally expressed genes.
Surprisingly, the effects of the iQTL were mostly restricted to traits expressed after weaning. Our results imply that the
quantitative effects of an imprinted allele at a locus depend both on its parent of origin and the allele it is paired with. Our
findings also show that the imprinting pattern of a locus can be variable over ontogenetic time and, in contrast to current
views, may often be stronger at later stages in life.
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Introduction

Genomic imprinting refers to the phenomenon of monoallelic

gene expression that depends on the parent-of-origin of alleles,

where either the maternally or paternally inherited copy is

expressed while the other copy is silenced [1,2]. The uniparental

expression of paternally and maternally derived genes is usually

caused by an epigenetic mark of differential methylation set during

gametogenesis [2]. Imprinted genes have been shown to crucially

affect the development and expression of complex traits such as

growth and development [3] throughout life, ranging from early

embryonic stages to postnatal and adult phenotypes, and often

with tissue specific expression [e.g. 4,5]. For example, studies have

demonstrated that imprinted genes affect cognitive abilities [4,6],

several major human disorders (e.g. Prader-Willi and Angelman

syndrome), and possibly obesity [7–11]. In the quest to investigate

the genetic basis of such complex traits, genome-wide association

and linkage studies have become a powerful tool [e.g. 12,13]

where regions of the genome are identified that contain sequence

variants associated with phenotypic variation or the presence of a

specific disorder. However, very few of such studies have

attempted to include investigations of epigenetic variation caused

by genomic imprinting despite the known significant effects on

complex traits [e.g. 14,15].

Most of our current knowledge about the number, distribution

and effects of imprinted genes comes from studies using gene-

targeting techniques focusing on regions of the genome with

chromosomal aberrations [1]. Under this methodology, several

large-effect imprinted genes and their gross phenotypic effects

have been described [e.g. 3,4]. Most prior studies on imprinting

assume the traditional phenotypic pattern resulting from the

monoallelic expression of the paternal or maternal allele [e.g.

10,16]. Yet, more complex patterns exist such as the callipyge

phenotype described in sheep, where one of the two heterozygotes

shows muscular hypertrophy while the other three genotypes have

normal appearance and do not differ from each other [17].

Moreover, other studies demonstrated that loci can deviate from

the typical imprinting patterns of uniparental expression where

loci may show differential expression of the two parental alleles

[e.g. partial expression: 18]. In addition, recent work suggests that

many more loci may be imprinted than previously assumed [19].

However, little is known both about the quantitative effects of

genomic imprinting and the diversity of patterns of expression.
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Furthermore, while both large and small additive and

dominance effects have been successfully mapped for a wide

variety of traits [20], relatively little empirical research has been

conducted into the nature and effects of allelic diversity on

quantitative trait variation at imprinted loci. Data on alleles with

relatively minor quantitative effects could potentially have

important implications for normal physiological and behavioral

variation and the expression of complex disease-related traits.

Most studies of genomic imprinting have focused on complete

knock-outs of a specific locus and, thus, reveal limited information

on the effects of different less severe alleles.

Using a three-generational intercross between two inbred strains

originally selected for divergent adult body size [LG/J and SM/J;

21], we scanned the genome for loci showing significant parent-of-

origin effects on body size and growth traits. We present a

hypothetical model for the functional origin of these complex

effects and demonstrate that further dissection of imprinted

quantitative trait loci (iQTL) is likely to yield a more comprehen-

sive understanding of the complex patterns and likely evolutionary

origins of imprinting.

Results

In a genome-wide scan for iQTL, we detected ten loci on six

chromosomes showing significant parent-of-origin dependent

effects that were characterized by a diversity of genomic

imprinting patterns (Table 1). Five of these loci exceeded the

genome-wide significance threshold and four were significant at

the chromosome level. The remaining locus was identified as

having an imprinting effect (i) that was significant at the

chromosome level, but the overall test for the locus was not

significant. However, because of the strong parent-of-origin effect

at the locus, it was included as a suggestive iQTL. Significance

tests using the fit of the various possible forms of imprinting (see

below) suggest that 8 of the 10 loci were significant at the genome-

wide threshold, with the other two being significant at the

chromosome level, lending additional support to our findings that

these loci represent true iQTL. Post-hoc analyses tested whether

the parent-of-origin effect appeared in heterozygous offspring of

heterozygous mothers and confirmed that the parent-of-origin

dependent effects of these ten loci were indeed caused by genomic

imprinting and not maternal genetic effects. These analyses

revealed that the parent-of-origin dependent effects of five other

loci were caused by maternal genetic effects, and consequently,

these loci are discussed elsewhere [22].

Genomic imprinting was found to affect all weekly weights and

growth traits. The effects of the iQTL are generally pleiotropic,

with effects on weight at different stages in development. The

effects of four of these loci show a change in the imprinting pattern

over time (Table 1). The dashed line in Table 1 indicates the

weaning age, and it is noteworthy that almost all iQTL effects

occurred after weaning. Imprinted QTL for weight and growth

are identified as WtiX.Y where Wt specifies body weight, i specifies

an imprinting effect, X specifies the chromosome and Y specifies

the iQTL on the chromosome that is being referred to. On

chromosome 3 we detected several iQTL, with the proximal QTL

(Wti3.1) being more than 50cM away from the distal (Wti3.2) and

the two are thus regarded as independent from each other. In

addition, two-QTL mapping analysis (see Methods) revealed a

third QTL on distal chromosome 3 (Wti3.3).

Across all loci, we discovered five different patterns of

imprinting: paternal expression, maternal expression, polar over-

and underdominance imprinting and bipolar dominance. Figure 1

and Material and Methods contain a description of the forms of

imprinting, which are defined by the relationship of the imprinting

genotypic value i to the additive and dominance genotypic values

(a and d) as well as their sign. Six loci showed paternal expression

at some point during development (e.g. Wti1.1; Figure 2A), with

four of these showing exclusively paternal expression through

development. Only one locus (Wti3.1) showed maternal expres-

sion. Three loci showed a hitherto undescribed pattern which we

refer to as bipolar dominance (e.g. Wti3.2; Figure 2B) where the

two heterozygotes are significantly different from each other but

the two homozygotes have similar phenotypes and are not

different from each other. Four loci showed polar dominance

imprinting (e.g. Wti5.1; Figure 2C), with three of the four showing

polar overdominance. Most loci maintained the same pattern over

ontogeny, however, four loci showed a change in expression

pattern through time. For example, Wti5.1 showed paternal

expression in week 4 (Figure 3A), but the pattern gradually

changed to polar overdominance through time. By week 7, the

best fit model was for polar overdominance, and by week 10 the

pattern was very clearly polar overdominance (Figure 2C).

The change in the pattern of the ordered genotypes was caused

by polar overdominance for growth after weaning (Figure 3B),

with the LS heterozygote growing faster than the other three

genotypes. Similarly, locus Wti2.1 showed bipolar dominance

early in development (with the bipolar pattern being the best

fit pattern from week 1 to week 6), but by week 7 the pattern

had shifted to maternal expression. Likewise, Wit2.1 changed

from polar underdominance to paternal expression from week 1 to

week 3.

Many of the loci showed patterns consistent with partial

imprinting, where the difference between the two homozygotes is

larger than the difference between the two heterozygotes. This can

be seen in the relationships between the additive or dominance

genotypic values to the imprinting genotypic value (a/i or d/i; see

Table S1), which deviate from the values expected for a particular

form of imprinting. For example, most loci showing paternal

expression have much larger additive effects than imprinting

effects; resulting in a/i ratios larger than 1. In many cases of

paternal expression, the additive effect is more than twice the

imprinting effect; this is illustrated in Figure 4 for the effect of locus

Author Summary

For certain genes, individuals express only the copy of the
gene they inherit from either their mother (‘‘maternally
expressed’’ genes) or their father (‘‘paternally expressed’’
genes). This ‘‘parent-of-origin–dependent’’ pattern of gene
expression is known as genomic imprinting and has been
shown to play an important role in modulating a variety of
traits ranging from developmental processes to cognitive
abilities and associated disorders. While various molecular
techniques have allowed for the identification of many
imprinted genes, very little is known about the contribu-
tion of imprinting to variation seen among individuals in
continuously varying traits such as body size. Here we
address this issue by using a genome-wide analysis aimed
at finding regions of the genome that show an effect of
imprinting on body weight and growth in mice. We
identified ten loci that displayed complex and diverse
patterns of effect, including four loci with effects similar to
the unusual callipyge mutation found in sheep and three
that displayed a new phenotypic pattern that we refer to
as bipolar dominance. Surprisingly, most imprinting effects
were strongest during the post-weaning period, and many
showed shifts in the pattern of imprinting over ontoge-
netic time.

Complex Genomic Imprinting Patterns in Mice
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Wti7.1 on week 6 weight, where the additive effect is just over

twice the imprinting effect.

The effects of the iQTL (including their additive, dominance

and imprinting effects) together accounted for between 1 and

15.8% of the phenotypic variance in age-specific weights and

weight gain, with the imprinting effects alone accounting for

between 0.8 and 5.7% of the phenotypic variance. The overall

effects of individual loci (i.e., their additive, dominance and

imprinting effects together) explained between a 0.34 and 6.5% of

the phenotypic variance (with an average of 1.6%), with the

imprinting effects alone accounting for between 0.2 and 1.7% of

the phenotypic variance. Surprisingly, the strongest effect of

genomic imprinting on weight occurred between weeks 6 and 10

(Table 1).

Turning to the duration of imprinting effects and their onset we

found that most imprinted loci showed significant effects over long

periods during development, with only a single locus (Wti2.1)

showing effects limited to the pre-weaning period. The QTL with

imprinting effects over the longest period is located on proximal

chromosome 3 (Wti3.1) with a significant effect on most weights

from week 1–9.

Discussion

This study advances research on genomic imprinting in several

ways. First, by using genotypes from two rather than one

generation we can assign parent-of-origin of alleles with near

certainty without invoking probabilities to calculate likelihoods of

Figure 1. All possible phenotypic patterns of genomic imprinting. Two principal patterns are possible: parental expression and dominance
imprinting. Parental expression has two subtypes describing which allele is being expressed (paternal versus maternal). Dominance imprinting refers
to the case where the two homozygotes are the same while the heterozygotes are different from each other. There are two subtypes of dominance
imprinting: bipolar and polar. Bipolar dominance refers to the case where one heterozygote is larger than the homozygotes while the other
heterozygote is smaller (i.e., one heterozygote shows overdominance while the other shows underdominance). Polar dominance refers to the case
where one heterozygote is the same as the two homozygotes while the other heterozygote is not. Polar dominance may show overdominance,
where the heterozygote differing from the other three genotypes is larger, or underdominance, where it is smaller. The plots give examples of the
expected pattern of phenotypes for the four ordered genotypes when the sign of i is either positive or negative.
doi:10.1371/journal.pgen.1000091.g001
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allelic parent-of-origin. Thus, we have been able to examine in

detail the pattern of phenotypic variation caused by genomic

imprinting, and found previously unknown patterns of imprinting.

Second, these results suggest that imprinting patterns may be more

diverse and, consequently, the traditional view of predominantly

paternally or maternally expressed loci should be replaced with a

picture of multiple imprinting patterns (Figure 1). Indeed, most

iQTL detected in our study display patterns other than simple

paternal or maternal expression, with three loci showing the new

bipolar dominance imprinting pattern. Third, an important

implication of our results is that the effects of alleles may change

sign depending on their parent-of-origin (see below). These parent-

of-origin-dependent allelic effects may also be akin to dominance

in that the effect of an imprinted allele not only depends on its

parent-of-origin, but also on the allele it is paired with at a locus.

Finally, the results of this study demonstrate that imprinting effects

can vary over time both in their patterns (Figure 3) and the

proportion of variance explained, and may arise or persist well into

adulthood. The latter highlights that imprinting effects are not

necessarily most influential at early stages in development as

currently viewed [e.g. 16].

The processes underlying the diversity of imprinting patterns

found in our study are likely due to different mechanisms [23]

many of which may involve differentially methylated DNA

elements called imprinting centres regulating multiple genes in a

region [24]. Wood & Oakey [23] discuss three different

mechanisms that may explain uniparental expression patterns.

While the enhancer-blocker model invokes an imprinting centre

between reciprocally expressed genes with shared enhancer

elements (e.g. Igf2/H19), a second model for the maternally

expressed Igf2r gene utilizes cis-mediated silencing of maternally

expressed genes by non-coding paternally expressed RNA (e.g.

Igf2r). Finally, at microimprinted domains oocyte-derived methyl-

ation in the promoter region of protein-coding genes is assumed to

be the key mechanism. In addition to the ‘traditional’ imprinting

patterns we found four loci with polar dominance effects causing a

pattern equivalent to that described for the callipyge (CLPG) locus

in sheep and pig homologues DLK1-GTL2 [17,25] where one of

Figure 2. Three examples of imprinting patterns found in the genome-wide scan. Each of the four genotypes is shown with its
corresponding average phenotype plus standard error of the mean at the locus. A) Wti1.1 serves as an example for paternal expression for week 9
body weight (g). B) Wti3.2 provides an example of bipolar dominance for week 7 body weight (g), C) Wti5.1 provides an example of polar
overdominance for week 10 body weight (g).
doi:10.1371/journal.pgen.1000091.g002

Figure 3. Change in imprinting pattern for iQTL Wti5.1 caused by imprinting effects on growth. For week 4 body weight (g) the locus
shows paternal expression (A), but later the locus shows polar overdominance (see Figure 2A for the pattern in week 10). The change in the pattern of
imprinting is due to polar overdominance for growth from week 3 to 10 (B), where the LS heterozygote grows more than the other three ordered
genotypes. Error bars denote standard errors of the mean.
doi:10.1371/journal.pgen.1000091.g003
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the two heterozygotes is different from the other three genotypes

[26]. For the callipyge locus, the observed pattern is caused by a

paternally inherited mutation in the CLPG locus that results in the

expression of a number of core group genes in cis in addition to an

interaction in trans between reciprocally imprinted genes [26]. The

authors proposed that inhibition of DNA methylation or altered

histone modification may be causal to the callipyge phenotype. To

our knowledge, a pattern of polar dominance has only once been

reported previously for any known murine gene [15], and in that

case the locus effect was lethality, not trait expression. Further-

more, while polar overdominance has been found for one locus in

sheep and pigs, no prior studies in any system have observed a

pattern of polar underdominance imprinting affecting trait

expression as demonstrated by our results.

We suggest that the pattern of bipolar dominance may be

explained by a model where the sign of the allelic effect changes

depending on the parent-of-origin. This might occur when two

differentially imprinted genes are in close linkage (e.g. callipyge),

such that the alternative alleles are composed of variants at both

the maternally and the paternally expressed loci. This scenario is

illustrated in Figure 5, showing a hypothetical case in which a

QTL with alleles 1 and 2 is comprised of two variable sites, A and

B, that are in close linkage, with gene A being paternally expressed

while B is maternally expressed. The effect of the paternally

derived QTL copy will be determined by variation at site A while

the effect of the maternally inherited copy will be determined by

variation at site B. In this scenario, allele 1 of the QTL may have a

positive effect on a trait when paternally inherited but a negative

effect when maternally inherited whereas allele 2 may show the

opposite pattern. When the same allele (1 or 2) is inherited from

both the father and the mother the effects cancel out, yielding no

difference between the two homozygotes. However, if two different

alleles are inherited from the parents then the joint effects of the

paternal and maternal copy do not cancel and, as a result, produce

a pattern of bipolar dominance (Figure 1). As with the callipyge

locus in sheep [26], this pattern of ‘interference’ between closely

linked maternally and paternally expressed loci could potentially

be a signature of conflict, where concerted counter-evolution of

maternally and paternally expressed alleles results in linked alleles

that negate each other’s effect.

The currently known number of imprinted loci in mice (about

80; www.geneimprint.com) may in part reflect a research bias

toward regions of the genome with chromosomal aberrations and

loci with large phenotypic effects, especially in the light of recent

research showing that as many as 600 genes are predicted to be

imprinted [19]. First, comparing the locations of iQTL found in

our study with those of currently known imprinted genes (www.

geneimprint.com), we find that most of our loci are likely to be

novel. No currently known imprinted genes are located on

chromosomes 1, or 3, where we detected a total of four iQTL.

There are known imprinted genes on chromosomes 2 and 5, but

they all lie well outside of the confidence intervals [27] for the

iQTL locations (ca. 100Mb away on chr. 2, 40Mb away on chr. 5).

Chromosome 12 has a number of imprinted genes that are located

close to but outside of either end of the confidence interval, with

Mirn337 more than 20Mb proximal and several genes (Dlk1m,

Gtl2, Rtl1, Dio3) more than 10Mb distal to the confidence interval.

The iQTL with the strongest effect (Wti7.1) is located on

Chromosome 7, which contains nearly half of the currently

confirmed imprinted genes in mice (www.geneimprint.com). The

confidence interval for the location of this locus includes 17 known

imprinted genes (ca. 20–24% of all currently confirmed or

putatively imprinted genes in mice; www.geneimprint.com),

including for example, Peg3, Peg4 (Snrpn), Peg6 (Ndn) and Peg12.

More than half of these (10 of 17) and 10 of 14 loci with a known

imprinting pattern are characterized by paternal expression, which

matches the pattern we identified for the iQTL in this region. On

chromosome 9, the imprinted gene Rasgrf1 falls within the

confidence region of Wti9.1. Rasgrf1 was the first imprinted gene

found to affect postnatal growth only [5] and has been described as

paternally expressed. While the postnatal effect of Rasgrf1 is

congruent with the effect on postweaning growth found for Wti9.1,

we found a bipolar pattern for growth and polar overdominance

for weekly weights affected by this locus in contrast to paternal

expression reported for Rasgrf1. However, we note it is unclear

whether a bipolar pattern would emerge for Rasgrf1 for the post-

weaning growth period of 3–10 weeks. Further studies both on the

growth trajectories of Rasgrf1 mutants and on fine-mapping our

identified iQTL are required to determine whether Rasgrf1 could

be a candidate gene. Finally, the confidence interval for the

location of Wti14.1 includes a single known imprinted gene, Htr2a,

which is known to be maternally expressed in mice, in contrast to

the pattern of paternal expression seen for the iQTL, suggesting it

is an unlikely candidate gene.

Turning to the results of Luedi et al. [19] whose simulation

study predicted 600 imprinted genes across the genome, we found

that a total of 50 predicted genes are within the confidence regions

of our iQTL (Table 2). While one may expect some congruence of

our confidence regions and the list of predicted genes from Luedi

et al. by chance (5 per QTL locus), several confidence regions

contain a large number of predicted imprinted genes (and the

predicted imprinted genes are not uniformly distributed across the

genome). Confidence intervals for all loci contain multiple genes

predicted to be imprinted, providing potential candidate genes for

all iQTL that could be explored in future fine mapping and

methylation-status studies to search for imprinted genes.

Somewhat surprisingly, we found only two loci that show

imprinting effects during the pre-weaning period from 1 to

3 weeks and only one of these loci (Wti2.1) has effects that are

restricted entirely to the preweaning period. Many more loci show

effects that do not appear until week 5 or later and many of these

extend to mature adult weight at 9 or 10 weeks. Additive and

dominance QTL mapping in this population of mice has shown

that different sets of QTL affect variation in growth and body

Figure 4. A pattern of paternal expression associated with
partial imprinting. Locus Wti7.1 shows a pattern of paternal
expression for week 6 body weight (g) where the difference between
the genotypic values of the heterozygotes (0.81g) is less than half the
difference between the homozygotes (1.66g).
doi:10.1371/journal.pgen.1000091.g004
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weight between 1 and 3 weeks of age and between 4 and 10 weeks

[28,29], paralleling the known differences in the physiology of

mammalian growth over these periods [30]. These previous

analyses of additive and dominance effects have shown that the

number of QTL affecting weekly weights and growth does not

vary greatly before and after weaning, but that dominance effects

tend to be more important earlier (peaking around weaning) while

additive effects tend to increase in magnitude with age. Following

these results we have no reason to assume that a bias exists for

finding imprinting effects before or after weaning.

Overall, our results suggest that the quantitative analysis of

imprinting effects using allelic variation can identify genomic

regions showing novel imprinting effect patterns (e.g., bipolar

dominance). Moreover, by not restricting our analysis to traits

expressed early in life we demonstrate that imprinting effects can

appear and often be stronger later in life (and notably, after the

cessation of maternal care), and may also change their pattern of

effect during growth and development. More generally, our

investigation provides a framework for classifying the diversity of

patterns that imprinted loci may show (Figure 1). Further

investigation into the proximate causes of the underlying processes

that generate these novel imprinting patterns may ultimately

provide important insights into the evolutionary origin of

imprinting and multiple pathways in which imprinting contributes

to quantitative trait variation.

Material and Methods

Animal Husbandry and Phenotypes
We used the F2 and F3 generation of an intercross between the

inbred mouse strains Large (LG/J) and Small (SM/J) [31]. These

strains were established over 60 years ago and were originally

under artificial selection for either large or small body weight at

60 days of age [21,32,33] and have been inbred for over 120

generations prior to their use in this study. Due to this extended

period of inbreeding, these strains are essentially devoid of within-

strain variation. The strains differ by 6–8 standard deviations in

size and growth related traits [31], making this an ideal model

system to study imprinting effects arising from genes regulating

growth and development. To generate the study population, ten

males of the SM/J strain were mated to ten females of the LG/J

strain. The resulting F1 population consisted of 52 individuals,

which were randomly mated to produce 510 F2 animals,

representing the parental generation in our study. These F2

animals, again, were randomly mated to produce 200 full-sibling

families of the F3 generation with a total of 1632 individuals. Males

were removed from the cages when females were visibly pregnant.

Half litters were reciprocally cross-fostered at random between

pairs of females that gave birth on the same day. In total, offspring

in 158 families were cross-fostered in this way. Pups were weaned

at 21 days of age and randomly housed with three or four other

same sex individuals. Further details of the husbandry are given in

[28,29].

Pups were weighed weekly starting at one week of age through

week 10 using a digital scale with an accuracy of 0.1g. Growth was

calculated as the difference between weekly weights such that, for

example, the growth from week 1 to week 3 is the difference

between week 3 weight and week 1 weight. The traits analysed in

this study are weekly individual bodyweights corrected for sex and

litter size beginning with weight at week 1 and ending with weight at

week 10. Growth traits were obtained for preweaning growth from

week 1 to 3 and for the postweaning growth from week 3 to 10.

Genotyping
DNA was extracted from livers of the F2 and F3 individuals

using Qiagen DNeasy tissue kits. After standardizing DNA

concentration, the samples were scored for 384 SNPs using the

Golden Gate Assay by Illumina, San Diego, USA. These markers

were previously found to be polymorphic between LG/J and SM/

J as part of the Oxford/CTC genotyping collaboration (http://

www.well.ox.ac.uk/mouse/INBREDS/). After further testing, 15

loci were found not to have been reliably scored and were

Figure 5. A hypothetical model explaining the appearance of bipolar dominance imprinting. In this model, a QTL with two alleles (1 and
2) is comprised of two genes (A and B), which are in close linkage. Gene A is paternally expressed while B is maternally expressed. Allele 1 has a
positive effect on a trait when paternally inherited but a negative effect when maternally inherited while allele 2 shows the opposite pattern. When
the same allele is inherited from both the father and the mother the effects cancel out, yielding no difference between the two homozygotes.
However, if two different alleles are inherited from the parents then the joint effects of the paternal and maternal copy do not cancel anymore but
produce a pattern of bipolar dominance.
doi:10.1371/journal.pgen.1000091.g005
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excluded from the analysis. Sixteen loci were scored on the X

chromosome and are not included in this analysis because the

genome structure and the statistical model for the X are complex

and unresolved. This leaves 353 loci across the 19 autosomes for

analyses. A genetic map of these markers based on Haldane’s

centiMorgans (cM) was produced using R/QTL [34] and

validated against the genome coordinate locations in the Ensembl

database (www.ensembl.org). The average map distance between

markers in the F2 generation is 4 cM. Markers are evenly placed

throughout the genome except for regions in which LG/J and

SM/J have been found to be monomorphic [35]. A list of the

markers along with their physical and map positions are given in

Table S2.

Haplotype Reconstruction
The combined genotypes of parents and offspring were used to

reconstruct haplotypes for all animals with the program PedPhase

[36,37], which uses several algorithms to infer haplotype

configurations for all individuals that minimize the number of

recombination events in the whole pedigree [i.e., it solves the

‘minimum-recombination haplotypes configuration problem’; 38].

We used the ‘block-extension algorithm’ to reconstruct haplotypes,

Table 2. Predicted imprinted genes (Luedi et al. 2005) lying within the confidence regions of our iQTL.

Ensembl ID Gene Chr. Expr. Ensembl ID Gene Chr. Expr.

Wit1.1 Wti5.1

ENSMUSG00000026158 Q8VE52 1a5 P ENSMUSG00000047105 5g1 M

ENSMUSG00000033569 Bai3 1a5 M ENSMUSG00000041132 AI428195 5g3 M

ENSMUSG00000041670 1a5 M

ENSMUSG00000026110 1b M Wti7.1

ENSMUSG00000051425 1810013P09Rik 7b1 M

Wti2.1 ENSMUSG00000039257 AB030198 7b2 P

ENSMUSG00000037228 2a1 M ENSMUSG00000025324 Atp10a 7b5 M

ENSMUSG00000051576 2a1 P ENSMUSG00000047469 7c M

Wti3.1 Wti9.1

ENSMUSG00000040289 Hey1 3a1 P ENSMUSG00000032423 Nsap1-pending 9e3.2 P

ENSMUSG00000049478 3a2 M ENSMUSG00000032353 1200002G13Rik 9e3.2 M

ENSMUSG00000049569 3a3 P ENSMUSG00000032422 NM 172926 9e3.2 P

ENSMUSG00000027630 3a3 P ENSMUSG00000032456 4933408N02Rik 9e4 P

ENSMUSG00000002428 Smarca3 3a3 M ENSMUSG00000047985 9f1 M

ENSMUSG00000023495 Pcbp4 9f1 M

Wti3.2 ENSMUSG00000032470 Mras 9f1 M

ENSMUSG00000027859 Ngfb 3f3 P

ENSMUSG00000000001 Gnai3 3f3 M Wti12.1

ENSMUSG00000033161 Atp1a1 3f3 M ENSMUSG00000034389 12e M

ENSMUSG00000050461 3f3 P ENSMUSG00000021209 8430415E04Rik 12f1 P

ENSMUSG00000051638 3f3 P ENSMUSG00000033879 12f1 M

ENSMUSG00000044869 3g1 P ENSMUSG00000044456 12f1 M

ENSMUSG00000027987 3h1 M

ENSMUSG00000037994 3h2 P Wti14.1

ENSMUSG00000046818 NM 030143 3h2 M

ENSMUSG00000015807 NM 172811 14d1 P

Wti3.3 ENSMUSG00000051398 14d1 P

ENSMUSG00000037994 ENSMUSG00000021998 Lcp1 14d2 P

ENSMUSG00000046818 NM 030143 3h2 P ENSMUSG00000022002 4930564B18Rik 14d2 P

ENSMUSG00000028194 Ddah1 3h2 M ENSMUSG00000042930 14d2 P

ENSMUSG00000028195 Cyr61 3h3 M ENSMUSG00000022019 NM 172605 14d3 M

ENSMUSG00000036745 4921517B04Rik 3h3 M ENSMUSG00000022021 Diap3 14d3 M

ENSMUSG00000028036 Ptgfr 3h3 P

ENSMUSG00000028199 Cryz 3h4 P

ENSMUSG00000040037 NM 177274 3h4 P

The column headed ‘Chr.’ lists the chromosomal bands based on mouse genome build 36. The predicted expression pattern is denoted M = maternal expression and
P = paternal expression.
doi:10.1371/journal.pgen.1000091.t002
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which produced a set of unordered haplotypes for the F2 animals

and a set of ordered haplotypes (i.e., ordered by parent-of-origin of

alleles) for the F3 animals. The ordered genotypes of the F3

allowed us to distinguish between the four possible genotypes at a

given locus, LL, SL, LS or SS (L being the LG/J allele and S the

SM/J allele) where the first allele refers to the paternally derived

allele and the second to the maternally derived allele.

Analysis of Parent-of-Origin-Dependent Effects
The four ordered genotypes at the marker loci (LL, LS, SL and

SS) were assigned additive, dominance and imprinting (parent-of-

origin) genotypic index values following Mantey et al. [15]. These

index values (slightly modified from those used by Mantey et al.

ref. 15) can be written in matrix form, where the vectors of

genotypic means (i.e., genotypic values) (LL,LS,SL,SS) are

defined by:
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Where r is the reference point for the model (the mid-point

between homozygotes), a is the additive genotypic value (half the

difference between homozygotes), d is the dominance genotypic

value (the difference between the mean of the heterozygotes and

the mid-point of the homozygote means), and i is the parent-of-

origin or imprinting genotypic value (half the difference between

heterozygotes) [cf. ref. 15].

These index values in equation (1) were used to build a model to

scan the genome in the F3 generation (parent-of-origin of alleles

cannot be directly assigned in the F2 because their F1 parents are

all genetically identical, making it impossible to unambiguously

assign haplotypes to parents) to detect loci showing significant

parent-of-origin-dependent effects (i.e. significant i effects). A

mixed general linear model was used to estimate the overall

significance of a locus as well as the significance of the additive,

dominance, and imprinting effects. To test the overall significance

of a locus, a model with ordered genotype class as a fixed effect

and family as a random effect was fitted using restricted maximum

likelihood (REML) as implemented in the Mixed Procedure of

SAS (SAS version 9.1; SAS Institute, Cary, NC, USA). The

significance of the individual genetic effects was determined using

a mixed model with the a, d and i index values as fixed regression

effects and family as a random effect (fitted again using REML in

the Mixed Procedure of SAS). Family was included as a random

effect to account for variation among families not attributable to

the effects of the locus in question. A power analysis combined

with a simulation to determine significance thresholds (see below)

showed that the inclusion of family greatly improved power while

also removing any bias in significance tests introduced by family

structure.

The mixed model with the fixed genetic effects and random

family effect was used to scan the genome to produce a probability

distribution for the overall effect of the locus as well as the additive

(a), dominance (d) and imprinting (i) effects. These probability values

were then transformed to a logarithmic probability ratio (LPR) in

order to make them comparable to the LOD scores typically seen in

QTL analyses (LPR = 2log10(probability)). Significance thresholds

were determined using a Bonferroni correction, which was

calculated using the effective number of markers method [39],

which has been demonstrated to be less artificially conservative than

a simple Bonferroni correction. This analysis showed that, due to

correlations between linked markers, the genome has 133 effective

markers, which results in a Bonferroni threshold LPR at the 5%

level (i.e., a = 0.05) of 3.41. Chen & Storey [40] have shown that,

where several QTL can be expected to affect traits, a modified

genome-wide error rate should be applied as opposed to the

traditional genome-wide error rate or the false discovery rate. This

is achieved by applying the significance criterion to the highest LPR

on each chromosome and yields overall the best results by

increasing the discovery of true positives while at the same time

avoiding problems using the false discovery rate in gene mapping

experiments (with 19 autosomes, we would expect only about 1 false

positive result using the chromosome level thresholds). Our

collective chromosome-wide significant results across the genome

greatly surpass this expectation providing confidence in the overall

set of results. Therefore, for each chromosome we used the effective

number of markers on the chromosome [40] to generate a

chromosome-level significance threshold. The thresholds for

individual chromosomes are given in the Supplementary Table.

Once a QTL was identified, we used post-hoc tests, with a LPR

significance threshold of 1.3 (i.e., p,0.05) to determine whether the

locus also had additive, dominance or imprinting effects, or affected

more than one trait. Confidence intervals for the positions of iQTL

were determined using a one LOD drop (using LPR values)

following Lander & Botstein [27].

Because apparent parent-of-origin effects at a locus can also be

caused by a maternal effect of that locus, rather than genomic

imprinting, we tested all loci with a significant i effect to confirm

that the appearance of a parent-of-origin effect could not be

attributed to maternal effects [22]. If the apparent imprinting

effect is due to a genetic maternal effect, the differences between

reciprocal heterozygotes born of homozygous mothers will be

much larger than the differences between those born of

heterozygous mothers, which are all exposed to the same maternal

environment. Therefore, we confirmed the existence of imprinting

by testing the i effect using only the offspring from heterozygous

mothers. This approach adequately accounts for the potential

confounding patterns of maternal effects since maternal effects

only lead to the appearance of a parent-of-origin dependent effect

at the locus that has the maternal effect. The occurrence of non-

genetic maternal effects cannot lead to the appearance of parent-

of-origin dependent effects and, likewise, the presence of maternal

genetic effects attributable to other loci in the genome will not lead

to the appearance of a parent-of-origin effect at other loci.

To determine the relative proportion of variance explained by

the loci overall and by genomic imprinting effects, we calculated

the approximate variance contributed by a locus (Vg) using the

expectation:

Vg~1=2a2z1=4d2z1=2i2 ð3Þ

which is the genetic variance of a locus in a population with two
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alleles at approximately equal frequency in Hardy-Weinberg

equilibrium. The analytical expectation was used because REML

does not compute sums of squares and the corresponding R2. The

proportion of variance explained would, therefore, be Vg/Vp (Vp

being the phenotypic variance). To obtain the variance explained

by the parent-of-origin effect alone we calculated 1=2i2/Vp.

When chromosomes contained more than one significant QTL,

we assumed that all loci more than 50cM apart represented

separate iQTL. For cases where loci were closer than 50cM apart,

we tested a model containing the individual loci to confirm that

both were significant in a combined model.

Analysis of Imprinting Patterns
We characterized the patterns of imprinting at QTL by

comparing the relative fit of different possible imprinting patterns.

Generally, it is assumed that imprinting leads to monoallelic

expression [e.g. 10], where only one allele is expressed and the

other is always silent (i.e. ‘maternal’ or ‘paternal’ expression).

Alternatively, there could be partial silencing of one allele, with

both alleles being expressed but to different degrees [18,41]. In

addition to these patterns based on complete or partial silencing of

alleles, significant imprinting could appear as a result of a number

of other more complex patterns (below), which to our knowledge

have not been investigated to date.

To characterize patterns of imprinting, we examined the

relationships between the three genotypic values (a, d and i; see

Table S1) to define a set of basic patterns of imprinting as

illustrated in Figure 1. The patterns shown in Figure 1 are

idealized and are used as a general classification system. Actual

patterns may differ from these due to the fact that loci may show

tissue specific variation in imprinting patterns, or because of

partial imprinting. We determined the best-fit imprinting pattern

at a given locus using contrasts in the Mixed Procedure in SAS.

The various imprinting patterns are reflected in distinct ratios of

the genotypic value for imprinting i and the additive a and

dominance d genotypic values and yield the following different

imprinting patterns.

1. With complete or partial monoallelic expression (correspond-

ing to either maternal or paternal expression), we expect that

the two genotypes sharing the same expressed allele should

have the same average phenotype. Complete silencing of one

allele implies that (a/i) = +1 if there is paternal expression and

(a/i) = 21 for maternal expression, and also that d/i = 0. A

locus was said to show partial maternal or paternal expression

when the (a/i) ratio was closer to zero but both a and i were still

statistically significant or when the ratio was much larger than

one. To detect maternal expression, the LL and SL genotypic

values were contrasted with the LS and SS genotypic values

(i.e., genotypes sharing alleles with the same maternal origin),

while the opposite contrast was used to detect paternal

expression.

2. A locus with a significant i effect may also show a previously

undescribed imprinting pattern, where the two heterozygotes

are significantly different from each other, but the two

homozygotes are the same. We call this pattern of imprinting

‘bipolar dominance’ because one heterozygote shows over-

dominance while the other shows underdominance. Bipolar

dominance is characterized in its canonical form by a

significant i value with additive (a) and dominance (d) values

of zero, thus d/i = 0 and a/i = 0. This pattern cannot be

attributed to simple silencing since such a process would

necessarily result in a difference between the homozygotes.

Possible mechanisms producing this pattern are discussed in

the main text. To detect bipolar dominance, the SL genotypic

value was contrasted with the LS genotypic value.

3. A third possibility is a more general case of the pattern

previously called polar overdominance [17]. This pattern of

imprinting, which we call ‘polar dominance’, refers to the

situation when one of the two heterozygotes is different from all

three other genotypes (either significantly larger or smaller)

while the genotypic values of the latter are not significantly

different from each other. The pattern is referred to as polar

overdominance when the heterozygote is larger than the other

three ordered genotypes and polar underdominance when it is

smaller. The case of polar overdominance matches that

described for the callipyge locus in sheep [17]. In its canonical

form, this pattern is associated with a dominance value (d) that

is equal to the imprinting value (i) and with an additive effect (a)

of zero, thus d/i = 61 and a/i = 0. To detect polar dominance,

either the LS or SL genotypic values were contrasted with the

values of the other three genotypes.

We note that actual genotypic values may deviate from the

definitions given above and patterns with genotypic value ratios

approximating 20.5 or 0.5 cannot be unequivocally categorized.

Simulation and Power Analysis
We simulated the production of the F2 and F3 populations

maintaining the observed distribution of family size to evaluate

power of alternative mapping approaches (specifically, including

random family effects and testing model significance based on the

significance of the full effect of a locus (a, d, and i) versus just the

imprinting effect (i) and the possibility of inflation of significance

thresholds caused by family structure). F2 animals’ genotypes were

produced by combining recombinant gametes from their F1

parents. We used the recombination rates observed in the F2

population. F2 animals were randomly paired and gametes

produced for each offspring, again using the same recombination

rates and the observed distribution of family sizes. A thousand

random independent loci, one from each of a thousand iterations

of the simulation, were used for power analyses. These family-

structured genotypes were then paired with the observed

phenotypes. Thus, each simulated locus had the same distribution

of genetic correlation between individuals as the actual population.

The distribution of phenotypes within and between families was

also maintained, fixing heritability and genetic correlation.

However, in the simulated population there is no relationship

between any specific locus and the distribution of phenotypes,

unless such a relationship was simulated.

QTL were simulated by altering the phenotypes of individuals

based on their genotype at a locus in a way that simulated two

patterns of imprinting, parental imprinting and bipolar domi-

nance, and two patterns of QTL effects that did not include

imprinting, pure additivity and overdominance effects. QTL

effects were simulated following the definition of the genotypic

values given in equation (1) in a way that did not alter the trait

mean. QTL were simulated to account for K, 1, 2 and 5% of the

phenotypic variance according to the relationship shown in eq. (3)

for Vg (where the phenotypic variance is calculated as the existing

variance plus the variance contributed by the simulated QTL,

such that the QTL effects are measured relative to the final

phenotypic variance after the addition of variation contributed by

the QTL).

Because our goal is to present an analysis of imprinting effects

and not a general analysis of statistical approaches, we only briefly

present the relevant details and results here in the Materials &

Methods section. We use results of a simulation of week 10 body
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weight because this trait has a heritability that is approximately

equal to the median and modal heritability of the 12 traits

analyzed herein. We fitted the model (both with and without the

random family effect) using REML as described above and focus

on whether the inclusion of the family effect improves power and

how often the contrasts that test the fit of the locus to the various

forms of imprinting correctly identify the true pattern. We also

evaluated the case where significance testing is based solely on the

imprinting effect to see whether this improves the detection and

correct characterization of imprinting effects.

The null model with no QTL effects shows that the threshold

for a model not including the random effect of family (i.e., a model

with just the fixed family effect) has an inflated significance

threshold due to the presence of the family structure (i.e., the

familial autocorrelation), where the 5% significance threshold is

0.0007, rather than 0.05 as expected. In contrast, the model that

includes the random effect of family in the mixed model has a 5%

significance threshold of 0.048. This shows that the inclusion of the

random effect of family, by removing the among family variance,

removes any bias in significance tests caused by family structure.

Because we have identified loci using a test of the overall effect of a

locus prior to determining whether the locus shows imprinting, our

expected rate of false positives is actually much lower than the 5%

expected based on a 5% significance threshold for the locus. This

is because most loci showing a significant overall effect do not

show an imprinting effect. Indeed, when the fixed effect of family

is included in the model, we find that, as expected, only a fraction

of the false positives show imprinting, indicating that the actual

rate of false positives for loci showing an imprinting effect is just

over 1%. When the model does not include the random family

effect, we find that the false positive rate of loci showing imprinting

is just over 2%.

Table S3 presents the results of the simulations that included

imprinting effects. In all cases, the model that included the random

family effect performed better than the model that did not. In all

cases, the inclusion of the family effect increased power to detect

QTL effects (generally a two- to threefold increase) compared to a

model without family and always yielded a higher proportion of

correct assignment of the pattern of QTL effects. Therefore, we

have included the random family effect in the model and all

further discussion of power is based on the model that includes the

family effect. Overall power of the mixed model fitted using

REML is high and generally identifies the correct pattern of

imprinted expression. The power analysis shows that, when the

locus shows parental imprinting, the use of a significance test based

on the overall effect of the locus has higher power and is correct a

greater proportion of the time compared to the use of the

significance test based on the imprinting effect alone. However,

when the locus shows bipolar dominance (especially when it is

weak, accounting for K or 1% of Vp), power is higher when the

test is based solely on the imprinting effect, but the proportion

showing the correct pattern is generally similar to the test based on

the overall effect of the locus. The increased power is due to the

fact that the bipolar pattern only contributes to the imprinting

term, and therefore, a test based on the overall effect of the locus is

less sensitive than one based solely on the imprinting effect. For

this reason, we have included loci that show a strong imprinting

effect even when the overall effect of a locus is not significant (this

leads to the inclusion of a single locus, Wti3.1, as a putative iQTL).

When the locus shows significant parental imprinting, the

contrasts generally identify the correct pattern of imprinting,

ranging from 83% correct at the genome-level threshold when the

locus accounts for just K% of Vp to 99% correct when it accounts

for 5% of Vp. In the rare cases where the contrasts identify the

wrong pattern of imprinting, the incorrect patterns are evenly

distributed between polar and bipolar dominance, but the locus

almost never shows the alternative form of parental expression

(i.e., if the locus is simulated to show maternal expression, the

contrasts never indicate a best fit for paternal expression). When

the locus shows bipolar dominance, power is generally higher than

the case for parental expression and the contrasts also generally

identify the correct pattern of effect of the locus. However, unlike

parental expression, when the contrasts identify the incorrect

pattern of imprinting, the locus shows polar dominance the

majority of the time (O to L of the incorrect patterns are some

form of polar dominance). This suggests that cases of polar and

bipolar dominance may be somewhat confounded, but bipolar

dominance very rarely appears as parental expression.

When the locus was simulated to show additive or dominance

effects, imprinting effects were significant less than 5% of the time

(i.e., less frequently than expected by chance using a 5% significance

threshold; with the actual frequency being between 3 and 4%),

indicating that non-imprinted patterns of genetic effect generally do

not lead to the incorrect identification of a locus as showing

imprinting. This result strongly suggests that a detected significant

imprinting effect represents a case of true imprinting at a locus since

the rate of false positives is lower than the rate expected under the

null model. Furthermore, the fact that the model is very successful at

identifying the correct pattern of effect of a locus (especially for loci

accounting for $1% of the variance, as is the case for nearly all of

the iQTL) provides strong support for the diversity of patterns of

effect we describe for the detected iQTL.

Supporting Information

Table S1 Additional information about the significant iQTL.

Listed are the iQTL name, the traits affected by the iQTL, the

marker name at the iQTL location along with its F2 map position

in cM, and its physical coordinate in mouse genome build 36

(www.ensembl.org). The effect of the QTL is listed for all traits

where the imprinting effect was significant. These are given as the

additive (a), dominance (d) and imprinting (i) genotypic values,

their standard errors (SE) and significance (p) value. These are

followed by the LPR for the overall effect of a locus and the

significance threshold at the chromosome level for the chromo-

some containing the QTL. Under the heading ‘Characterizing the

pattern of imprinting’ are the ratio of the additive to the

imprinting genotypic values (a/i), the dominance to imprinting

ratio (d/i), the standardized imprinting values (i/SD), the standard

deviation of the trait (SD), the R 2 (rsq%) value of the imprinting

effect alone and R 2 for the overall variance explained by a locus,

the best fit pattern along with the LPR value associated with the

contrast for that pattern. These are followed by the genotypic

values of the four ordered genotypes LL, LS, SL, SS and their

standard errors (SE), which were estimated by the mixed model

fitted by REML (i.e., the model used to detect and characterize

QTL effects).

Found at: doi:10.1371/journal.pgen.1000091.s001 (0.08 MB

XLS)

Table S2 Listed are the 353 SNP markers used in the study. The

table includes the chromosome (Chr), marker name (Marker), F2

map position in cM [Map Pos (cM)] and their physical position

based on mouse genome build 36 (ensembl.org) [Phy. Pos. (bp)].

Found at: doi:10.1371/journal.pgen.1000091.s002 (0.06 MB

XLS)

Table S3 Power analysis of the mixed model to detect iQTL

showing either parental or bipolar expression. The ‘iQTL’ column
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lists the pattern of effect simulated for a locus, ‘Family effect’

indicates whether the random effect of family was included in the

model and ‘%Vp’ list the percent of phenotypic variance accounted

for by the locus. These are followed by three pairs of columns that

give the percent power and percent correct assignment of the real

QTL effect pattern using a locus, chromosome and genome level

significance test.

Found at: doi:10.1371/journal.pgen.1000091.s003 (0.10 MB

DOC)
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