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A B S T R A C T

COVID-19 has produced a global pandemic affecting all over of the world. Prediction of the rate of COVID-19
spread and modeling of its course have critical impact on both health system and policy makers. Indeed, pol-
icy making depends on judgments formed by the prediction models to propose new strategies and to measure the
efficiency of the imposed policies. Based on the nonlinear and complex nature of this disorder and difficulties in
estimation of virus transmission features using traditional epidemic models, artificial intelligence methods have
been applied for prediction of its spread. Based on the importance of machine and deep learning approaches in the
estimation of COVID-19 spreading trend, in the present study, we review studies which used these strategies to
predict the number of new cases of COVID-19. Adaptive neuro-fuzzy inference system, long short-term memory,
recurrent neural network and multilayer perceptron are among the mostly used strategies in this regard. We
compared the performance of several machine learning methods in prediction of COVID-19 spread. Root means
squared error (RMSE), mean absolute error (MAE), R2 coefficient of determination (R2), and mean absolute
percentage error (MAPE) parameters were selected as performance measures for comparison of the accuracy of
models. R2 values have ranged from 0.64 to 1 for artificial neural network (ANN) and Bidirectional long short-
term memory (LSTM), respectively. Adaptive neuro-fuzzy inference system (ANFIS), Autoregressive Integrated
Moving Average (ARIMA) and Multilayer perceptron (MLP) have also have R2 values near 1. ARIMA and LSTM
had the highest MAPE values. Collectively, these models are capable of identification of learning parameters that
affect dissimilarities in COVID-19 spread across various regions or populations, combining numerous intervention
methods and implementing what-if scenarios by integrating data from diseases having analogous trends with
COVID-19. Therefore, application of these methods would help in precise policy making to design the most
appropriate interventions and avoid non-efficient restrictions.
1. Introduction

The novel coronavirus disease initiated in the late 2019 (COVID-
19) is resulted from the infection with the severe acute respiratory
syndrome-coronavirus 2 (SARS-CoV-2) [1]. Since late 2019, it has
spread globally, leading to a persistent pandemic. COVID-19 spread is
dependent on inter-individual close contacts and transmission of
breath droplets. Prediction of the rate of COVID-19 spread and
modeling of its course have critical impact not only for health systems
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but also for policy makers. In fact, policy making relies on discern-
ments formed by prediction models to propose new strategies and to
measure the efficiency of the imposed policies. Based on the nonlinear
and complex nature of this disorder [2] application of artificial intel-
ligence methods is an appropriate alternative to traditional epidemic
models for prediction of its spread. Although some traditional
epidemic models such as Susceptible-Exposed-Infective-Recovery has
been used for prediction of epidemic course [3], these
methods have some limitations. For instance, the validity of the
c.ir (S. Nateghinia).
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Susceptible-Exposed-Infective-Recovery model relies on precise
appraisal of virus transmission features including the basic reproduc-
tive quantity R0 as well as incubation and infectious periods which are
rather difficult to be estimated in real contexts [4]. Figure 1 shows the
role of artificial intelligence approaches for prediction of COVID-19
spread.

Machine learning methods usually use data sequences retrieved over
a period of time as inputs to predict course of COVID-19 epidemic.
Several strategies have been implemented for prediction of COVID-19
spread. Among the applied strategies is the Long short-term memory
(LSTM) model. For instance, Multilayer perceptron (MLP) has also been
applied for modeling of COVID-19 spread. This method has facilitated
prediction of the highest number of persons who are affected by COVID-
19, the highest number of people who recovered, and the highest number
of mortalities per place in each time division [5]. LSTM with the Natural
language processing (NLP) module has been used to assess the infection
frequency and enhance the predictive accuracy of the model [6]. LSTM
can efficiently improve gradient explosion and gradient disappearance in
the course of the training process by presenting the constant error
Figure 1. The role of artificial intelligence app
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carousel unit [6]. LSTM is superior to the traditional Recurrent neural
network (RNN) in term of its good enactment in apprehending the
long-term dependency of sequences, thus being appropriate for the
categorization, processing, and forecasting the long sequence data [7].
Based on the importance of machine and deep learning methods in the
prediction of COVID-19 spreading trend, in the current study, we
reviewed studies which used these strategies to envisage the number of
new cases of COVID-19. The research question was: “What are the ap-
plications of machine learning systems and their performances in the
prediction of COVID-19 daily new cases?“. In the current study we were
looking for publications that evaluate the performance of any machine
learning or deep learning approaches based on the research question
inclusion and exclusion criteria.

The following parameters were extracted: Root means squared error
(RMSE), Mean absolute error (MAE), R2 coefficient of determination
(R2), and Mean absolute percentage error (MAPE). These parameters are
the main parameters which are applied to assess the error rates of fore-
casting and performance of the model in regression analysis. MAPE is
calculated based on percentage errors.
roaches for prediction of COVID-19 spread. Q4
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2. Materials and methods

We used PRISMA Scoping review guidelines and checklist.

2.1. Protocol

Reporting this scoping review is based on Preferred Reporting Items
for Systematic Reviews andMeta- Analyses extension for scoping reviews
[8].

2.2. Exclusion criteria

1) Studies that did not report or evaluate their prediction regarding the
daily confirmed cases or cumulative number of confirmed cases.

2) Studies that did not report at least one of the Root means squared
error (RMSE), Mean absolute error (MAE), R2 coefficient of deter-
mination (R2), and Mean absolute percentage error (MAPE) in their
measurements.

2.3. Information sources and search

An electronic search was conducted in PubMed, Google Scholar,
Scopus, Embase, arXiv, and medRxiv for finding the relevant literature
from January 2020, to June 2021. Different combinations of the
following keywords were used in the search procedure: “machine
learning”, “deep learning”, “neural network”, “artificial intelligence”,
Figure 2. The flowchart of the protoc
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“Covid-19”, “incidence”, “prevalence”, “spread*“, “new cases”, “pre-
dict*“, and “forecast*“.

2.4. Selection of sources of evidence

Duplicate studies were removed. Studies that were cited within the
retrieved papers were reviewed for finding any missing studies. For
identifying the proper journal papers and conference proceedings, our
team members screened the title and abstracts based on inclusion and
exclusion criteria independently. Finally, considering the inclusion and
exclusion criteria, investigators identified the eligible publications in this
stage independently. Figure 2 illustrates the flowchart of the protocol of
systematic literature review.

2.5. Data charting process

Two investigators were responsible for extracting the data, sepa-
rately. The charting process was followed by consensus to resolve any
disagreements.

2.6. Data items

For the selected studies, the following data have been extracted: re-
gions (e.g., countries, states, etc), data source, data structure, machine
learning model and model performance including RMSE, MAE, R2, MAPE
(on the basis of the best model). These performance measures were
ol of systematic literature review.
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selected, since they are the most common performance measurement
among the selected studies.

3. Results

Several artificial intelligence strategies have been used for prediction
of COVID-19 spread using different models (Figure 3).

3.1. Adaptive neuro-fuzzy inference system (ANFIS)

ANFIS is a type of artificial neural network being founded on Taka-
gi–Sugeno fuzzy inference system. Architecture of ANFIS has five layers,
namely fuzzification layer, the layer which generates the firing strengths
for the rules (rule layer), the layer that normalizes the computed firing
strengths, the layer which receives as input the normalized values and
the consequence parameters, and the layer that returns the final output
[9]. Al-Qanes et al. [10] have designed an upgraded kind of the ANFIS
model to estimate the quantity of infected persons in four countries,
namely Italy, Iran, Korea, and the USA. Their model has been founded on
a novel nature-inspired optimizer, namely the marine predators algo-
rithm (MPA). This algorithm has optimized the ANFIS variables,
increasing its predicting performance. They have shown superiority of
the MPA-ANFIS method to previously suggested predicting models in
terms of better values for RMSE, MAE, MAPE, and R2 [10]. In another
study, ANFIS was boosted using an improved flower pollination algo-
rithm (FPA) by using the salp swarm algorithm (SSA). The suggested
FPASSA-ANFIS model was then appraised using the official data
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Figure 3. The number of included studies used each machine learning appro
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retrieved fromWHO site. Moreover, the accuracy of the suggested model
was then appraised using two distinct datasets of weekly influenza cases
[11]. Alsayed et al. [12] have predicted the epidemic peak in Malaysia
using the Susceptible-Exposed-Infectious-Recovered (SEIR) model. They
have also used the ANFIS model short-time prediction of the amount of
infected individuals. They have also demonstrated the impact of in-
terventions on postponing the epidemic peak. Moreover, they have
suggested that extension of the intervention period might decrease the
epidemic magnitude at the peak. This study has reported RMSE, R2 and
MAPE values as 46.87, 0.9973 and 2.79, respectively [12]. Thus, this
study has reported the best performance measurements using this
method. Behnood et al. [13] have used an integration of the virus opti-
mization algorithm (VOA) and ANFIS to appraise the impact of numerous
climate-associated parameters and population density on COVID-19
spread. They have demonstrated the remarkable influence of popula-
tion density on the performance of their designed models, emphasizing
on the prominence of social distancing in decreasing COVID-19 infection
rate and spread. RMSE, MAE and R2 values have been reported to be
22.47, 7.33 and 0.83, respectively [13].

3.2. Autoregressive Integrated Moving Average (ARIMA)

As a type of univariate regression analysis method, ARIMA forecasts
upcoming values according to differences between values instead of
actual figures. As a generalization of an autoregressive moving average
(ARMA) model, ARIMA is fitted to time series data for better under-
standing of the data or predicting upcoming points in these series.
Addi onal records iden fied through 
other sources (n=0)

 removed (n=991)

d (n=991) Records excluded (n=841)
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=150)

Full-text ar cles excluded, 
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aches (In two studies, more than one type of models were considered).
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Alzahrani et al. [14] have used ARIMA model to predict the estimated
daily amounts of COVID-19 persons in Saudi Arabia. They have reported
the superiority of ARIMA to Autoregressive Model, Moving Average and
an integration ARMA and ARIMA. Using ARIMA, they have reported
RMSE, MAE, R2 and MAPE values as 21.17, 14.93, 0.99 and 2.16,
respectively [14]. Chakraborty et al. [15] have proposed a hybrid strat-
egy founded on ARIMA model and Wavelet-based predictive model
which could produce short-term predictions of the amount of daily cases
for Canada, France, India, South Korea, and the UK. The obtained RMSE
and MAE values ranged from 55.25-631.91 and 24–306.78 in different
regions [15]. Khan et al. [16] have used an ARIMA model for forecasting
daily cases of COVID-19 in India. They selected the appropriate model
according to the Bayesian Information Criteria parameters and the total
maximum R2 value of 0.95 [16]. The best performance measurements
using ARIMA has been reported in the study conducted by Adiga et al.
(MAPE ¼ 999.1) [17].
3.3. Multilayer perceptron (MLP)

MLP is a type of feedforward artificial neural network (ANN). This
model has three layers of nodes, namely an input layer, a hidden layer
and an output layer. With the exception of the input node, other nodes
are neurons that use a nonlinear activation function. MLP uses the
backpropagation supervised learning method for training [18]. Car et al.
[5] have used a freely accessible time-series dataset for design of their
model. They have used this dataset in training an MLP model. The finest
designed models had 4 hidden layers with 4 neurons in each. This model
had appropriate measures in the prediction of the deceased and
confirmed cases, but it had low robustness for recovered patients [5].
Pinter et al. [19] have used the hybrid machine learning strategies of
ANFIS and MLP-imperialist competitive algorithm (MLP-ICA) for pre-
diction of time series of COVID-19 cases and mortality amount.
Short-term observation has confirmed the accuracy of the proposed
model. Authors have suggested that the model keeps its exactness
providing no substantial interruption happens [19].
3.4. Long short-term memory (LSTM)

LSTM is an artificial recurrent neural network (RNN) method utilized
as a deep learning strategy. In contrast to standard feedforward neural
networks, this model ensures feedback connection. In addition to pro-
cessing single data points, LSTM can process complete sequences of data
[20]. Aora et al. [21] have used RNN-related LSTM variants on an Indian
dataset of COVID-19 patients to forecast the amount of positive cases.
Based on the lowest error rate, LSTMmodel was selected for prediction of
daily and weekly new COVID-19 cases with approximate error rates of
3% and 8%, respectively. Subsequently, they classified Indian states into
different zones based on the extent of positive cases and daily escalation
for recognition of COVID-19 hot-spots [21]. Fokas et al. [21] have
applied a bidirectional LSTM network to yield a robust generalization of
RNNs. This method has been used for predication of new cases of
COVID-19 in Italy, Spain, France, Germany, USA and Sweden [22].
3.5. Other models

Yadav et al. [23] have used six regression analysis based methods
including quadratic, third degree, fourth degree, fifth degree, sixth de-
gree, and exponential polynomial for prediction of COVID-19 cases with
the sixth degree polynomial regression method representing the best
model for prediction of short-term new cases [23]. Kim et al. [24] have
used geographic hierarchy to create Hi-COVIDNet according to a neural
network with two-level machineries that are based on data collected
from country-level and continent-level systems. This method apprehends
the multifaceted relations among distant countries and relates their
particular infection risk to the target country [24]. Table S1 shows the
5

application of machine learning methods for prediction of COVID-19
spread.

4. Discussion

4.1. Synthesis of results

Accurate prediction of the time of outbreak would help in reduction
of the effect of COVID-19, permit governments to modify their preventive
strategies and plan in advance for the protective steps required. Modeling
of COVID-19 spread is particularly important in defining its potential
future impacts. Artificial intelligence methods are superior to traditional
statistical modeling methods in the terms of offering high-quality pre-
dictive models [89]. These models are capable of identification of
learning parameters that affect dissimilarities in COVID-19 spread across
various regions or populations, combining numerous intervention
methods and implementing what-if scenarios by integrating data from
diseases having analogous trends with COVID-19. In the current scoping
review, we compared the performance of several machine learning
methods in prediction of COVID-19 spread. RMSE, MAE, R2 and MAPE
parameters were selected as performance measures for comparison of the
accuracy of models. R2 values have ranged from 0.64 to 1 for ANN and
Bidirectional LSTM, respectively. ANFIS, ARIMA and MLP have also have
R2 values near 1. ARIMA and LSTM had the highest MAPE values. These
prediction models could also appraise the impact of climate-associated
factors in infection rate or COVID-19 spread facilitating implementa-
tion of specific strategies for each condition. Moreover, the data obtained
from these models can be used for categorization of county regions and
identification of hot spots for COVID-19 to organize region-specific
preventive measures. Incorporation of data from health status of
affected individuals including general health situation and related risk
factors would enhance the accuracy of these models. Most of the pro-
posed models have been effective in short-term forecasting of the
COVID-19-related parameters. However, their efficacy in long-term
should be validated in further studies.

Modeling of the COVID-19 is practically important in defining the
possible upcoming impact of this disorder and artificial intelligence
methods have especial situation in this regard. These modeling strategies
have implications in disease management by policy makers as they can
predict the future course of the pandemic. Moreover, the impact of large-
scale screening strategies and application of disease-controlling modal-
ities can be considered in these modeling methods. ARIMA and LSTM
have good performance values in this regard. In fact, ARIMAmodel is the
furthermost extensively used forecasting method for prediction of trends
in time series. However, it is not possible to compare the results of these
studies, as these methods have not been applied and trained on the same
data. Moreover, although artificial intelligence strategies have been
promising in prediction of COVID-19 course during the pandemics,
COVID-19 continues to be an unknown disease with no historic infor-
mation to predict its spreading. Therefore, integration of these methods
and implementation of the results in larger populations consisting of
different ethnicities would help in design of better predictive models.

ARIMA method of time has been used to predict the stability and
growth of COVID-19. Recent studies have suggested that the performance
of this model can be enhanced or the model can provide more precise
data if more numbers of datasets are accessible [90]. The model provides
results according to the data established by information provided by
health organizations. Therefore, prediction may not be completely pre-
cise, yet it can confidently be used as a corrective tool [90]. Combination
of new factors and algorithms with ARIMA can lead of enhancement of
accuracy.

Accordingly, Abbasimehr and Paki have proposed three hybrid
methods for prediction of COVID-19 time series methods according to
conjoining three deep learning models, namely multi-head attention,
LSTM, and CNN with the Bayesian optimization algorithm. Their ana-
lyses have shown higher performance of deep learning models compared
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with the benchmark model both for short-term prediction and long-term
prediction. Particularly, the mean SMAPE of the best deep learning
model has 0.25 and 2.59 for the short-term and long-term predictions,
respectively [25].

Deep Neural Networks (DNNs) has also been suggested as method for
approximation. This method is an important alternative to estimate the
solution of a Partial Differential Equation [91]. DNN has been used for
detection of COVID-19 based on CT scan and chest X rays [92]. Appli-
cation of unsupervised learning methods in which algorithm training is
achieved using unlabeled data is another approach which is less studies
in this context. A recent study has used the k-means algorithm to divide
the countries into clusters based on the spread of COVID-19 in three time
spans [93].

4.2. Summary of evidence

These forecasts are just built on past trends of COVID-19 spread, so
forecast values are not definite. Nevertheless, these predicted estimates
of events can assist authorities to establish resource planning for better
management of this pandemic. Moreover, these methods can be used for
prediction of need for preventive measures in each geographical region,
thus helping vaccine manufacturers for designing appropriate plans.

4.3. Limitations

Impossibility of accurate comparison of methods, lack of consistency
between study variables.
Table S1. Summary of the results of studies which used machine learning methods f

Author, Year Region(s) Data Source Data Structure Best Al
Model S

Abbasimehr, H.,
et al. 2021

Dataset 1: US,
United
Kingdom,
Turkey, Spain,
Mexico, Italy,
Iran,
Germany,
France,
Belgium

Humanitarian
Data Exchange
(Dataset 1 and 2
were used for
short-term and
long-term
prediction,
respectively)

Daily confirmed
cases from 20
January to 1
August 2020

Attentio
model u
Optimiz

Dataset 2: US,
Brazil, India,
Russia, South
Africa,
Mexico, Peru,
Chile,
Colombia,
Iran

Daily confirmed
cases from 20
January to 3
August 2020

LSTM u
Optimiz

Adiga, A.,
et al. 2021

Maricopa AZ Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset

The 7-day
smoothed
version of
confirmed cases

SEIR (n
learnin

Los Angeles
CA

Spatial
Autoreg

San
Bernardino
CA

ARIMA

Kings NY LSTM

Al-Qaness, M. A. A.,
2021

Brazil Official WHO data Daily confirmed
cases from 26
March to 1 June
2020

MPA þ
Russia
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or prediction of COVID-19 spread.

gorithm/
tructure(s)

Performance Measurements (on the best model) Ref

RMSE MAE R2 MAPE

n-based
sing Bayesian
er

2715.12 - - 0.2157 [25]

sing Bayesian
er

25292.337 - - 2.6606

ot machine
g)

- - - 1576.1 [17]

ressive
1678.7

999.1

2085.4

ANFIS 19,432 14,273 - 0.3117 [26]

493 379 0.03223

(continued on next page)



Table S1 (continued )

Author, Year Region(s) Data Source Data Structure Best Algorithm/
Model Structure(s)

Performance Measurements (on the best model) Ref

RMSE MAE R2 MAPE

Al-Qaness, M., A.,
A., et al., 2020

Korea WHO website Daily confirmed
cases in the USA,
Korea, Iran, and
Italy from 22
January to 7
April 2020

MPA-ANFIS 70.93 60.31 96.48% 0.696 [10]

Italy 5465.66 3951.94 98.59% 2.734

Iran 302.37 217.27 98.74% 0.736

USA 15611 12,979 95.95% 5.74

Al-Qaness, M., A.,
A., et al., 2020

China WHO website Daily confirmed
cases from 21
January to 18
February 2020

FPASSA-ANFIS 5779 4271 0.9645 4.79 [10]

Alsayed, A., et al.,
2020

Malaysia Ministry of Health
Malaysia

Daily confirmed
cases from 22
March to 5 April
2020

ANFIS 46.87 - 0.9973 2.79 [12]

Alzahrani, S., et al.,
2020

Saudi Arabia Saudi Ministry of
Health website

Daily confirmed
cases in Saudi
Arabia

ARIMA 21.17 14.93 0.99 2.16 [14]

Ardabili, S. F., et al.,
2020

Italy Worldometer
website

Daily confirmed
cases over 30
days

MLP 191.27 - 0.999 - [27]

Germany 55.52 0.995

Iran 391.8 0.998

USA 22.1 0.999

China 2318.22 0.999

Arora, P., et al,
2020

India Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset

Daily confirmed
cases from 14
March to 14 May
2020

Stacked LSTM 3.22 - - - [21]

Arora, P., et al.
2020

India Ministry of Health
and Family
Welfare
(Government of
India)

State-wise daily
confirmed cases
from 14 March
to 14 May 2020

Bi-directional LSTM - - - 3.22 [21]

ArunKumar, K. E.,
et al. 2021a

USA Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset

Cumulative daily
confirmed cases

LSTM 1.69E þ 06 - - - [28]

Brazil 1.33E þ 05

South Africa 6.03E þ 03

Peru 4.44E þ 03

Chile 1.22E þ 03

Iran 1.33E þ 02

Mexico GRU 4.00E þ 03

UK 4.21E þ 02

Russia 9.37E þ 02

India 2.14E þ 04

ArunKumar, K. E.,
et al. 2021b

South Africa Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset

Cumulative daily
confirmed cases
22 January to 24
July 2020

Seasonal ARIMA 1.48Eþ04 1.17Eþ04 - 5.46 [29]

Bangladesh 3.40Eþ03 2.92Eþ03 2.57

Brazil 2.34Eþ03 2.13Eþ03 3.12

Chile 9.07Eþ03 7.80Eþ03 2.53

Colombia 2.38Eþ02 1.16Eþ02 0.13

India 1.21Eþ04 7.15Eþ03 0.87

Iran 4.65Eþ03 3.80Eþ03 0.095

Italy 1.94Eþ03 1.79Eþ03 0.923

Mexico 1.09Eþ04 8.82Eþ03 3.24

Pakistan 3.07Eþ02 1.58Eþ02 0.078

Peru 2.41Eþ03 1.99Eþ03 0.77

Russia 1.40Eþ04 1.23Eþ04 97

Saudi Arabia 1.15Eþ04 1.08Eþ04 0.08

Spain 2.00E�03 2.00E�02 0.988

UK 1.45Eþ01 1.25Eþ01 0.80

USA 2.46Eþ04 1.72Eþ04 1.41

(continued on next page)
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Table S1 (continued )

Author, Year Region(s) Data Source Data Structure Best Algorithm/
Model Structure(s)

Performance Measurements (on the best model) Ref

RMSE MAE R2 MAPE

Ayyoubzadeh, S.
M., et al., 2020

Iran Worldometer
website and
Google Trends

Customized
dataset
consisting of the
daily incidence
from 15
February, 2020,
to 18 March,
2020 and Google
search trends

Linear regression 7.562 - - - [30]

Bedi, P., et al.
20201

India covid19india.org
website

Daily confirmed
cases 30 January
to 6 September
2020

LSTM - - - 0.03 [31]

Behnood, A, et al,
2020

USA USAFacts Website Daily confirmed
cases in 1657
counties

ANFIS-VOA-II 22.4744 7.3337 0.8339 - [13]

Borghi, P. H., et al.
2021

Global (top 30
countries with
the highest
number of
daily new
cases)

Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset

Daily confirmed
cases till 11 May
2020

ANN 2.082Eþ03 3.718Eþ06 - - [32]

Car, Z., et al., 2020 406 locations Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset

Daily confirmed,
recovered, and
deceased
patients in a
certain location
(defined by the
name of
location,
latitude, and
longitude), from
22 January to 12
March 2020

MLP - - 0.98599 - [5]

Chakraborty, T.,
et al., 2020

USA Our World in Data
Website

Daily confirmed
cases

TARNN 721.5658 468.6335 - - [33]

Brazil 178.0458 90.2053

India 201.0696 128.7718

Russia 443.4280 202.6083

South Africa 243.5067 160.3598

Mexico 24.4335 15.1298

Spain 136.3910 87.5449

Iran 319.9160 182.8744

Chakraborty, T.,
et al., 2020

Canada Our World in Data
Website

Daily confirmed
cases

Hybrid ARIMA-WBF
Model

149.60 40.05 - - [15]

France 631.91 306.78

India 55.25 24.00

South Korea 90.29 54.06

UK 180.66 100.68

Chatterjee, A., et al.
2020

China, Italy,
Spain,
Germany,
Iran,
Switzerland,
South Korea,
Belgium,
Netherlands,
Astria,
Singapore,
Malaysia,
France,
Australia,
USA, UK and
Portugal

Our World in Data
Website and a
simulated dataset

Daily confirmed,
and deceased
patients from 1
January to 2
April, 2020

Bidirectional LSTM 8,649.154 7,130.149 1 - [34]

Chaurasia, V., et al.,
2020

Worldwide DataHub-Novel
Coronavirus 2019-
Dataset

Daily confirmed,
recovered, and
deceased
patients from 22
January to 29
June, 2020

ARIMA 0.1517 0.12044 - 0.0091 [35]
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Table S1 (continued )

Author, Year Region(s) Data Source Data Structure Best Algorithm/
Model Structure(s)

Performance Measurements (on the best model) Ref

RMSE MAE R2 MAPE

Chimmula, V., K.,
R., et al., 2020

Canada Johns Hopkins
University and
Canadian Health
authority

Daily confirmed,
recovered, and
deceased cases
from 22 January
to 31 March,
2020

LSTM 34.83
(short-term
predictions)
45.70 (long-
term
predictions)

- - - [36]

Chowdhury, A. A.,
et al. 2021

Bangladesh Worldometer
website

Daily confirmed
cases 10 April to
30 June 2020

LSTM 6.55 - - 4.51 [37]

da Silva, C. C., et al.
2021

Brazil Brasil.io portal Daily confirmed
cases till 6 June
2020

Linear Regression 11.42% - - - [38]

Pernambuco
(A state in
brazil)

1.92%

de Souza, D. G. S.
et al., 2020

Amapa (A
state in Brazil)

Health
surveillance
secretary of
Amapa

Cumulative
confirmed cases
from 20 March
to 31 August,
2020

Holt-Winters 162 - 0.98 0.34 [39]

Dharani, N. P., et al.
2021

India Kaggle website Daily confirmed
cases 30 January
to 21 May 2020

Linear Regression 223.89 157.78 1.0 - [40]

Doe, S. W., et al.,
2020

USA Johns Hopkins
University
confirmed cases
data for US
counties

Daily confirmed
cases from 22
January to 31
May, 2020 and
latitude, and
longitude of
each county

CLEIR-Net 264.33 - - - [41]

Fokas, A. S, et al.,
2020

Italy European CDC
website

Daily confirmed
cases

Bidirectional LSTM
network

538 - 0.9999 - [22]

Spain 1022 0.9998

France 821 0.9997

Germany 1128 0.9997

USA 10754 0.9996

Sweden 178 0.9997

Ganiny, S., et al.,
2020

India Worldometer
website, India's
Ministry of Health
and Family
Welfare, the
Covindia website

Daily confirmed,
recovered, and
deceased cases
from 1 March to
25 July, 2020

ARIMA 457.61 330.79 0.99998 0.2471 [42]

Ghany, K. K. A.,
et al. 2021

Saudi Arabia Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset

Daily confirmed
cases 22 January
to 24 July 2020

LSTM 1768.35 - - - [43]

Qatar 735.21

Oman 730.53

Kuwait 456.90

UAE 446.44

Bahrain 320.79

Ghazaly, N., M.,
et al., 2020

Egypt, Saudi
Arabia,
Jordan, USA,
Spain, Italy,
France,
Iran, Russia

WHO situation
reports

Daily cases and
deaths from 21
January to 2
April, 2020

NAR - - - 2.6521 [44]

Guo, Q. and He, Z.,
2021

Global Official WHO data Daily confirmed
cases 21 January
to 11 November
2020

ANN 3102.9 2090.6 0.9683 - [45]

Hasan, K. T., et al.
2021

Bangladesh Official WHO data
and the Institute of
Epidemiology,
Disease Control
and Research of
Bangladesh

Daily confirmed
cases till 3
August 2020 þ
Government
control and
people's
compliance data
þ Information of
howmanypeople
will be in contact
with an infected
person outside of
their home when
they move out

LSTM 10,368.318 - 1 5.96 [46]
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Table S1 (continued )

Author, Year Region(s) Data Source Data Structure Best Algorithm/
Model Structure(s)

Performance Measurements (on the best model) Ref

RMSE MAE R2 MAPE

Hazarika, B. B.,
et al., 2020

Brazil Our World in Data
Website

Cumulative
number of
confirmed cases
from 11 April to
10 July, 2020

WCRVFL (Using
sigmoid or ReLu
activation functions)

0.00323 - 0.99975 - [47]

India 0.00147 0.99996

Peru 0.00197 0.99986

Russia 0.00029 0.99999

USA 0.00524 0.99999

Hawas, M, et al.,
2020

Brazil Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset

Daily cases from
22 January,
2020, to several
dates

RNN - - 0.665 - [48]

Heni¸ B., et al.,
2020

Phase I: 79
countries
phase II:
China, South
Korea, France,
Germany,
Iran, Iraq,
United
Kingdom,
Italy, Japan,
Singapore,
Spain,
Thailand

European CDC
website

Phase I: Daily
confirmed cases
from the date of
the first
confirmed cases
to 13 March,
2020
Phase II: Daily
recovered cases
from the date of
the first
confirmed cases
to 19 March,
2020

LSTM - - Phase I:
0.999
Phase II:
0.996

- [49]

Hridoy, A. E., et al.,
2020

Bangladesh Johns Hopkins
University's
GitHub repository

Daily confirmed,
recovered, and
deceased cases
from 8 March to
13 June, 2020

Stacked LSTM 593.764 - 0.95 1.76% [50]

Kasilingam, D.,
et al. 2021

Global (42
countries)

Official WHO
data, the World
Bank website, the
Weather
Underground
website

Daily confirmed
cases 22 January
to 24 March
2020 þ
infrastructure,
environment,
policies, and
infection-related
independent
variables

Random forest - - 0.543 to
0.992
(country-
wise)

- [51]

Kırbas¸ I., et al.,
2020

Denmark European CDC Daily confirmed
cases from the
date of the first
confirmed cases
to 3 May 2020

LSTM 54.5398 - 0.999963324 0.5033 [52]

Belgium 274.0248 0.999967249 0.5422

Germany 569.4791 0.999987029 0.3083

France 455.7141 0.999987339 0.3155

United
Kigdom

5482.2361 0.998923082 2.5025

Finland 49.4966 0.999897188 0.8492

Switzerland 55.8685 0.999996376 0.1640

Turkey 640.26257 0.999971407 0.4823

Khajanchi, S., et al.,
2020

Jharkhand COVID19 INDIA
Website

Daily confirmed
cases and the
cumulative
confirmed cases
up to 24 May,
2020

SAIUQR 5.23 - - - [53]

Gujarat 51.82

Andhra
Pradesh

13.47

Chandigarh 3.82

Kim, M., et al., 2020 South Korea Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset, Google
trends,
International
Roaming (by
Korea Telecom),
airline
information
system, Korean
CDC

Daily confirmed
casesþ Searched
keyword
(“COVID-19,”
“COVID test,”
“Flu,” “Mask”) þ
Inter-Country
Data including
customers and
airlines arriving
in Korea,
imported cases
in Korea

Hi-COVIDNet (A
Customized RNN
using LSTM layers)

May 6–12:
0.4373
May 6–19:
0.4045

- - - [24]
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Table S1 (continued )

Author, Year Region(s) Data Source Data Structure Best Algorithm/
Model Structure(s)

Performance Measurements (on the best model) Ref

RMSE MAE R2 MAPE

Khan, F., et al.,
2020

India Ministry of Health
and Family
Welfare, COVID19
INDIA Website

Daily confirmed
cases up to 4
April, 2020

ARIMA - - 0.95 - [16]

Kufel, T., et al.,
2020

32 European
countries

Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset

Daily confirmed,
recovered, and
deceased cases
for 14 days in
each country

ARIMA - - From 0.5577
to 1.0000
(depends on
country and
dates)

From
0.0228 to
83.3660
(depends
on country
and dates)

[54]

Kumar, S., et al.,
2020

India COVID19 INDIA
Website

Cumulative
number of
confirmed,
recovered, and
deceased cases

ARIMIA 641.732
(new cases)

- 0.987 (new
cases)

- [55]

705.293 1.000 (total
cases)

Kumar, N., et al.,
2020

Worldwide Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset

Daily confirmed,
recovered, and
deceased cases
up to 20 May,
2020

ARIMA 36992.53 34932.99 - 2.523 [56]

US 33109.68 31899.89 15.635

Spain 9774.06 9683.45 7.361

Italy 13078.23 12910.06 12.78

France 5853.29 5780.87 10.574

Germany 13901.04 13702.61 9.808

Russia 3212.50 2376.69 5.103

Iran 4496.75 4213.14 4.933

UK 91.12 78.19 8.311

Turkey 4333.57 4242.09 4.321

India 1066.65 721.17 2.911

Liu, Z., et al., 2020 Wuhan,
Beijing,
Shanghai,
Guangzhou

Tencent news and
Baidu migration
websites

Daily confirmed
cases

ANN - - 0.9969 - [57]

Majhi, R., et al.
2020

China (for
training),
India (for
validation)

NA Daily confirmed
and recovered
cases, daily
deaths, Amount
of testing,
Lockdown
presence and its
severity

Random forest - - - 0.02 [58]

Malki, Z., et al.
2021

Worldwide Johns Hopkins
University, WHO
and Worldometer
official website

Daily confirmed
cases

Decision Tree 0.085 0.047 0.993 0.160 [59]

USA 0.068 0.049 0.995 0.107

Brazil 0.106 0.058 0.989 0.073

India 0.073 0.050 0.995 0.248

Spain 0.152 0.098 0.977 0.207

Italy 0.062 0.038 0.996 0.113

France 0.133 0.069 0.982 0.277

UK 0.075 0.044 0.994 0.126

Germany 0.060 0.040 0.996 0.050

Russia 0.094 0.055 0.991 0.308

Turkey 0.065 0.033 0.996 0.051

Mishra, P., et al.,
2020

India WHO daily
situation reports

Daily new cases
from 17 March
to 1 July, 2020

ANN 38.22 23.12 - - [60]

Moftakhar, L., et al.,
2020

Iran Iran Ministry of
Health and open
datasets provided
by Johns Hopkins
University

Daily new cases
from 19
February to 30
March 2020

ARIMA 1539.43 24.85 - - [61]

Melin, P, et al.,
2020

Mexico Government of
Mexico website

Daily confirmed
and deceased
cases

Modular Neural
Network with Fuzzy

From
8.6153 to
1554.0302
(Depends
on the state)

- - - [62]
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Table S1 (continued )

Author, Year Region(s) Data Source Data Structure Best Algorithm/
Model Structure(s)

Performance Measurements (on the best model) Ref

RMSE MAE R2 MAPE

Mollalo, A. et al.
2020

USA USAFacts website Cumulative
number of
confirmed cases
from 22 January
to 30 April 2020

ANN 0.722409 0.355843 0.645481 - [63]

Nabi, K. N., et al.
2021

Brazil Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset

Daily confirmed
cases till 18
November 2020

CNN 0.086 - - 6.94 [64]

Russia 0.014 0.85

UK 0.048 3.75

Neeraj, et al., 2020 Canada Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset

Daily confirmed,
recovered, and
deceased cases
for 209 days in
each country

Attention-based
encoder-decoder

12.46 - - 0.11 [65]

Italy 209.23 1.71

France 163.78 1.21

Spain 281.03 2.11

Nikolopoulos, K,
et al., 2020

Germany,
India,
Singapore,
UK, USA

Johns Hopkins
university dataset,
“covid19-report”
website, Mayer
Brown's COVID-19
Global Travel
Restrictions, the
world population
review, World Life
Expectancy
website, World
Bank website

Daily confirmed,
recovered and
deceased cases,
climate
information,
travel
restrictions and
curfews data,
populations
information,
lung diseases
data, coronary
heart diseases
data, diabetes
prevalence data,
GDP spent on
healthcare data

Naive-d 0.1 for
weekly prediction

- 1.0015
(Scaled)

- 1.0022 [66]

GARCH(1,1) model
with SGED for daily
prediction

0.2064
(Scaled)

0.2160

Pal, R., et al., 2020 USA Johns Hopkins
university dataset,
Dark Sky website

Daily confirmed,
recovered and
deceased cases
from 22 January
to 2 August,
2020 and
weather data

Shallow LSTM using
used a Bayesian
optimization
framework

1103.5 - - - [67]

Papastefanopoulos,
V., et al., 2020

US Novel Corona
Virus 2019
Dataset and
population-by-
country dataset on
Kaggle website

Daily confirmed,
recovered and
deceased cases
as of 4 May 2020

TBAT 0.009873 - - - [68]

Spain 0.029295

Italy 0.005810

UK 0.004310

France 0.007003

Germany 0.003389

Russa 0.002193

Turky 0.001946

Brazil 0.005621

Iran 0.000425

Peng, Y., et al. 2021 Worldwide
(215
countries)

Official WHO
data, Google
Trends service

Daily confirmed
cases 10 January
to 16 August
2020 þ
Infoveillance
data (Google
Trends (search
volume of 28
COVID19-
related
features))

Random forest 9.27 5.42 - - [69]

Pereira, I. G., et al.,
2020

USA, Brazil,
Italy, Spain,
France, UK

Johns Hopkins
university dataset,
Natalnet's Lab and
Brazil ministry of
health (just for
Brazil),
Italy—Official
Covid Data
Repository.

Daily confirmed
and deceased
cases

LSTM-SAE - - 0.822 84 [70]
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Table S1 (continued )

Author, Year Region(s) Data Source Data Structure Best Algorithm/
Model Structure(s)

Performance Measurements (on the best model) Ref

RMSE MAE R2 MAPE

Perone, G., 2020 Italy Worldometer
website

Daily confirmed
cases (Italy
(February
22–April 14),
USA (March
9–May 16),
Russia (March
22–May 22))

ARIMA 412.79 283.49 0.95 13.039 [71]

Russia 606.66 430.83 0.98 11.39

USA 2,411.6 1,631.3 0.95 9.59

Perone, G., 2020 Italy Italian Ministry of
Health's website

Daily confirmed
cases from 21
February to 13
October, 2020

ARIMA-NNAR 190.542 106.4554 - 2.1901 [72]

Pinter, G., et al.,
2020

Hungary Worldometer
website

Daily confirmed,
and deceased
cases from 4
March to 19
April, 2020

MPL-ICA 167.88 - - - [19]

Quintero, Y., et al.
2021

Colombia The National
Institute of Health
for Colombia and
the National
Administrative
Department of
Statistics

Daily confirmed
cases from
March to July
2020 þ
Socioeconomic
data including
people over 65,
poverty index,
total population,
people per km2,
Average age,
average
morbidity

Gradient boosting
regressor

0.0157 0.0045 0.8986 1.5317 [73]

Ribeiro, Mhdm,
et al., 2020

Brazil WHO website Daily confirmed,
and deceased
cases from 15
March to 19
April, 2020

SVR (generally was
the best algorithm,
stacking-ensemble
learning and ARIMA
outperformed in
some cases)

- 18–409
(One day)
8.5–59.67
(Three
days)
7.83–73.17
(Six days)

- 0.87–3.51
(One day)
1.02–5.63
(Three
days)
0.95–6.90
(Six days)

[74]

Rustam, F., et al.,
2020

Afghanistan,
Australia,
Algeria,
Canada

Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset

Daily confirmed,
recovered, and
deceased
patients

Exponential
Smoothing

16828.58 8867.43 0.98 - [75]

Saba, A. I., et al.,
2020

Egypt The Egyptian
Ministry of Health

Accumulated
confirmed cases
from 1 March to
10 May, 2020

Nonlinear
Autoregressive ANN

10.410 7.752 0.999 - [76]

Said, A. B., et al.
2021

Worldwide
data

Official WHO data Daily confirmed
cases þ
Demographic,
socioeconomic,
and health sector
indicators data

Bidirectional LSTM 245.1 176.02 0.996 - [77]

Saqib, M., 2020 US Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset

Daily confirmed
patients

Hybrid polynomial-
Bayesian ridge
regression model

723.75 - - - [78]

Italy 418.36

Spain 624.27

Senapati, A., et al.
2021

Assam (a state
in India)

Kaggle website Daily confirmed
cases till 30
October 2020

Piecewise linear
regression

- - - 0.392 [79]

Shyam Sunder
Reddy, K., et al.
2020

India “Our World in
Data” website

Daily confirmed
cases 15
February to 18
September 2020

LSTM 0.767 - - - [80]

Tabar, B. R., et al.,
2020

East Midlands
region of
England

Public Health UK
and NHS Digital

Daily cumulative
confirmed cases
and the total
number of daily
phone calls

MLR-T 19.37 14.16 - - [81]
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Table S1 (continued )

Author, Year Region(s) Data Source Data Structure Best Algorithm/
Model Structure(s)

Performance Measurements (on the best model) Ref

RMSE MAE R2 MAPE

received at the
NHS 111 from
18 March to 19
September, 2020

Torrealba-
Rodriguez, O. et al.,
2020

Mexico Daily Technical
Report" by the
Mexican Ministry
of Health

Daily confirmed
cases from 27
February to 8
May, 2020

ANN - - 0.9999 - [82]

Tuli, S., et al., 2020 World Our World in Data
website

Daily confirmed
cases

Generalized Inverse
Weibull distribution
fitting

- - 0.98 49.14 [83]

India 0.97 18.33

USA 0.95 24.33

UK 0.95 21.46

Italy 0.96 14.98

Tuli, S., et al., 2020 World Our World in Data
website, Index
Mundi, World
Bank, Oxford
Government
Response Tracker

Daily confirmed
cases till 19 May,
2020,
Socioeconomic
data, Virus Type
data,
Government
Stringency Index

LSTM-based Robust
Weibull approach

559.46 - 0.93 39.29 [84]

India 4.39 0.91 22.00

USA 319.37 0.86 26.09

UK 99.60 0.90 14.93

Italy 45.93 0.89 12.78

Wang, L., et al.,
2020

Global
(Austria,
Brazil, India,
Italy, Nigeria,
Singapore, the
United
Kingdom)

UVA COVID-19
surveillance
dashboard, Johns
Hopkins
University dataset,
Google COVID-19
Aggregated
Mobility Research
dataset

Weekly
confirmed and
deceased cases,
Case count
growth rate,
COVID-19
testing data,
aggregated
relative weekly
mobility flows
over google
users, Flow
Reduction Rate
of connectivity
before and after
the pandemic,
and Social
Distancing
Index, All from 7
March to 22
August, 2020
(25 weeks)

Ensemble of RNNs
and SEIR

Was 37 at
minimum
(depends on
the
algorithm,
data, and
the region)

- - Was 12 at
minimum
(depends
on the
algorithm,
data, and
the region)

[85]

US-States

US-Counties

Yadav, R. S., 2020 India COVID-19 in India
Kaggle dataset

Daily confirmed
cases from 1
March to 11
April, 2020

Sixth degree
polynomial
regression analysis

- - 0.9990 - [23]

Zawbaa, H. M.,
et al. 2021

China Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset and
European Centre
for Disease
Prevention and
Control

Daily confirmed
cases 22 January
to 13 December
2020

ANN 1460.57 - - - [86]

Cote d’Ivoire 105.94

Kenya 486.13

Egypt 318.29

Algeria 371.40

Japan 952.29

Iran 5632.84

Italy 17922.58

USA 77822.38

Zeroual, A., et al.
2020

Italy Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset

Daily confirmed
cases till 17 June
2020

Bidirectional LSTM 1,041,374 1,033,467 - 4398 [87]

Spain 1,194,711 1,187,629 4916

France LSTM 1,085,008 1,075,795 5738

USA 1,129,183 1,123,909 58,008

China Variational
Auto-encoder

11,103 107,873 128

Australia 18,732 17,186 236

Zeroual, A., et al.,
2020

Italy Johns Hopkins
University Center
for Systems
Science and
Engineering
dataset

Daily confirmed,
recovered, and
deceased cases
from 22 January
to 17 June, 2020

VAE 1,386,225 1,385,829 - 5.90 [87]

Spain 5,315,748 5,288,172 2.19

France 3,688,083 3,522,353 1.88

China 11,103 107,873 0.128

Australia 18,732 17,186 0.236

USA 4,079,244 3,976,682 2.04
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S. Ghafouri-Fard et al. Heliyon 7 (2021) e08143

14



Table S1 (continued )

Author, Year Region(s) Data Source Data Structure Best Algorithm/
Model Structure(s)

Performance Measurements (on the best model) Ref

RMSE MAE R2 MAPE

Zheng, N., et al.,
2020

Wuhan Private dataset Customized
dataset consist of
the daily cases
which are
confirmed,
suspected,
cured, died and
social and news
media

A hybrid AI system
through improved
susceptible–infected
model, NLP and
LSTM

- 239.83 - 0.52 [6]

Beijing 0.50 0.38

Shanghai 0.17 0.05

Countrywide
(China)

659.00 0.86

Zivkovic, M., et al.
2021

China Official WHO data Daily confirmed
cases 21 January
to 18 February
2020 þ 10
November to 10
December 2020

Cauchy exploration
strategy BAS þ
ANFIS

4329 3195 0.9763 4.08 [88]

“Our World in
Data” website

4106 2994 0.9775 4.08

(Regions: Regions that model was evaluated in, Data Source: The source(s) that data were acquired from, Data Structure and Size: Data modalities and dates of data
collection, Best Model Structure(s): Best machine algorithm or deep learning model reported in the selected paper based on its performance, Performance Measurements
(on the best model): The measurement of the model output performance based on RMSE, MAE, R2 value, and MAPE).
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