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Small-scale fisheries catch more threatened
elasmobranchs inside partially protected
areas than in unprotected areas

Manfredi Di Lorenzo 1,6 , Antonio Calò 2,6, Antonio Di Franco1,6 ,
Giacomo Milisenda1, Giorgio Aglieri 1,2,3, Carlo Cattano 1,2,3,
Marco Milazzo 2,3 & Paolo Guidetti4,5

Elasmobranchs are heavily impacted by fishing. Catch statistics are grossly
underestimated due tomissing data fromvarious fishery sectors such as small-
scale fisheries. Marine Protected Areas are proposed as a tool to protect
elasmobranchs and counter their ongoing depletion. We assess elasmo-
branchs caught in 1,256 fishing operations with fixed nets carried out in par-
tially protected areas within Marine Protected Areas and unprotected areas
beyond Marine Protected Areas borders at 11 locations in 6 Mediterranean
countries. Twenty-four elasmobranch species were recorded, more than one-
third belonging to the IUCN threatened categories (Vulnerable, Endangered,
or Critically Endangered). Catches per unit of effort of threatened and data
deficient species were higher (with more immature individuals being caught)
in partially protected areas than in unprotected areas. Our study suggests that
despite partially protected areas having the potential to deliver ecological
benefits for threatened elasmobranchs, poor small-scale fisheries manage-
ment inside Marine Protected Areas could hinder them from achieving this
important conservation objective.

Elasmobranchs (sharks, skates, and rays) are among the megafauna
that are most threatened by fishing1–4. Often caught as bycatch,
many elasmobranchs have increasingly become target species over
the last few decades due to the increased demand for elasmobranch
products (especially fins and meat)5. Global catch of elasmobranchs
continued to increase, reaching a peak of 900,000 tonnes per year
in 20036, and have subsequently declined as a result of overfishing7.
Global statistics of catches are presumably underestimated by a
factor of three or four, as they do not consider Illegal, Unreported,
and Unregulated (IUU) catches8. The substantial exploitation of
elasmobranchs has had serious consequences, and recent estimates

suggest a 71% decline in the global abundance of oceanic sharks and
rays since 19704. This steep decline in elasmobranch abundance is
exacerbated by their peculiar life-history traits (i.e., large size, slow
growth rate, late maturity, and low fecundity) which makes them
particularly vulnerable to fishing disturbance. As a result, about
one-third of elasmobranch species are classified as threatened with
extinction (Vulnerable, Endangered, or Critically Endangered) in the
Red List of the International Union for the Conservation of Nature
(IUCN)4,9.

Small-scale fisheries (SSF) employ 90% of the world’s fishers and
contribute to over 50%of globalmarine species catchworldwide10. Yet,
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SSF have been systematically overshadowed by the large-scale fish-
eries sector and largely understudied11. Most of the available infor-
mation on the status of elasmobranch species and fishing impact is
obtained from the large-scale fishery sector12–15. Much less is known
about elasmobranchs and their interactions with SSF in coastal areas,
which represent data-poor systems5,10. SSF aregenerally acknowledged
as being less impactful and more sustainable than large scale
fisheries16, however, some studies have highlighted that these fisheries
can represent a significant threat for a number of vulnerable marine
vertebrates (e.g., marine mammals and sea turtles17–19) that are caught
as bycatch. To date, the potential impact of SSF on elasmobranch
species has been poorly understood11 and existing studies are scarce
and geographically limited20–23.

Growing concerns over the global status of elasmobranchs and
their ongoing depletion3,9,24 have led to an increase in conservation
efforts over the last decade to protect them andmitigate against their
decline25. However, questions remain regarding what strategies to
apply to best protect them. Marine protected areas (MPAs), including
fully protected areas (FPAs) and partially protected areas (PPAs), are
effective tools to protect marine biodiversity26–28, whilst at the same
time, have the potential to improve fishers’ wellbeing29–31, reconciling
conservation and fisheries goals32. MPAs are generally considered
effective in protecting species with limited movements33,34, but recent
evidence pointedout their potential to conservemobile and long-lived
predators, including elasmobranchs25,35. Several very large FPAs have
been established worldwide and are being promoted as a tool for
conservation and recovery of pelagic species (including
elasmobranchs)36,37. The recent designation of large FPAs has greatly
helped in achieving global protection targets38. On a global scale,
around 29% of the total protected ocean area (corresponding to ~7
million km2) is dedicated to elasmobranch conservation. This is most
likely considerably too small to achieve elasmobranch conservation
goals, especially considering that only 2.8% of the world’s oceans are
fully protected25. Although criticisms exist regarding their
effectiveness38,39, potential positive effects of large FPAs on elasmo-
branch species have recently been highlighted4,40,41. Most existing
FPAs, however, are small, and therefore potentially unable to deliver

full conservation benefits for large or mobile elasmobranchs. Yet,
positive effects for these species may arise through the protection of
critical habitats for reproduction and feeding42. To date, these benefits
for elasmobranchs remain relatively unknown43. As MPAs can trigger
virtuous fishers’ attitudes and recognition of the need to cooperate
with MPA managers and scientists, they represent an ideal incubator
for wider successful cooperation for the conservation of endangered
species, including elasmobranchs (see e.g.,44). Most MPAs globally are
multiple-use PPAs, where some regulated human activities are
permitted28,45. PPAs generally cover most of the surface area of
multiple-use MPAs, and under certain circumstances have been pro-
ven to deliver ecological benefits to coastal fish46, however limited
evidence exists regarding their effectiveness in protecting elasmo-
branch species.

TheMediterraneanSea is an important elasmobranchbiodiversity
hotspot47. However, its long history of human exploitation48, including
fishingpressure, alongwith habitat loss anddegradation49 have led to a
steep decline in elasmobranchs47, with the threat status of Mediterra-
nean elasmobranchs worsening more rapidly than the global status50.
In fact, a marked regional decline has been highlighted for large pre-
dator shark species51 and smaller commercially important meso-
predator species21,52,53. SSF in the Mediterranean Sea are multi-species
fisheries that mainly target teleost fishes; elasmobranchs are not
usually targeted, but when fished are generally retained and sold.
Accounting for 83% of fishery vessels in the Mediterranean Sea54, SSF
have been found to impact elasmobranch populations (e.g.,23,55).
Although the Mediterranean Sea hosts many coastal multiple-use
MPAs, mostly PPAs56, no studies to date have focused on the potential
role of PPAs to protect the elasmobranch species that were once
widespread throughout the Mediterranean57.

Our study was designed to fill in these critical information gaps
and to characterize elasmobranch assemblages caught by SSF
within the PPAs and/or in the surrounding unprotected areas (UPAs)
of 11 Mediterranean MPAs (Fig. 1; Supplementary Fig. 1). Due to the
probable higher fishing pressure in UPAs than in PPAs given the
fishing restrictions generally imposed in PPAs (fishing effort data of
SSF are not generally available in the Mediterranean as SSF vessels

Fig. 1 | Study locations.Numbers report the percentage of elasmobranchs by IUCN
categories caught (i.e., Biomass CPUE data) at each location. Names in black indi-
cate locations where a multiple-use MPA is present and where catches were mon-
itored both within the partially protected areas (PPAs) and in nearby unprotected

areas (UPAs); names in blue indicate locationswhere theMPA is entirely covered by
fully protected areas (FPAs) and where catches were monitored only in UPAs. CR
Critically Endangered, EN Endangered, VU Vulnerable, NT Near Threatened, LC
Least Concern, DD Data Deficient. Source data are provided as a Source Data file.
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are not equipped with tracking devices) we hypothesize that elas-
mobranch catch per unit of effort (CPUE) is higher in PPAs than
UPAs. We use photo-sampling and subsequent image analysis of
catches from fixed nets, the gear most used in Mediterranean SSF,
to compile an extensive database covering 1256 fishing operations
in six countries, along with the regional IUCN red-list assessments
to: (1) assess the interaction between SSF and coastal elasmobranch
species; (2) investigate potential differences in species biomass
CPUE (BCPUE, grams per 1000m of net), and abundance CPUE
(NCPUE, number of individuals per 1000m of net) between PPAs
and UPAs in nine out of eleven locations (see material and methods
section for more details), disentangling the effect of protection
from a set of potential covariates (for example, chlorophyll a and
sea surface temperature. See Supplementary Table 1). Our study
provides evidence on the role of PPAs in protecting coastal elas-
mobranch species and highlights that SSFmay represent a threat for
these species, also inside Mediterranean MPAs, suggesting the cri-
tical need for careful management measures.

Results and discussion
Elasmobranch catches by SSF are mostly represented by
Threatened species
Using landing data from 1256 fixed net operations (for a total of
737.71 km of nets deployed) carried out to depths of 150m, we
recorded892 elasmobranch individuals belonging to 24 species (four
demersal sharks and twenty batoid species) (Fig. 2; Supplementary

Tables 2, 3a, b), representing almost one third of the total elasmo-
branch species living in the Mediterranean Sea up to depths of 800
m58. Considering all the species caught during the SSF operations,
elasmobranchs accounted for 2.4% of the overall NCPUE and 6.4% of
the overall BCPUE. According to the last assessment for the Medi-
terranean IUCN red list,more than one third of the species caught are
categorized as Threatened [THR] (including Critically Endangered,
Endangered and Vulnerable categories) (Fig. 2; Supplementary
Table 2). Blue Skate (Dipturus batis Linnaeus, 1758) and Shagreen Ray
(Leucoraja fullonica Linnaeus 1758) were the only species caught that
are listed as Critically Endangered [CR]. Three species are listed as
Endangered [EN] (Rough ray, Raja radula Delaroche 1809; Common
Guitarfish, Rhinobatos rhinobatos Linnaeus 1758; and White Skate,
Rostroraja alba Lacepède 1803), four as Vulnerable [VU] (Common
Stingray, Dasyatis pastinaca Linnaeus 1758; Common Eagle Ray,
Myliobatis Aquila Linnaeus 1758; Common Smooth-hound, Mustelus
mustelus Linnaeus 1758; and Blackspotted Smooth-hound, Mustelus
punctulatus Risso 1827) and seven as Near Threatened [NT] (Long-
nose Skate, Dipturus oxyrinchus Linnaeus 1758; Cuckoo Ray, Leucor-
aja naevus Müller & Henle, 1841; Mediterranean Starry Ray, Raja
asterias Delaroche, 1809; Blonde Ray, Raja brachyura Lafont 1873;
Thornback Ray, Raja clavata Linnaeus 1758; Undulate Ray, Raja
undulata Lacépède, 1802; and Nursehound, Scyliorhinus stellaris
Linnaeus 1758). The remaining species recorded are categorized as
Least Concern [LC] and Data Deficient [DD] (Fig. 2, Supplementary
Table 2). The greatest biomass per unit effort was for THR species
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Fig. 2 | Percentage of fishing operations in which elasmobranch species have
been recorded in partially protected areas (PPAs) and in unprotected areas
(UPAs). ‘N’ indicates the overall number of individuals caught for each species. The
species in bold were caught (as NCPUE) mostly in PPAs. The barplots show BCPUE
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tically Endangered, EN Endangered, VU Vulnerable, NT Near Threatened, LC Least
Concern, DD Data Deficient. Source data are provided as a Source Data file.
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(BCPUE 507.73 ± 74.3 g/1000m, mean ± SE), and the least for DD
species (2.5 ± 1.0 g/1000m, mean ± SE).

Our study highlights that, as well as trawl and longline
fisheries2, SSF fixed nets also impact threatened elasmobranchs in
the Mediterranean Sea23,59. This is very concerning as SSF account
for most of the fishing vessels operating, not only in the Medi-
terranean Sea, but also worldwide16,17,54,60. Elasmobranch captures
represented a relatively small percentage of the total catches in our
study (both in terms of NCPUE and BCPUE); however, given the high
number of elasmobranch species captured, out of the total living in
the Mediterranean Sea, and the considerable proportion of THR
species fished, a systematic assessment of SSF catches should be
implemented. In fact, more than half of the species caught by SSF in
five out of eleven study locations (Capo de Palos, Egadi Islands,
Strunjan, Telascica and Torre Guaceto) are considered threatened
with extinction. In line with past studies about temporal trends of
demersal elasmobranchs presence in those areas52,53, VU species
were the most frequently caught. The low NCPUE and BPCUE
recorded in our study could be due to multiple pressures affecting
Mediterranean coastal ecosystems, with historical overfishing
playing a major role, as has already been highlighted by previous
studies3 (see the case ofMustelus spp. decline in the Mediterranean
Sea52). Generally, elasmobranch catches are difficult to assess due to
low data availability, especially given the lack of species-specific
reporting50. Elasmobranchs are often reported/sold using generic
terms, such as “shark”, “ray” or other vernacular names, making it
hard to assess the decline of some species7. Indeed, a systematic
assessment of SSF catches along Mediterranean coasts requires
accurate taxonomic and morphometric information for landed
specimens that also includes the discards of non-commercial spe-
cies, including elasmobranchs, as this data is crucial to evaluate
the actual impact of SSF on elasmobranchs50 and to plan sound
fisheries management. Even if species-specific reporting poses a
cost in terms of capacities required (training people and/or
technologies61), here we show that image analysis of SSF landings is
an effective method to monitor catch because: (1) it is straightfor-
ward and can be performed by any (e.g. scientists, MPA staff, etc.)

using cheap technology; and (2) images represent a reliable record
and allow retrospective accurate identifications by experts when-
ever necessary.

Kernel density distributions (probability peaks) suggested that
immature individuals were caught more frequently than mature
individuals for THR and DD species (Fig. 3, Supplementary Table 4),
and a similar proportion of mature and immature individuals
belonging to species in the non-threatened group (Near Threatened
and Least Concern species: hereafter NTH) were caught (Fig. 3,
Supplementary Table 4). This finding could be due to ray species’
(the most represented group of NTH) sedentary behaviour
throughout their life cycle62, and the fact that they do not show
habitat segregation between juveniles and adults. This pattern dif-
fers in sharks, like Mustelus spp. (belonging to THR), that, besides
the reproductive season, when they show high site fidelity, gen-
erally have larger home ranges during the adult stage and move
away from coastal areas where SSF operate62.

Since most SSF operate in coastal areas encompassing important
and often critical habitats for reproduction and juvenile survival (i.e.,
mating and nursery areas)63–66, it is likely that recruitment overfishing
(i.e., the rate of fishing above which the recruitment to the exploitable
stock becomes significantly reduced) could be one of the causes
leading slow-growing elasmobranch species to risk of extinction.
Therefore, to effectively protect Mediterranean elasmobranchs, we
suggest that: (i) in the absence of ad hoc assessments, DD species
should be managed and monitored with the same conservation stra-
tegies adopted for the THRgroup, and (ii) likemany teleost species67, a
minimum landing size should be set forMediterranean elasmobranchs
to ensure individuals survive to maturity, increasing the probability of
reproduction before being caught.

Higher elasmobranch catches per unit of effort inside partially
protected areas
Concerning the 9 locations used for the comparison between elas-
mobranch catches in PPAs and UPAs, 517 individuals were collected
inside PPAs during 573 fishing operations (for a total of 385.51 km of
nets deployed) and 358 individuals were collected in UPAs during 511
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fishing operations (for a total of 352.20 km of nets deployed). The
overall biomass of elasmobranchs recorded was higher for fishing
operations in PPAs (487.53 kg) than in UPAs (223.07 kg). The mean
BCPUE and NCPUE of elasmobranchs were higher inside the PPAs
(1299.8 ± 177.6 g/1000m., 0.63 ±0.08 n/1000m, mean± SE, respec-
tively; Fig. 2) than in UPAs (773.6 ± 197.3 g/1000m., 0.57 ± 0.10 n/
1000m; Fig. 2). Generalized additive models for location, scale, and
shape (GAMLSS) on BCPUE and NCPUE data suggested that ‘protec-
tion’ significantly affected both response variables, and although the
probability of having elasmobranchs in SSF catches (i.e., the prob-
ability of fishing operations with at least one elasmobranch individual
in the catch) was higher in UPAs than PPAs (BCPUE: tvalue = −2.95,
p =0.003; NCPUE: tvalue = −2.82, p =0.004, “logit” part of the model,
Supplementary Table 5, Supplementary Figs. 2b, 3b), the BCPUE and
the NCPUE were found to be higher inside the PPAs (tvalue = −2.81,
p =0.001; tvalue = −2.93, p = 0.003 respectively; “log” part of themodel,
in Supplementary Table 5; Supplementary Figs. 2a, 3a). Among the
environmental covariates considered, only ‘chlorophyll a’ showed a
significant and positive relationship with both BCPUE and NCPUE (log:
tvalue = 6.96, p =0.001, tvalue = 3.70, p = 0.001 respectively; Supple-
mentary Table 5), whilst BCPUE and sea surface temperature (SST)
were inversely related (log: tvalue = 3.69, p = 0.001; Supplementary
Table 5). We also found a positive relationship between the overall
human impacts index considered and NCPUE (log: tvalue = 2.62,
p =0.008; Supplementary Table 5), while no relationship between the
index and BCPUE was detected. These findings suggest that the posi-
tive relationship detected for NCPUE is mainly determined by the
presenceof juveniles and/or small-sized species (that contribute to the
number of individuals, but less in terms of biomass) in areas with high
human impacts. In the absence of additional factors being investi-
gated, we hypothesize that the counterintuitive relationship between
NCPUE and human impactsmay be related to a combination of factors
including the removal of top predators in highly impacted areas,
potentially releasing meso-predators and/or juveniles35,51. This
mechanism has been previously suggested51, but the opposite has also
been reported68. These studies however, referred to species exploited
by large scale fisheries, and to the best of our knowledge no previous
studies are available for SSF in coastal areas. GAMLSS explained 37.0%
and 41.2% of the deviance for BCPUE and NCPUE, respectively (Sup-
plementary Fig. 4). The positive effect of the protection on elasmo-
branch species found in this study has also been emphasized, using a
multivariate perspective, by the pRDA performed on the species
grouping into the 6 IUCN categories. In fact, the results of the pRDA
highlighted that when considered singularly the Endangered and Vul-
nerable categories were highly correlated with the PPAs (Fig. 4; 999
permutations: p <0.001 for both BCPUE and NCPUE).

Overall, higher numbers of immature individuals were caught
both in PPAs and UPAs (Supplementary Fig. 5). The proportion of
mature individualsdidnotdiffer betweenPPAs andUPAs for THR,NTH
and DD groups (THR, Z39 = 0.946 p = 0.998; NTH, Z91 = −1.242
p =0.217; DD, Z32 = 0.432 p =0.669; Supplementary Fig. 5). On the
contrary, the statistical analyses revealed that immature individuals of
THR and DD species weremore frequently captured inside PPAs (THR,
Z85 = −3.268 p =0.0015; DD, Z29 = −2.006 p =0.006; Supplementary
Fig. 5), whilst for the NTH group no statistical differences were found
between protection levels (Z86 = 0.748 p =0.456). The result for THR
and DD species may indicate that PPAs could support the presence of
juveniles. Many coastal areas have been altered and have deteriorated
due to human impacts69; MPAs, instead, are zones where habitat pro-
tection/recovery is promoted, and where, potentially, healthy/recov-
ered habitats can act as nurseries for elasmobranchs.

Given the higher BCPUE and NCPUE of elasmobranchs captured
within the PPAs, our results suggest that PPAs may play an important
role in protecting threatened elasmobranch species along the Medi-
terranean coast. This finding suggests that restrictions on human use

activities, as found in PPAs (reduced fishing effort, use of less-impacting
fishing gears, and reduction of other sources of human disturbance in
general, Supplementary Table 6), could help increase the density and
biomass of these threatened species15. In addition to direct protection
effects, indirect factors could also play a role. For instance, an increase
in biomass of elasmobranch prey within the PPAs may attract elasmo-
branch species to these areas. The elasmobranch species we observed
in SSF catches feed on a large spectrum of smaller marine organisms,
such as crustaceans, molluscs, and fish70,71, which all benefit from the
‘reserve effect’26. Unfortunately, we lack information on the presence
and abundance of elasmobranch prey in our study locations, thus fur-
ther efforts areneeded to investigate thepotential relationshipbetween
elasmobranch biomass/abundance and prey availability.

Since PPAs generally cover the largest proportion of multiple-use
MPAs surface area, they might play a key role as potential refuges for
elasmobranch species, within MPAs, especially for those at risk of
extinction, hosting different critical habitats for elasmobranchs (e.g.,
nursery and mating areas). Recent reviews of tagging studies showed
that many elasmobranchs have pronounced site fidelity and either
permanent or seasonal residency in relatively restricted areas61,62. In
the latter case, fishing at these sites could reduce not only the limited
pool of returning adult females and new-borns, but also the local
abundance of individuals at older life stages. The higher BCPUE and
NCPUEof elasmobranchswithin PPAs found in this study also supports
the idea that these areas could be acting as a potential refuge.
Although our estimates are fishery-dependent, and assuming absence
of hyperstability or hyperdepletion, CPUE could be considered a proxy
of abundance and biomass at sea. Further studies on ecological attri-
butes and additional investigations into the potential benefits of PPAs
are needed to shed light on the ecological mechanisms that illustrate
PPAs benefit for elasmobranchs.

Improving elasmobranchs conservation
Although different strategies to protect elasmobranchs have been
implemented, their conservation status highlights the need for further
efforts to halt their ongoing global decline. In theMediterraneanbasin,
more than half of the elasmobranch species are Critically Endangered,
Endangered, or Vulnerable47.Many have already disappeared in several
parts of the Mediterranean52. To date, only a few elasmobranchs
(24 species), listed in Annex II of the SPA/BD protocol of the Barcelona
Convention and Recommendation GFCM/42/2018/2, are fully pro-
tected in the Mediterranean Sea (they cannot be retained on board,
landed, transferred, stored, sold, or displayed or offered for sale). In
our study, three elasmobranch species (Dipturus batis, Rhinobatos
rhinobatos and Rostroraja alba) listed in Annex II were caught and
landedbySSF. This could be due to a lack of awareness of fishers about
the status of shark and ray populations and the fishery restrictions72.
The removal of threatened elasmobranchs, both immature andmature
individuals, from inside PPAs by SSF appears to reveal a “conservation
paradox”. Catching immature individuals could result in a lower level
of sustainable exploitation, as juvenileswith delayed onset ofmaturity,
have the greatest influence on population growth73. Nevertheless, the
protection of mature individuals should be considered an equally
important strategy for elasmobranch fisheries management, as older
individuals can regularly produce young that replenish populations
through consistent recruitment74. It is worth noting that mature indi-
viduals were also caught in UPAs, and as such from a conservation
point of view, key strategies to protect elasmobranchs should focus on
the protection of aggregation sites in UPAs to minimize the mortality
of pregnant females during the parturition period and the establish-
ment of a legal maximum size for captures74. Our findings, therefore,
call for actions to establish sound SSF management strategies that
ensure existing MPAs achieve their conservation goals and objectives.
Additional management measures and/or stronger compliance are
needed to minimize landings and by-catch mortality to halt ongoing
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decline and rebuild endangered elasmobranch populations47. In this
regard, based on evidence from the literature and previous manage-
ment success stories we propose four recommendations. First, fill the
critical scientific data gapbyfindingways to support data collection on
abundance, biomass, size, spatial distribution, and habitat association
of shark and batoid species, as well as life-history characteristics75,
inside and outside MPAs, coupling fishery-dependent (e.g., landings
assessment, as used in the present study) and fishery-independent
approaches (e.g., deploying Baited Remoted Underwater Videos5,76–78).
Second, focus on fishing‐effort controls, including gear or temporal
restrictions, and on the use of shark dissuasive devices79. Third, adopt
best practices to aid the survival of by-catch species through training
on the correct identification, handling, and release protocols for
endangered elasmobranchs44, and for the officials authorized to
enforce regulations and check catches12. Fourth, improve the knowl-
edge base, by identifying critical habitats within MPA borders that
would allow for seasonal closures of nursery areas, breeding grounds
and aggregation sites63,64,80, and systematically collect SSF fishing
effort data in theMediterraneanSea thatwouldprovidemore accurate
estimates of total yields. The management and data collection activ-
ities needed to adhere to the four suggestions could be realised by
MPAs, taking advantage of the role that MPA management authorities

have as local-scale governance systems capable of implementing
effective management measures. For this reason, we highlight the
promising role PPAs can have, if well designed and managed, for the
protection of coastal elasmobranchs.

In this study, we used the regional IUCN Red List categories47 to
guide the assessment of elasmobranch populations’ response to pro-
tection. Our results showed that species listed as Threatened (i.e.,
Critically Endangered, Endangered, and Vulnerable) had higher B/
NCPUE inside PPAs than UPAs. However, the status of the regional and
national Red Lists and/or more local status of elasmobranch species
may differ. Being aware of this difference is crucial for understanding
more localized impacts from SSF to guideMPAmanagement bodies in
making informeddecisions. IUCNRed List Categories have been found
to align with the fisheries status of many exploited species and
therefore provide a useful guide for prioritizing the conservation
needs of different species. Species classified as Critically Endangered
or Endangered cannot withstand any form of fishing24, whereas Near
Threatened or Vulnerable elasmobranchs can in some instances sus-
tain modest levels of fishing24. The approach used in this study can be
used to further strengthen management decisions that are much
needed in areas around the world where SSF predominate (for exam-
ple in North Africa54, Mexico22 and the Indian Ocean60).
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In general, most countries encounter some level of difficulty, and
disagreement from stakeholders, when attempting to establish new
MPAs, and major capacity shortfalls hinder MPAs’ potential to deliver
ecological benefits81. Yet enhancingMPAs’ coverage and ensuring their
effective management is crucial if we are to achieve global conserva-
tion objectives. Many ocean experts and political actors support the
proposal for a global framework to effectively protect 30% of the
global ocean by 2030, known as 30× 30, which is to be set during the
nextmeetingof theUnitedNationsConventiononBiologicalDiversity,
in Kumming in 2022. The results of this study highlight that small
coastal MPAs potentially offer protection to species that were pre-
viously thought not to receive benefits from MPAs. As such, multiple-
use MPAs, including large and adequately managed PPAs, should
improve the protection of elasmobranchs through suitable manage-
ment plans that aim to reduce bycatch and promote a sustainable use
of natural resources ensuring we meet conservation goals (e.g., pro-
tecting elasmobranchs and ecosystems more widely) whilst, simulta-
neously, allowing potentially sustainable human uses82,83.

Methods
Study area
The study was conducted within and around eleven Marine Protected
Areas (MPAs, sensu lato, including areas established under different
designations) located in six EU countries of the Mediterranean Sea:
Bonifacio, Cap Roux, Côte Bleue (France), Portofino, Egadi, Torre
Guaceto (Italy), Es Freus, Cabo de Palos (Spain), Telascica (Croatia),
Strunjan (Slovenia) and Zakynthos Island (Greece) (Fig. 1), between
June 2017 and October 2018.

Data collection
We assessed catches from 1,256 SSF operations at 11 locations (with a
variable number of fishing operations per location, ranging from 37 at
Telascica to 162 at Es Freus) (see Supplementary Fig. 1 for the number
of fishing operations at each location). The assessed catcheswere from
nine partially protected areas (PPAs) where fishing is allowed but
regulated (see Supplementary Table 6, for details) and unprotected
areas (UPAs) surrounding the 11 MPAs. Fishing location and timing for
assessed catches was determined by fishers and observer availability,
but attempts were made to ensure that they were spread out as much
as possible over the study period. We followed the General Fisheries
Commission for the Mediterranean’s definition of SSF i.e., to mean
fishing operations carried out by relatively small vessels, <12 meters’
total length, (‘length overall’, LOA), that do not use towed gears53.

The sampling activity was embedded in the framework of a larger
collaborative project where small-scale fishers, MPA managers and
researchers, agreed to work together to assess the drivers of effec-
tiveness of SSF management in Mediterranean MPAs (see84 for further
details on the collaborative project). Therefore, the small-scale fishers
voluntarily agreed to participate in several actions, including catch
assessment. To obtain the most comprehensive dataset possible,
considering that fishers have different fishing habits, we monitored
catches from as many fishers as possible from among those willing to
take part in the assessment (ranging from five at Torre Guaceto to
twelve at Bonifacio). Catch monitoring was restricted to fixed nets as
these are themost commonly used fishing gears inMediterranean SSF.
It also allowed for a reliable comparison of fishery descriptors (e.g.,
catch per unit of effort, CPUE) between areas. Nets were pre-
dominantly trammel nets, in about 95% of the fishing operations
monitored, and the remaining were gillnets (4%) or combined
trammel-gill nets (1%). These different fishing devices may be used to
target different species, but they are deployed and work in the same
way (i.e., they are anchored to and touch thebottom,by a lead line, and
are kept in a vertical position by a float line). To obtain robust and
verified data on SSF catches, we used a photo-sampling technique for
catches at landing. This methodology was adopted to minimize

sampling time in the field and fish manipulation, ensuring as little
disturbance as possible to fishers during monitoring operations. More
specifically, a scientific operator, previously trained by the project
partnership, waited for the fishing vessel at landing sites, scheduling
the assessment of the catch with the fisher in advance to avoid any
specimens being sold before sampling. Fishers were requested to land
all the catch, without throwing overboard any specimen fished. At
landing, the operator spread out the catch over a flat horizontal sur-
face and took one or more (for the largest catches) pictures to pho-
tographically capture each entire catch (thus including elasmobranchs
and all other species landed), along with a ruler (as length reference)
placed within the same frame. The operator ensured that each speci-
men was entirely visible. Each picture was associated with a unique
identifier of the fishing operation (e.g., a small paper tag with a unique
reference code) for the subsequent image analysis.

The type and length of fixed nets used were recorded to calculate
the CPUE. Each fisher was also asked to point out on a map the
approximate position and depth of net deployment. The coordinates
of the fishing points were successively retrieved and used to extract
data on a set of environmental variables (see below). A trained
operator processed the images using the image-analysis free software
ImageJ85. Each species was assigned to its Mediterranean IUCN cate-
gory (https://www.iucnredlist.org/regions/mediterranean).

We measured the total length of each individual to the nearest
1mm using the ruler in the picture as a reference for calibrating the
measurement tool in ImageJ, and estimated the biomass (i.e., wet
weight) of each specimen using specific length-weight relationships
available from www.fishbase.org86. The number and weight of speci-
mens of each species was used to estimate the CPUE standardized for
the length of the net both in terms of abundance (NCPUE, number of
individuals per 1000m of net) and biomass (BCPUE, kg per
1000m of net).

A size distribution was constructed for all elasmobranch spe-
cies. The length at first maturity (L50) reported in the literature
(Supplementary Table 7) was used as the threshold to classify
mature and immature individuals. As L50 values of a given species
may vary between males and females, and due to the impossibility
to determine the sex of individuals in most photo-samples, we
conservatively used the lowest between-sex value to estimate a
Maturity index as Size ind./L50. This index ranges from 0 (imma-
ture) to infinite (mature), with values ≥1 indicating that the indivi-
dual reached its L50 threshold. We then calculated the proportion of
mature/immature individuals grouping the elasmobranch species
based on their IUCN Red list categories: Threatened (Critically
Endangered, Endangered and Vulnerable: THR); Non-threatened
(Near Threatened and Least Concern: NTH); Data Deficient (DD). We
used a set of variables describing environmental (chlorophyll a, sea
surface salinity, dissolved oxygen, phosphate, nitrate, sea surface
temperature, and habitat), geographical (location, latitude, and
longitude), temporal (season), bathymetric (fishing depth) and
anthropogenic (mostly human impacts87) conditions to control for
all related sources of variability and estimate the genuine effect of
protection and interaction with SSF for elasmobranchs in the dif-
ferent fishing spots inside and outside the 11 MPAs (see Supple-
mentary Table 1 for the list of variables considered, and their
sources). The measure of overall human impacts is a compounded
score including information relative to a number of human drivers
of impacts (i.e., fishing, pollution, population density, climate
change87). Features of fishing operation (i.e., fishing depth, net
length, mesh size, and soak time) were also recorded and reported
in Supplementary Table 6. The variables chosen were considered in
the model as they had previously been identified in the literature as
potential drivers of abundance, biomass and distribution of elas-
mobranch species (see the supplementary materials for more
details about the choice of the predictors).
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Statistical analyses
Density plots (an unbounded, continuous, and smoothed version of
the histograms) were drawn to show the proportion of immature and
mature individuals based on L50 standardization of each species
caught inside PPAs andUPAs.Due to the small sample size obtained for
some species, density plots were drawn grouping the species based on
their IUCN extinction risk categories in line with recent papers88,89:
Threatened (THR, grouping CR, EN, and VU); Nonthreatened (NTH,
grouping NT and LC); and Data Deficient (DD).

We followed a systematic approach to select the best model
according to the data considered (see Supplementary Fig. 6 for a
flow-chart of the key steps). To check for the presence of zero
inflation in our data, we compared Poisson models vs Zero-inflated
Poisson models using multiple diagnostic tools to identify the best
model (i.e., Likelihood-ratio test, inspection of residuals and AIC). In
case an excess of zeros was detected, to select the best-performing
error family distribution, we performed the GAMLSS analysis using
a “Zero inflated Poisson” (ZIP) on density and biomass of individuals
(with the net length used as an offset) and compared it with “zero-
adjusted Gamma” (ZAGA) on catch standardized per unit of effort.
For each analysis, we used the AIC results and the graphic inspec-
tion of the residuals to select the best model. For these specific
analyses, ZAGA was always found to be the best-performing mod-
elling approach. ZAGA distribution consists of two-part model
coupling, a binomial logit, presence/absence model (which predicts
the probability of fishing operations with at least one elasmobranch
individual in the catch) and a positive (truncated) abundancemodel
(log, all zeroes excluded, which predicts the potential density or
biomass of elasmobranchs)90,91. Hierarchical random models using
the zero-adjusted Gamma (ZAGA) were used to model the NCPUE
and BCPUE and to deal with the excess of zeros. In our case, ‘loca-
tion’ (9 levels; Cap Roux and Cote Bleue MPAs were removed from
the analyses as they do not have a PPA with fishing restrictions) and
‘habitat type’, which was nested in location (6 levels; see supple-
mentary materials) were included as intercept-only random effects
to account for the nested sampling design. Dissolved oxygen and
nitrate were excluded from the initial set of predictors because of
multi-collinearity issues (Supplementary Table 8).

The number of immature and mature individuals for each IUCN
group (THR, NTH, DD) were analysed separately to assess statistical
differences between PPAs and UPAs. We followed the same
approach used for the above analysis implementing GAMLSS; for
each combination of IUCN category and state of maturity, we also
checked for the best-performing error family distribution, com-
paring a ZIP on counts of individuals with the net length set as offset
and a ZAGA on catch data standardized per unit of effort. For each
analysis, model performance was evaluated using Akaike’s infor-
mation criteria (AIC), with the best-fit model displaying the lowest
AIC value (Supplementary Table 9). The analyses were run with
‘gamlss’ package for R (70). Density plots were built using the
package “ggplot2”92 in R software.

Potential outliers and excess zeros were analysed with Cleveland
dotplots before fitting the models. Variance inflation factor (VIF) ana-
lysis and pairwise correlationswere performedbetween all variables to
check for collinearity93. Predictors with VIF > 2 were excluded from the
analyses. We present the results of these tests in the supplementary
information (Supplementary Table 9). We also performed the chi
square test to assess if the soak time and mesh size were significantly
different between PPAs and UPAs and no significant difference was
detected.

Selection of the candidate predictors from each group of
anthropogenic, bathymetric, geographic, temporal, and oceano-
graphic variables (Supplementary Table 10) was performed using the
StepGAIC (stepwise selection) function94 on the full model (the model
that contains all explanatory variables).

The Generalized Akaike Information Criterion (GAIC) was used to
evaluate the relative goodness of fit of the candidate model set95.

GAIC = 2L+ kN, ð1Þ

where L is the log-likelihood, k is a penalty formodel complexity, andN
is the number of parame-ters in the fitted model (Supplementary
Table 10). Minimization of the Schwarz Bayesian Criterion (SBC)96,
which is a particular case of the GAIC when k = log(N), was used for
model comparison. A finalmodel was selectedwhen the SBCcould not
be further minimized by removing or adding terms. In order to
examine the residuals for independence and identical distribution the
worm plot tool was used97. Worm plots are detrended versions of Q-Q
plots that display the discrepancy between the theoretical and
empirical distributions for each observation. The structure of the
distribution of the residuals indicates several features of the model fit,
and these plots also include the 95% confidence interval of the unit
normal quantiles97. After removing the effects of other factors, partial
residual plots (also known as term plots) were used to look for non-
linear relationships between the terms and their predictors. The
“gamlss” package was used to implement all necessary functions for
model fitting and evaluation, and pseudo r-squared values for each
model were produced with function ‘Rsq’ using option ‘Cragg Uhler’
within the open source R 3.1.1 software98.

Finally, a multivariate analysis was performed to investigate the
effect of the protection on the BCPUE and NCPUE of the six IUCN
categories. Particularly, category composition responses to protection
and environmental predictors were investigated with partial redun-
dancy analysis (pRDA), with ‘location’ and ‘habitat’ as a conditional
effect using BCPUE and NCPUE of the six IUCN extinction risk cate-
gories (CR, EN, VU, LC, NT, DD). We transformed the BCPUE and
NCPUE data in Hellinger distance as it has been shown to be more
appropriate for data containing many zeros99. Random factors, ‘loca-
tion’ and ‘habitat’, were included in the conditionalmatrix (variables to
be controlled in the final models) in order to remove their effect from
the analysis. The other variables were included as predictors. Based on
Monte Carlo permutation with 999 iterations, the RDA was used with
forward selection to filter the relative importance of explanatory
variables of BCPUE and NCPUE. Statistical significancewas assessed by
comparing the initial F‐statistic to the distribution of F‐values obtained
after 1,000 permutations of the responsematrix and the goodness‐of‐
fit evaluated with the adjusted R2 100. The analyses were completed
using the “vegan”101 package within the open source R 3.1.1 software.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used in this study have been deposited in the public Figshare
repository102–105. The Figshare repositories contain the data needed to
reproduce the GAMLSS analyses of elasmobranch BCPUE and NCPUE
andmaturity between PPAs andUPAs, used in Fig. 3 and Supplementary
Figs. 2–5 (https://doi.org/10.6084/m9.figshare.18318878.v1, https://doi.
org/10.6084/m9.figshare.18318881.v3), as well as the multivariate ana-
lyses (partial redundancy analyses) of elasmobranch BCPUE andNCPUE
between PPAs and UPAs used in Fig. 4 (https://doi.org/10.6084/m9.
figshare.18318884.v1, https://doi.org/10.6084/m9.figshare.18318887.
v1). Source data used in Figs. 1, 2 and Supplementary Fig. 1 are pro-
vided with this paper. Source data are provided with this paper.

Code availability
Analyseswereconducted inR and the codeused toproduce the results
of this study is provided in R files in public Figshare repositories106–108

(https://doi.org/10.6084/m9.figshare.18318875.v2, https://doi.org/10.
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6084/m9.figshare.18318890.v1, https://doi.org/10.6084/m9.figshare.
18318893.v1).
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