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THE BIGGER PICTURE We present a fully featured approach to studying natural images that integrates
analytical, virtual, and experimental approaches. Our framework, decontextualized hierarchical representa-
tion learning (DHRL), overcomes the limitations of small datasets typical of studies in the natural sciences,
enabling the application of unsupervised deep learning models to questions where sample data are much
more limited.
DHRL captures more complex features and achieves state-of-the-art interpretability scores and improved
latent variable interpretation techniques. The representation provided can be used to perform a range of vir-
tual experiments, transforming the way we study natural color patterns and removing the necessity for less
explicit, and sometimes ethically problematic, experimental approaches.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Apart from discriminative modeling, the application of deep convolutional neural networks to basic research
utilizing natural imaging data faces unique hurdles. Here, we present decontextualized hierarchical represen-
tation learning (DHRL), designed specifically to overcome these limitations. DHRL enables the broader use of
small datasets, which are typical in most studies. It also captures spatial relationships between features, pro-
vides novel tools for investigating latent variables, and achieves state-of-the-art disentanglement scores on
small datasets. DHRL is enabled by a novel preprocessing technique inspired by generative model chaining
and an improved ladder network architecture and regularization scheme. More than an analytical tool, DHRL
enables novel capabilities for virtual experiments performed directly on a latent representation, which may
transform the way we perform investigations of natural image features, directly integrating analytical, empir-
ical, and theoretical approaches.
INTRODUCTION

A key motivation for the expanded use of deep convolutional

neural networks (CNNs)1 lies in their capacity to outperform clas-

sical computer vision approaches on discriminative tasks.2 In the

life sciences, researchers are leveraging CNNs in a broad range

of domain-specific applications, such as the automated tracking

of animal movement,3–5 the detection and classification of cell
This is an open access article under the CC BY-N
lines,6–8 and the mining of genomics data.9 The ability to repre-

sent complex features in an algorithmically useful way (expres-

sivity, Box 1) underlies the success of deep networks. This ability

to capture feature complexity, which is unparalleled inv tradi-

tional computer vision approaches, would suggest their useful-

ness across a range of analytical pathways. Nonetheless, the

application of CNNs to unsupervised descriptions of natural im-

age features has been much more limited due to the low
Patterns 2, 100193, February 12, 2021 ª 2020 The Authors. 1
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Box 1. Key terms and definitions in context

Amortized inference: an efficient approximation of maximum likelihood training, mapping samples to distributions. In variational

autoencoders (VAEs), amortized inference is performed by the inference/encoder network.

Decontextualized sample learning: "decontextualized learning" is a term borrowed from psychology concerned with language

learning in children, in which new word definitions are learned away from a here-and-now context. We use this analogy here to

describe the process of breaking the natural feature contexts within the sample data and using generated "decontextualized" sam-

ples as training data to our inference model as part of the proposed training procedure (see Decontextualized sample generation,

under Experimental procedures).

Disentanglement: the degree to which independent factors of variation in the sample data are represented by independent vari-

ables in the latent code. This is a key meta-prior with importance to building interpretability into the latent code. This contrasts

with entangled latent variables, where multiple independent factors of variation are represented in a single latent variable.

Explaining away (in generative models): units at lower layers become coupled to those at higher layers, and sampling from one unit

must cause a change in how all other units update their state. In VAEs, this results in latent variables that depend on some, or even

all, other latent variables.

Expressivity (also, capacity): the relative amount of complexity (in terms of the functional relationship between inputs and outputs)

that can be captured by an approach. For example, convolutional neural networks havemuch higher expressivity than linear trans-

formations of sample data such as singular value decomposition. This can also be viewed in terms of a latent code parameterized

by a more (or less) complex inference model. Here, we use network depth as a proxy for expressivity.

Hierarchical features: features created from a combination of other lower-level featureswith increasing spatial scale from a terminal

set of atomic features (at the lowest spatial scale). Here, our model architecture achieves this across multiple latent codes wherein

features produced by the inference model of each prior latent code are combined with those produced from the next, increasingly

expressive, inferencemodels. The combined set of features is then used to create the higher-level latent code (see Variational lad-

der autoencoder, under Experimental procedures).

Information preference problem: in VAEs, when the generative (decoder) learns to generate outputs with high likelihood without

reference to the latent code provided by the inference model. The result is an uninformative latent code, like the noise vector

used for generative modeling in generative adversarial networks.

Mean-field assumption (of pixel-wise comparison): unlike feedforward convolutional networks, generative models typically require

only the preservation of local features to generate realistic output and do not preserve scale or translation invariance, or feature

contexts, without reference to surrounding features.

Meta-priors: general (not task specific) assumptions about how data are organized and used by algorithms, which can be enforced

during training. Examples include sparsity, spatial and temporal coherence, and the presence of manifolds in the high-dimensional

space (see Box 2 for those used in our approach).

Mutual information: a metric describing the amount of information held in one variable (the latent code) informs us about another

variable (sample data).
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numbers of training samples available tomost investigations and

the difficulties in interpreting their outputs. As such, approaches

built on traditional computer vision algorithms10–13 continue to

dominate despite their comparatively diminished capacity.

Here we address the hurdles to applying these more expres-

sive models to basic research outside of discriminative tasks,

providing a highly extensible new framework for the integrated

study of natural image features. In doing this, we identify the

key functionalities such a framework; it should: (1) provide a use-

ful representation that disentangles factors of variation along a

set of interpretable axes; (2) capture feature contexts and hierar-

chical feature relationships (Box 1); (3) incorporate existing

knowledge of feature importance and relationships between

samples when available; (4) allow for statistical inference of com-

plex traits; and (5) provide direct connections between ap-

proaches (i.e., it should allow for integrating analytical, experi-

mental, and theoretical approaches).

In contrast to discriminative models, unsupervised learning

seeks to find unknown patterns in data and offers an alternative

approach to compression, clustering, and feature extraction us-

ing deep networks. Generative modeling techniques, i.e., gener-

ative adversarial networks (GANs)14 and variational autoen-
2 Patterns 2, 100193, February 12, 2021
coders (VAEs),15,16 have been especially effective in

representing the complexity of natural images and generating

photorealistic examples.

In addition to the increased expressivity provided by using

stacks of convolutional layers, VAEs offer an intuitive approach

to analysis. An extension of variational inference, VAEs combine

an inference model with a generative model. The inference

model, or encoder, performs amortized inference (Box 1) to

approximate the posterior distribution over a low-dimensional

set of latent variables (qfðzjxÞ). The generative model, or

decoder, is used to generate samples conditioned on the latent

code (pqðxjzÞ). Instead of optimizing on a specific discriminative

task, the objective function in VAEs can take on a variety of

forms, which should maximize the likelihood of the data condi-

tioned on the latent variables (e.g., reconstruction error) and

minimize the divergence between latent variables and the prior.

VAEs provide a means to evaluate sample likelihoods, estimate

feature distributions, and generate novel samples.

Despite these qualities, however, which in themselves make

VAEs a strong basis for an approach to investigating natural fea-

tures, several outstanding issues limit their development and

application; these include: (1) the information preference



Table 1. Desired characteristics of an integrative tool for

investigations of natural image data, general representation

learning meta-priors, and previously proposed enforcement

strategies

Desired

characteristic

Representation

learning meta-prior33
Example

approach

Disentangling factors

of variation

Limited number of

shared factors of

variation

Latent

regularization19,21

Capturing spatial

relationships

Hierarchical

organization of

representation

Hierarchical

model

architecture22

Incorporating existing

domain knowledge

Local variation

on manifolds

Structured

latent codes34

Connect analyses

and experiments

Local variation

on manifolds

Generative

models14–16

Inference Probability mass

and local variation

on manifolds

Variational

inference15

Box 2. Combining existing approaches to address VAE shortfalls

Despite their promise, several outstanding issues limit the development of variational autoencoders (VAEs) for research applica-

tions. These issues include: (1) the information preference problem, (2) the restrictive mean-field assumption of reconstruction er-

ror metrics, (3) the explaining away of variables between layers, and (4) the entanglement of factors of variation in the latent rep-

resentation (see Box 1 for definitions). The relative importance of each of these outstanding issues varies, but recent work has

proposed several potential solutions to one or more of these outstanding issues. These solutions include changes to the diver-

gence metric used19,20,21 and specialized model architectures.22,23 Outside of research on VAEs, there have been general ap-

proaches proposed for measuring large-scale perceptual distances,24,25 decreasing dependence on local features,26 and

capturing the dependence between components of complex features,27 which can also be applied in the context of generative

modeling.

Here, we combine these key contributions to provide a robust basis for inference and generative modeling. We use a VAE with

ladder model architecture (VLAE), which proposes to mitigate the explaining away problem and encourage the disentanglement

of factors of variation in the latent encoding based on feature complexity (i.e., spatial scale).22 Using VLAEs, we create multiple

latent codes with increasing expressivity. How we measure divergence of latent distributions from the prior can lead to a trade-

off between inference and data fit and lead to an uninformative latent code. Here we choose an information-preserving (seemutual

information, Box 1) latent regularization technique: maximum mean discrepancy (MMD).28,29 In contrast to the Kullback-Leibler

(KL) divergence (the most commonly used divergence metric across VAEs), MMD does not suffer from variance over estimation

(overfitting) or an uninformative latent code.20 In contrast to KL divergence, MMD makes less-restrictive assumptions about the

independence of samples. Previous work has focused on adjustments to KL divergence (e.g., b-VAEs);19,21 these approaches

comewith increased overhead in terms of additional hyperparameters and training approaches (e.g., KL annealing).30 Finally, while

VLAEs provide a basis for capturing more complex features andMMD provides for a less-restrictive, information-preserving latent

code, the choice of reconstruction loss may still undermine this by emphasizing local feature importance (the restrictive mean-field

assumption of pixel-wise losses). We balance the effect of pixel-wise error using an additional, perceptual loss function24 calcu-

lated on generated output (note that removing pixel-wise error entirely can lead to poor reconstruction quality). Commonly used for

neural style transfer,31,32 perceptual loss functions balance the effects of local features with more abstract measures of visual sim-

ilarity calculated across spatial scales. Using this novel combination of techniques, together with powerful encoder and decoder

models (see additional details under Experimental procedures) gives a modern basis for investigating natural images and color

patterns.
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problem, (2) the restrictive mean-field assumption of reconstruc-

tion error metrics, (3) the explaining away of variables between

layers, and (4) the entanglement of factors of variation (see Box

2). Although several approaches have been proposed to address

specific shortcomings of VAEs (Table 1), they must be integrated

into a unified approach. They also require better tools for building

interpretability and meaningful extensions to other approaches.

Another lingering concern is how to apply these approaches to

modestly sized datasets. Whereas many proposed techniques

have been developed using large datasets, such as CelebA17

(>200,000 samples) or dSprites18 (>700,000 samples), typical

sample sizes in the life sciences are many orders of magnitude

smaller.

Here, we develop a novel preprocessing and pretraining tech-

nique, decontextualized learning (or decontextualized hierarchi-

cal representation learning, DHRL) (Box 1; Decontextualized

sample generation, Experimental procedures). Inspired by

GAN chaining, decontextualized learning uses the restrictive as-

sumptions of generator networks outlined in Box 2 as an advan-

tage, relaxing the natural covariances in the data by generating

decontextualized training samples. When used as part of pre-

training, this alleviates the drawbacks of using small datasets

by enriching sample variance, encouraging the disentanglement

of generative factors, allowing for better estimates of sample

likelihood.

We also develop a novel approach for quantifying the attribu-

tion of latent variables on generated image features via gradient

integration.35 Whereas several metrics have been proposed for
assessing latent codes in terms of disentanglement,19,36,37 these

metrics rely on access to labeled samples, well-defined features,

or the specific requirements of image classification competitions

(e.g., the Unsupervised and Transfer Learning Challenge38).

Without labeled samples, traversals of the latent code are often

necessary.15,19,20,22,39 For most practical investigations in the

natural sciences, feature definitions and labels may not exist.
Patterns 2, 100193, February 12, 2021 3



Figure 1. DHRL overview

(A) Many patterns (e.g., male guppy ornaments) consist of combinations of several elements that have hierarchical relationships, spatial dependence, and feature

contexts, which may hold distinct biological importance. (B) In our proposed framework, small sample sizes are supplemented using decontextualized samples,

which are generated in a preprocessing step using a generative adversarial network, which learns image statistics sufficient to produce novel out of sample

examples. This model can be used to produce an unlimited number of novel samples and relaxes to covariance between unrelated samples. Both increased

sample sizes and increased variance across categories can be advantageous for disentangling generative features. (C) Decontextualized samples are used to

pretrain our specialized model. Based on a variational ladder autoencoder, we use a specific combination of meta-prior enforcement strategies to capture a

hierarchy of features (which combines low-level features across spatial scales) and disentangle factors of variation in interpretable ways. The learned distribution

over these latent variables can be used for a range of analytical and experimental applications downstream. We can (D) define a color-pattern space or (E)

interface with downstreammodels such as evolutionary algorithms, and even (F) produce photorealistic outputs to be used directly in playback experiments and

immersive virtual reality (image credit: loopbio.com). By addressing existing shortcomings of related approaches, our framework provides a robust and integrated

framework for investigating natural visual stimuli.
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However, more than just qualitative interpretations, the feature

attribution approach presented seeks to provide a quantitative,

localized metric of latent variables. This formalizes the latent

traversal approach without the necessity of labeled data and re-

duces the influence of our own biases on those assessments

(Latent feature attribution and disentanglement, Experimental

procedures).

Finally, to show the extensibility and power of this framework

we develop and perform synthetic experiments connecting

analytical, virtual, and empirical approaches. We demonstrate

this in application to the study of animal color patterns, which

underlies investigations in sensory ecology, cognitive neurosci-

ence, collective behavior, and evolution. There are many prac-

tical and ethical barriers to the study of evolution, which have

historically been both disruptive and costly, or in some cases

completely intractable. Here we outline how, by using the repre-

sentations provided by this technique, we can be more explicit

about the constraints of an evolutionary model and provide
4 Patterns 2, 100193, February 12, 2021
direct connections between analytical, virtual, and experimental

approaches to test those assumptions more effectively. In Fig-

ure 1, we outline the overall framework and how it may be

used in research.

RESULTS

Decontextualized training and DHRL
We first generate decontextualized samples (Figure S1) using an

InfoGAN34 model architecture. This approach uses our prior

knowledge about sample relationships to improve the quality of

generated samples. In each of our sample datasets (guppies,

n = 987, and butterflies, n = 9,531), there are known subcategories

relating to subspecies and varieties. Although prior sample knowl-

edge is not required for using DHRL, herewe use these categories

to inform decontextualized sample preprocessing (Decontextual-

ized sample generation, Experimental procedures). We also use

these categories for quantifying the degree of disentanglement

http://loopbio.com


Table 2. Disentanglement and completeness metrics for VAE,

b-VAE, and VLAE (our model) across datasets compared with the

combined DHRL approach

Model-dataset

Dðz1Þ;
Cðz1Þ

Dðz2Þ;
Cðz2Þ

Dðz3Þ;
Cðz3Þ

Dðz4Þ;
Cðz4Þ

VAE-guppies

(n = 987)

– – – 0.25, 0.24

VAE-butterflies

(n = 9,531)

– – – 0.51, 0.24

b-VAE-guppies – – – 0.33, 0.31

b-VAE-butterflies – – – 0.70, 0.57

Our model-guppies 0.29, 0.32 0.12, 0.13 0.13, 0.16 0.56, 0.66

Our model-butterflies 0.64, 0.60 0.67, 0.55 0.63, 0.51 0.88, 0.60

Our model + DHRL-

guppies

0.14, 0.16 0.18, 0.23 0.31, 0.39 0.90, 0.95
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and completeness of the latent code (Table 2) (Latent feature attri-

bution and disentanglement, Experimental procedures), and inter-

preting sample clusters across approaches.

The value in generating decontextualized samples and the

overall method comes in two forms: (1) reducing overfit to a

limited amount of sample data by providing an informative pre-

training dataset and (2) breaking the correlation between fea-

tures and exaggerating the variance in sample data. This is

needed to produce latent variables that are interpretable and

useful for informing our understanding of study systems and

connecting across approaches.

Across studies,19,36,37,21,33 a score of latent variable disentan-

glement,DðzÞ, and the completeness of the latent code,CðzÞ, are
used as general measures of interpretability and usefulness of

latent representation to downstream tasks. Our procedure of de-

contextualized training contributes to higher DðzÞ between fac-

tors compared with existing approaches, including VAE15,16

and b-VAE.19,21 Although our model architecture (Variational lad-

der autoencoder, Experimental procedures) outperforms these

existing architectures on its own (Table 2), performance is signif-

icantly improved by using DHRL (DðzÞ = 0.56 without the use of

decontextualized samples versus DðzÞ = 0.90 using the same

model with the decontextualized pretraining procedure).

We can provide some insight into these results by highlighting

the motivation for the technique. Small sample sizes, which are

common for many studies, tend to capture less of the true vari-

ance in the data (by the reduced sampling frequency). At the

same time, we turn the drawbacks of existing generative models

(being overreliant on local features) to our advantage. Specifically,

in contrast to our inference model, where we want to reduce the

effects of an overreliance on local features, here in a pretraining

step, we use them to create decontextualized samples, which

have increased variability between samples at higher spatial

scales. The decontextualized guppy samples used here show

210% more variance between versus within classes compared

with our original samples, which showed only 67.3% more vari-

ance between versus within samples measured by a perceptual

distance metric across two spatial scales. Similar increases in

variance were also seen at both local (190% versus 52%) and

non-local scales (230% versus 82%). For pretraining the DHRL

model, we use 32,000 decontextualized samples.
Next, we visualize the latent representation produced by our

DHRL model in comparison to two alternative approaches, raw

pixel differences and perceptual similarity score (which have

intuitive interpretations). We project each of these to a two-

dimensional embedding for visualization via t-distributed sto-

chastic neighbor embedding (t-SNE)40,41 (Figure 2). Whereas

raw pixel embeddings tend to highlight local similarity in terms

of pixel similarity, the perceptual distancemetric favorsmore ab-

stract similarity between samples (although this is more difficult

to interpret). In contrast to these approaches, DHRL balances

local and higher-level similarity between samples. In Fig-

ure 2Ai–iii, we see that local neighborhoods of samples are

much more interpretable and stable using our approach (Fig-

ure 2Aiii, Aiv). Using perceptual distance alone can often lead

to unexpected results. For example, using perceptual similarity

scores results in expected clusters to be scattered across the

embedded space (red X’s, Figure 2Ci). These clusters are better

preserved in raw pixel embeddings and DHRL. However, while

using raw pixel distributions captures color and contrast similar-

ity (Figure 2Cii), it misses subclusters based on shape and

pattern (higher-level features), which are captured by DHRL

(Figure 2Ciii).

The latent space produced by DHRL consists of distinct sets of

latent variables. Each successive set of latent variables (z1;.;z4)

combines outputs of the previous latent variable set with a more

expressive model (i.e., using additional stacked convolutional

layers) (Variational ladderautoencoder,Experimentalprocedures).

The increased expressivity at each level captures a hierarchy of

features over increasing spatial scales. In Figure S2, we confirm

this by qualitatively comparing embeddings and sample-near-

est-neighbor pairs across the four sets of latent encodings. In z1
(left columns), samples are organized along axes corresponding

to color and contrast similarity (S2a). Likewise, nearest neighbors

have strong color similarity (S2b, left). At higher levels (z2; z3) (b,

middle), local pattern similarity appears to better describe near-

est-neighbor pairs. In z3 we find the highest similarity within body

patterns, and at the highest level, z4, overall shape and orientation

similarities dominate nearest-neighbor pairs (S2b, right).

Becausemodel optimization is performed using decontextual-

ized samples from outside the original datasets, we can get an

unbiased measure of sample likelihood of the original samples

without training. In our guppy dataset, one of the subgroups

carries a rare trait not seen in any other subgroup (a distinctive

melanization pattern). These samples cluster together in the

latent space produced by DHRL (Figure 2Aiv) and have low sam-

ple likelihood estimated given the parameters of the trained

model (Figure 3).

As mentioned above, pretraining using decontextualized sam-

ples produced the best disentanglement scores (DðzÞ = 0.90)

(Table 2). For completeness we also compare with results from

related work, VAE15,16 and b-VAE19,21 + Kullback-Leibler (KL) an-

nealing,30 which have shown previous state-of-the-art levels of

disentanglement when used on large datasets (e.g., CelebA17

and dSprites18). Using our butterfly dataset (n = 9,531), we

achieved disentanglement scores of DðzÞ = 0.51 (VAE) and

DðzÞ = 0.70 (b-VAEwith KL annealing), and our smaller guppy da-

taset (n = 987) showed a similar trend (DðzÞ = 0.25 and DðzÞ =
0.33, respectively). In both cases, even without the use of decon-

textualized samples, our model architecture showed improved
Patterns 2, 100193, February 12, 2021 5



Figure 2. Qualitative comparisons

Two-dimensional t-SNE embedding of raw pixel distributions (left column, A–D), using a perceptual similarity score24,42 (middle column, A–D), and the latent

variables provided by our framework (right column, A–D). (A) Guppy images, (B) guppy class labels, (C) butterfly images, and (D) butterfly class labels. Colors

(legend continued on next page)

ll
OPEN ACCESS Article

6 Patterns 2, 100193, February 12, 2021



Figure 3. Sample likelihood estimates

(A) Embedded samples.

(B) Normalized (standard score) likelihood estimates

for each sample. Rare samples with distinct color

patterns also show reduced likelihood (e.g., the

highly melanized samples, which cluster to the left

of the plot).
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disentanglement results, DðzÞ = 0.56 (guppies) and DðzÞ =

0.81 (butterflies) compared with VAE and b-VAE + KL annealing

(Table 2), on these small datasets. However, again, the best

results were seen using the entire DHRL framework (DðzÞ = 0.90).

Latent variable feature attribution
To provide quantitative support for interpreting latent variables,

we demonstrate the use of latent feature attributions (Latent

feature attribution and disentanglement, Experimental proced-

ures) on two examples. In Figures 4A we visualize one variable

(z13 ) of the trained DHRL model. Qualitatively, we find that the

same latent variable controls the relative intensity of green color

patches across individuals. Latent feature attributions help

quantify that directly on generated output (heatmaps, Figure 4),

providing a quantitative output to compare with our qualitative

interpretations. Again, looking at a single variable (z27 ) of the

trained butterfly model (Figures 4B) we find that this latent vari-

able controls the size of yellow patches on the lower wings rela-

tive to the size of yellow patches on the upper wings, and when

patches are not present this variable has no effect (Figure 4B, up-

per right). Whereas we present only two variables here (for

clarity), further investigation of latent variables using this feature

attribution technique can be performed using the provided tool-

set (https://github.com/ietheredge/VisionEngine/blob/master/

notebooks/FeatureAttribution.ipynb).

Latent evolution
So far, we have demonstrated the benefits of DHRL and latent

feature attribution generally with comparison to related tech-

niques and highlighted how the latent variables can be used to

fulfill the first four requirements of a framework for investigating

natural image data: disentangle factors in interpretable ways,

capture feature relationships across scale, incorporate existing

knowledge when available, and allow for statistical inference of

complex traits (Introduction). Next, we demonstrate how we

may extend this same framework to integrate analysis with
indicate unique subgroups for each sample (guppy variety and butterfly species). For raw pixel embeddings

and contrast similarity, but these similarities are tough to interpret in some cases (e.g., box Ai); this is also tr

indicate the same sample across the three approaches. Overall, our approach shows much more visible co

perceptual loss, clusters are often unintuitive or omit similar samples. For example, in (C), middle, the sample

samples in box (Ci), which is observed both in raw pixel embeddings (left) and using our approach (right). O

larger scale differences. Samples in box (Cii) that have similar color and contrast form a single cluster, wherea

of the same samples based on wing shape (Ciii).
virtual and experimental approaches,

achieving the fifth aim of our framework

(provide direct, meaningful connections

between approaches).

Using the latent representation of our

trained DHRL model of guppy ornaments
as input, we conducted a pilot study on ornament evolution.

We defined a fitness function based on general findings from

the guppy literature: more orange, higher contrast males are

preferred by females.43 We initialize the population using a

random sample of our sample embedding (900 samples); we

then simulate 500 generations under selection for more orange,

higher contrast males, with an additional constraint on sample

likelihood to produce bounded solutions, weighted equally. By

projecting the latent representation of each generation, we found

large shifts in the distribution of traits in the population (Figure 5A)

(Video S1). After 500 generations, we observed exaggerated and

more numerous orange and black patches in novel configura-

tions compared with the initial population (Figure 5B). We

confirmed this quantitatively, finding a significant increase in

the population means of orange (generation 1, 4.3 3 10�6,

1.4 3 10�5; generation 500, 3.6 3 10�4, 3.9 3 10�4; bootstrap-

ped 95%CI) and within-body contrast (generation 1, 4.23 10�3,

5.4 3 10�3; generation 500, 6.4 3 10�2, 6.7 3 10�2; bootstrap-

ped 95% CI) (Figure 5C). At generation 500, instead of a single

peak, two novel solutions are optimized (Figure 5A). Investigating

the values of the latent variables over generations reveals two

distinct latent factors driven to fixation in the population under

these selective forces (Figure S3).

In terms of efficiency, using a single Titan Xp GPU with 12 GB

memory, we could simulate a population size of 1,000 individuals

in an average of 19.5 s per generation. This provides the possi-

bility of directly testing the results of virtual experiments using

video playback and immersive virtual reality (see Video S2,

where we visualize a continuous trajectory of sample evolution

from generation 1 to generation 500).

DISCUSSION

Supervised discriminative learning algorithms are already

becoming an integral tool for researchers across disciplines,

achieving state-of-the-art performance. In contrast, unsupervised
(left column), we see clusters based on overall color

ue for perceptual loss metrics (Aii). In (Ai–iii), red X’s

nsistency in local neighborhoods (Aiii, Aiv). Using a

smarked by red X’s should intuitively cluster with the

n the other hand, relying on raw pixels alone misses

s, by using our approach, we find additional clusters
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Figure 4. Latent variable feature attribution

Examples of latent variable feature attribution of a latent variable of the trained variational model (chosen at random as a demonstration) across four random

samples. Left and right images are generated outputs at the minimum and maximum values and provide a means to qualitatively assess latent variables.

Heatmaps provide complementary, quantitative results to compare with those assessments. For example, in (A) we investigate the latent variable z13 , which

controls the intensity of green color patches in generated samples (guppies). In (B), generated butterfly examples, latent variable z37 controls the relative size of

light-yellow patches in generated samples. Heatmap values have been normalized using a standard score. Images to the left are generated with the latent feature

set to its lowest value in the sample and those to the right with the highest value in the sample. Further investigation of additional latent variables using this feature

attribution technique can be performed using the provided toolset.
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generativemodeling approaches are still a relatively young area of

research, but may prove to be even more transformative by

providing more direct connections to hypothesis testing.

In the life sciences, datasets are typically much smaller

compared with those typically used for machine learning

research (e.g., compared with ImageNet44). Our DHRL model

achieves state-of-the-art disentanglement scores and outper-

forms existing techniques (Table 2) using small datasets,

providing a valuable new technique to enable the use of realistic

sample sizes. The prevalence of small datasets is perhaps one of

the underlying reasons for the continued dominance of ap-

proaches built on traditional computer algorithms,10–13 which

are far less data hungry compared with deep networks. Although
8 Patterns 2, 100193, February 12, 2021
many tools have been developed built on classical computer

vision approaches,45–54 fundamental gaps remain in building

quantitative descriptions of complex features. Existing ap-

proaches fail to capture the full complexity of many color pat-

terns because the algorithms themselves are insufficiently

expressive. By providing a means for scaling small datasets in

informative ways, we relax this hurdle to using more expressive

techniques (i.e., CNNs and deep generative models).

The expressivity of deep networks is a primary motivation for

researchers seeking to adopt them. DHRL balances local and

large-scale feature similarity and captures spatial relationships

of different scales across increasingly expressive sets of latent

variables (Figure S2), relationships that other approaches do

http://github.com/ietheredge/VisionEngine/notebooks/IntegratedGradients.ipynb


Figure 5. Virtualizing evolution experiments
(A) Kernel density plot of samples over generations 1, 250, and 500 selecting orange ornaments and contrast. After 500 generations the population has shifted

from the initial sample distribution, finding two peaks that maximize the fitness function.

(B) Samples of initial parent population, left, with the highest fitness, compared with those with the highest fitness after 500 generations under selection, right.

Samples of later generations show higher numbers of brighter orange and dark melanized patches and increased within-body contrast.

(C) Percentages of orange and contrast (the two selective forces acting over generations) increase over generations, confirming qualitatively the results seen in

(B). From generation 1 to generation 500 we see a marked increase in both metrics. Constrained by model expectations, the selective forces have produced an

increased number of spots near the tail, more pronounced caudal fins, and increased orange patches often see in natural populations.
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not account for (including alternative approaches built on deep

CNNs).10–13,15,16,19,21 Although the importance of these spatial

relationships will vary across investigations, they may be partic-

ularly important in studies of natural features. In terms of both

feature context55–60 and the perceptions of shape, motion, and

attention,61–65 spatial relationships between pattern elements

have been shown to hold key biological importance. Moreover,

in the brain, perception is hierarchically organized,66 and repre-

sentationsmade at higher levels of the visual cortex influence the

perception of low-level features.67,68
In Box 3, we discuss some specific outstanding questions sur-

rounding the study of signal evolution that can benefit from the

use of DHRL, both analytically and experimentally. Whereas

here, we focus on experimental evolution as a particularly

exciting and transformative application to studies using natural

image data, manipulations of the latent representation can take

on many forms (e.g., learning experiments). Using a broad range

of domain-specific manipulations, we can design complex real-

time assays that leverage playback experiments to directly test

outcomes.
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Box 3. Applying DHRL to the study of evolution

This platform may be used to address many outstanding questions regarding the functional significance of color pattern traits;

here, we provide some examples to inspire future work. (1) What are the constraints on the evolvability of a given trait? By iden-

tifying the topographical relationship between different traits within the color pattern space, we can test predictions about the se-

lective forces acting on them related to their geometric relationships; e.g., the axes of variation in traits meant to communicate

viability should show increased orthogonality compared with co-occurring traits that have evolved under a Fisherian pro-

cess.69–74 (2) Categorical perception is an important perceptual mechanism for understanding the evolution of color signals.75

But in systems where color patterns are used for mimicry76–78 or novelty, investigating the boundaries between complex traits

is fundamental. By performing traversals across the distribution of the latent variables, interpolating between samples can allow

for tests of continuous79 versus categorical perception80 of complex traits. (3) Many color pattern traits have evolved under selec-

tive pressure from multiple receivers; e.g., both females and predators shape the diversity of male guppy ornaments.81 Establish-

ing these types of evolutionary trade-offs is difficult and often requires large, highly disruptive manipulations such as translocation

experiments.82 Using evolutionary models similar to the ones presented here, researchers can simulate multiple fitness land-

scapes and evolutionary trajectories simultaneously to perform a broad range of virtual experiments. Importantly, while each of

these examples places analytical, experimental, or virtual results at the center, by using the platform presented here, they maintain

direct connections across approaches. Furthermore, they can incorporate existing techniques48–52,83,84 as image preprocessing

routines, during playback, or as constraints on virtual experiments.

ll
OPEN ACCESS Article
More than compressing complex traits into a low-dimensional

space for analysis, because this approach is generative it can

transform the way researchers design investigations. By per-

forming virtual experiments on the same representation used

for analysis, researchers may test analytical results with virtual

experiments, and empirically, by using virtual reality playback

experiments or observational studies (Video S2) based purely

on analytical results (without any human biases). This can better

inform experimental manipulations and have a lasting impact on

creating high-throughput approaches for hypothesis generation

and offline prototyping of experimental manipulations. This can

be especially valuable in study systems that currently rely on

highly disruptive manipulations for studying traits (e.g.,

using introduction, translocation, and manipulation experi-

ments),82,85–87 which often raise legal, ethical, and conservation

issues.82 Using approaches like the one presented here allows

researchers to be both muchmore explicit about the parameters

of a given evolutionary model (or any experimental paradigm)

and more prudent with the use of animal subjects.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, R. Ian Etheredge

(rianetheredge@gmail.com).

Materials availability

Guppy images were collected from a maintained stock at the University of

W€urzburg under authorization 568/300-1870/13 of the Veterinary Office of

the District Government of Lower Franconia, Germany, in accordance with

the German Animal Protection Law (TierSchG). Individuals were imaged on a

white background with fixed lighting conditions88 using a Canon D600 digital

camera. Images were downsampled and center cropped to a final size of

256 3 256 pixels. The dataset consisted of 977 standardized RGB images

across three species and 13 individual strains.

Butterfly images were downloaded from the Natural History Museum, Lon-

don, under a creative commons license (doi.org/10.5519/qd.gvq3p7xq,

doi.org/10.5519/qd.pw8srv43). This dataset consisted of 9,531 RGB images.

For each dataset, we segmented samples from the background using a

customized object segmentation network adapted from Caelles et al.89 For

each dataset we annotated eight samples to train the segmentation network.
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All samples were cropped and resized to 256 3 256 and placed on a trans-

parent background (RGBA). For calculating the perceptual loss during training,

images were translated to three-channel images with a white background us-

ing alpha blending. Updated links to original data repositories can be accessed

at github.com/ietheredge/VisionEngine/README.md.

Data and code availability

All keymethods (Figure 6) andmodels were implemented using Tensorflow 2.2

and can be accessed via the github repository, including installation and eval-

uation scripts to reproduce our results. Instructions for creating new data

loaders for training new datasets using this method can be found in the repos-

itory readme file. The original data have been deposited for both guppies and

butterflies.
Network specifications and methods

Decontextualized sample generation

The basis of our approach to increase disentanglement for small datasets re-

lies on the use of decontextualized samples for pretraining. Here, we use a

modified InfoGAN,34 which can incorporate prior knowledge about the sample

data via the number of discrete latent codes (e.g., providing 10 categorical

latent codes for generating handwritten digits). Whereas prior knowledge

about samples is not strictly required, even without prior knowledge, InfoGAN

provides a more stable training procedure for generating samples.34 Because

it is available, we incorporate prior knowledge about our samples of male

guppy ornamentation images by providing a 32-class discrete latent code.

These 32-classes represent the 32 individual tanks, unique subsets of the

overall sample, with shared traits related to guppy ornamentation patterns

(Figure S1). Although we do not quantify them here, early results suggested

that by increasing the number of discrete latent codeswewere able to produce

more consistent images. For future work, we suggest the number of discrete

codes be chosen with respect tomeaningful structure in the data (e.g., number

of species, subgroups, etc.) or left at one (1) if none are known.

GAN training and VAE training are performed in separate steps so thatmodels

are not jointly optimized. The generated samples from the trained GAN model

are used as training data to a variational model (Figure 1) with a hierarchical

model architecture,22 which consists of 10 latent variables across four codes

(z1;.;z4) with increasing expressivity (Variational ladder autoencoder, below).

InfoGAN

We use an unsupervised approach to disentangle discrete and continuous

latent factors adapted from Chen et al. (InfoGAN),34 which modifies the mini-

max game typically used for training GANs, such that:

min
G;Q

max
D

VIðD;G;QÞ = VðD;GÞ � lLIðG;QÞ; (Equation 1)

where VðD;GÞ is the original GAN objective introduced by Goodfellow

et al.14 and LIðG;QÞ approximates the lower bound of the mutual information

mailto:rianetheredge@gmail.com
http://github.com
https://github.com/ietheredge/VisionEngine
https://github.com/ietheredge/VisionEngine/blob/master/README.md
https://owncloud.gwdg.de/index.php/s/GIElC9WS4fdXjDw
https://owncloud.gwdg.de/index.php/s/ObTXnWN9ll45EoV


Figure 6. Key methods

Top left: latent variable priors can be parameterized by either continuous or discrete variables. In the model used to generate decontextualized samples, we

use both categorical and continuous latent codes (top). In our inference model (DHRL) we use an information-preserving regularization approach, which is

less restrictive and allows for more complex posterior estimates (bottom). Top middle: example structure of a generative adversarial network. Here, a noise

vector, zi is input to the generator network GðzÞ, which produces a reconstructed output bxi . A real sample, xi , and generated sample, bxi , are subsequently

passed through a separate discriminator network DðxÞ, which determines if the sample is real (1) or generated (0). For decontextualized sample generation,

the latent encoding of generated samples is optimized by an additional network, Q, which shares all convolutional layers with D. Bottom left: the generic

architecture of a variational ladder autoencoder. Multiple latent spaces ðz1; z2;.; zkÞ are learned, with each successive latent variable space (zj ) layer having

increasing expressivity and abstraction to hierarchically organized complex features across spatial scales. Bottom middle: structure of a variational

autoencoder. xi and bxi are an example input and its reconstructed output; the probabilistic encoder or inferencemodel, qfðzjxÞ, performs posterior inference,

learning sharedmodel parameters, f, across samples, approximating the true posterior distribution. The probabilistic decode, pqðZjXÞ, pqðXjZÞ, learns a joint
distribution of the encoded space, Z, and the data space x. The low-dimensional bottleneck, Z, is a distribution of latent variables capable of reconstructing

sample inputs, parameterized by a vector of means m and standard deviations s. The noise term ε allows for the parameters of this multivariate distribution to

be optimized using back-propagation, known as the reparameterization trick. Right: example perceptual loss models use a pretrained network, f, e.g.,

VGG-16.92 Two samples are input to the model and the activations across one or more layers are used as outputs for each sample. The distance between

these outputs provides a measure of visual similarity that does not rely on pixel-wise differences, emphasizing higher-level similarity. Perceptual loss

functions can be used as a stand-alone transfer-learning approach to find perceptual differences between samples or as part of any network as an additional

or alternative reconstruction loss.
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Iðc;Gðz; cÞÞ usingMonte Carlo sampling such that LIðG;QÞ%Iðc;Gðz;cÞÞ.34 Like
the generator G and discriminator D, Q is parameterized as a neural network

and shares all convolutional layers with D.

Both discreteQðcd jxÞ and continuous latent codesQðccjxÞ are provided, with

continuous latent codes treated as a factoredGaussian distribution. Importantly,

InfoGAN does not require supervision and no labels are provided.36

We substitute the original generator and discriminator models from Chen

et al.34 with the architecture described in Redmon et al.90 and increase the flex-

ibility of the latent code, providing additional continuous and discrete latent

codes. For guppy experiments, we provide 2 continuous and 32 discrete co-

des as part of the model, and we used a 100-unit random noise vector as input

to the generator.

Variational ladder autoencoder

In contrast to hierarchical architectures,91,23 we learn a hierarchy of features by

using multiple latent codes with increasing levels of abstraction introduced by

Zhao et al.,22 i.e., qfðz1;.; zLjxÞ. The expressivity of zi is determined by its

depth. The encoder qfðz1;.; zLjxÞ consists of four blocks such that:

Hl = GlðHl�1Þ; (Equation 2)

zl � NðmlðHlÞ; IÞ; (Equation 3)

where Hl , Gl , and ml are neural networks. For our encoder model, Gl is a

stack of convolutional, batch normalization, and leaky rectified linear unit acti-
vation (Conv-BN-LeakyReLU), andwe stack four Conv-BN-LeakyReLUblocks

for eachGl with increasing numbers of channels for each subsequent convolu-

tional layer, i.e., N-channels/2, N-channels, N-channels, N-channels * 2, where

N-channels is 16, 64, 256, and 1024 for G1, G2, G3, and G4, respectively. We

apply spectral normalization to all convolutional layers (see below). Because

we want to preserve feature localization, we use average pooling followed

by a squeeze-excite (SE) block to apply a context-aware weighting to each

channel (see below).

Similarly, the decoder, pqðxjz1;.;zLÞ, is composed of blocks such that:

~zl = Ulð½~zl+1;VlðzlÞ�Þ; (Equation 4)

where ½:; :� denotes channel-wise concatenation. Parallel to Gl , blocks in the

encoderUl are composed of Conv-BN-ReLU blocks (note the use of ReLU and

not LeakyReLU in the decoder) with decreasing number of channels in each

convolutional layer, i.e., N-channels * 2, N-channels, N-channels, N-chan-

nels/2, where N-channels is 1024, 256, 64, and 16. No spectral normalization

wrappers or SE layers are applied in the decoder.

We chose four sets of latent variables after Zhao et al.,22 which showed this

provided reasonable spatial separation for face images (CelebA17). However,

more or fewer sets can also be used. Although we do not test those effects

here, we would expect increased (or decreased) resolution between scales

based on the number of codes. In practice, many latent codes are not practical

due to the increased model complexity.
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Reconstruction loss

We minimize the negative log likelihood of the sample data by minimizing the

mean squared error between input and output, jointly optimizing the recon-

struction loss for each sample x:

Lpixe[�wise = Epdata ðxÞEqf ðzjxÞ½log pqðxjzÞ�

=
1

n

Xn

i= 1
ðxi � pqðqfðxiÞÞÞ2 : (Equation 5)

To relax the restrictive mean-field assumption, which is implicit in mini-

mizing the pixel-wise error, we jointly optimize the similarity between inputs

and outputs using intermediate layers of a pretrained network, VGG16,92 as

feature maps.31,24 Here we calculate the Gram matrices of feature maps,

which match the feature distributions of real and generated outputs for

each layer as:

Lperceptual =
XL
l= 1

1
n

Pn
i = 1

�
Gl

abðxiÞ �Gl
cdðpqðqfðxiÞÞÞ

�2
L

; (Equation 6)

where

Gl
ab =

P
cdF

l
cdaðxÞF l

cdbðxÞ
CD

; (Equation 7)

for feature maps Fa and Fb in layer l across locations c and d. This measures

the correlation between image filters and is equivalent to minimizing the dis-

tance between the distribution of features across feature maps, independent

of feature position.25

The combined reconstruction loss is a weighted sum of the perceptual loss

and pixel-wise error:

Lreconstruction = aLperceptual + bLpixel�wise; (Equation 8)

where a and b are hyperparameters controlling the influence of each loss

term. Here we set a = 1 3 10�6 and b = 1 3 10�5 to balance the contribution

of reconstruction terms with variational loss (see below).

Maximum mean discrepancy

We use the maximum mean discrepancy (MMD) approach28,29 to maximize

the similarity between the statistical moments of pðzÞ and qfðxÞ using the

kernel embedding trick:

MMDðpðzÞjqfðzÞÞ = EpðzÞ;pðz0 Þ ½kðz; z0Þ�+EqfðzÞ;qfðz0 Þ ½kðz; z0Þ� � 2EpðzÞ;qfðz0 Þ ½kðz; z0Þ�;
(Equation 9)

using a Gaussian kernel, kðz;z0Þ, such that:

kðz; z0Þ = e
�kz�z0 k2

2s2 ; (Equation 10)

to measure the similarity between pqðzÞ and qfðzÞ in Euclidean space. We

measured similarity using multiple kernels with varying degrees of smooth-

ness, controlled by the value of s2, i.e., multi-kernel MMD (MK-MMD),29 with

varying bandwidths: s2 = 1 3 10�6, 1 3 10�5, 1 3 10�4, 1 3 10�3, 1 3 10�2,

1 3 10�1, 1, 5, 10, 15, 20, 25, 30, 35, 100, 1 3 103, 1 3 104, 1 3 105, and

1 3 106.

Weighing the influence of MMD kernel differences on the combined objec-

tive function is controlled by the hyperparameter l applied across each latent

code, giving the combined objective:

Ltotal =

 XL
i

lMK�MMDðqfðziÞjpðziÞÞ
!
+Lreconstruct ; (Equation 11)

where L is the number of hierarchical latent codes and zi is the n-dimensional

latent code and the prior, pðziÞ=Nð0; IÞ and Lreconstruction as defined in Equa-

tion 8. Here, we set l = 1.

The three model hyperparameters a, b, and l are chosen to balance their

relative influence on the objective during training (in reference to l); here we
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set a = 1 3 10�6 and b = 1 3 105. We recommend these be at similar values

when using images of the same size (2563 2563 3, a = 13 10�6) and number

of layers used to calculate the perceptual loss (three output layers, b= 13 105).

If changing these values, users should balance their relative contribution to

training loss (observed during training).

Improving encoder and decoder features

In addition to further relaxing the contribution of pixel-wise error, we use estab-

lished ways to increase feature context, stabilize training, and increase sample

likelihood (unpublished data).

Squeeze-and-excitation networks27 were proposed to improve feature

interdependence by adaptively weighting each channel within a feature map

based on the filter relevance by applying a channel-wise recalibration. Here

we apply SE layers prior to each variational layer on outputs from the Conv-

BN-LeakyReLU blocks for each Gl such that each embedding zi may better

capture features with cross-channel dependencies. Each SE layer consists

of a global average pooling layer, which averages channel-wise features fol-

lowed by two fully connected layers with ReLU activations, the first with num-

ber of input channels/16 and the second with the same size as the number of

input channels. Finally, a sigmoid, "excite," layer assigns channel-wise prob-

abilities, which are then multiplied channel-wise with the original inputs.

Spectral normalization has been proposed as a method to prevent explod-

ing gradients when using rectified linear units to stabilize GAN training via a

global regularization on the weight matrix of each layer as opposed to gradient

clipping to provide bounded first derivatives (the Lipschitz constraint93). We

perform spectral normalization on each activation layer of both the encoder

and the decoder.

Adding a denoising criterion has been shown to yield better sample likeli-

hood by learning to map both training data and corrupted inputs to the true

posterior, providing more robust training for out-of-sample data:26,94

~x�MDð~xjxÞ; (Equation 12)

where we implement the mapping between real samples to noisy sample

MD via a noise layer, which samples a corrupted input ~x from input x before

passing ~x to the encoder qfðzj~xÞ. We apply random binomial noise (salt and

pepper) to 10% of pixels.

Latent feature attribution and disentanglement

Understanding the importanceof features formodel predictions is anactivearea

of research. Integrated gradients, introduced by Sundararajan et al.,35 assigns

feature importance, determining causal relationships between predictions and

image features by summing the gradients along paths between x0 and x:

IGiðxÞT =
�
xi � x0i

�
3

Z 1

a= 0

vPðx0 +a3 ðx � x0ÞÞ
vxi

da: (Equation 13)

We adapt this procedure to investigate the contribution of each latent vari-

able parameter zi, where we use a baseline z, an encoding of a single sample x,

and iterated zj while holding all other zl constant and summing the gradients of

the decoder pqðxjzÞ such that:

IGapprox
i

�
pq

�
x
��zj��T =

�
pq

�
x
��zj�

i
�pq

�
x
��zj0 �

i

�
3
Xm
k = 1

vP
�
pqðxjzj0 Þ : zj0j = zj

0
j +

k
m
3
�
zjj � zj

0
j

��
vpqðxjzjÞi

3
1

m
;

(Equation 14)

where j is the axis of latent code being interpolated, i is the individual feature

(pixel), pqðxjzÞ is the reconstructed output, pqðxjz0Þ is the baseline recon-

structed output, k is the perturbation constant, and m is the number of steps

in the approximation of the integral. We use the Riemann sum approximation

of the integral over the interpolated path P, which involves computing the

gradient in a loop over the inputs for k = 1;.;m. Here, we use m = 300 and

k = 2maxðjzjÞ for each zj starting from a baseline pqðx
��zj0 Þ : zj = � maxðjzjÞ.

We use the technique developed by Eastwood and Williams37 for assessing

disentanglement, measuring the relative entropy of latent factors for predicting

class labels. We measure disentanglement of Di of each latent code as

measured by Di = ð1 � HKðPiÞÞ, where HK is the entropy and Pi is the relative

importance of the generative factor. We also include ametric of completeness,

Ci , approximating the degree to which the generative factor is captured by a
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single latent variable, where Cj = ð1 � HDðPjÞÞ, where Pj is the unweighted

contribution of generative factors.37 Here, in the absence of labeled features,

we use species (butterflies), breeding line variants (guppies), and predicted

class of the generative model for each model as approximate class labels

(one class). This approximation naturally overestimatesDi and underestimates

Cj , as there is overlap between classes in terms of visual features. While East-

wood and Williams37 propose a third term to evaluate representations, I, to

measure the relative informativeness, we found that this value was highly

correlated to the choice of the hyperparameter l used for latent regularization.

Simulating evolution on the latent space

For demonstrating an example virtual experiment, we use a genetic algo-

rithm, with a parent population of 1,000 random samples, evolved over

500 generations. Parent samples are random initialized across the latent

variables of each latent code. Fitness was calculated as an equally

weighted sum of the total percentage of pixels within two ranges (orange

RGB (0.9, 0.55, 0) > RGB (1.0, 0.75, 0.1) and black RGB (0, 0, 0) < RGB

(0.2, 0.2, 0.2)) measured on the generated output, a simplification of empir-

ical results from the literature.43,95 During each generation the predicted

fitness for each sample in the population was measured by the fitness of

the nearest neighboring value in the reference table (for processing speed).

To simulate weak selective pressure on the fitness function, we drew 500

random parent subsamples weighted by their proportional fitness. An addi-

tional 200 samples were drawn, without the proportional fitness weighting.

Together, from the 700 subsamples in each generation, we drew 300

random pairs; the "alleles" from each sample (the specific latent variable

values) were chosen randomly with equal probability to create a combined

offspring between the two samples. Each combined offspring then had two

alleles randomly mutated, one by drawing from a random normal distribu-

tion and the other by replacing an existing value with zero (like destabilizing

and stabilizing mutations). The next generation thus consisted of 1,000

samples, 700 parent samples + 300 offspring. This process was repeated

for 500 generations.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2020.100193.
ACKNOWLEDGMENTS

We would like to thank members of the Department of Collective Behavior,

Max Planck Institute of Animal Behavior, and Center for the Advanced Study

of Collective Behavior, University of Konstanz, for comments on earlier ver-

sions of the manuscript; the Max Planck Computing and Data Facility for

use of computational resources; and four anonymous reviewers for their

constructive feedback, which greatly improved the manuscript. This research

was funded by the Deutsche Forschungsgemeinschaft (German Research

Foundation) under Germany’s Excellence Strategy-EXC 2117-422037984

and by the Max Planck Institute of Animal Behavior.
AUTHOR CONTRIBUTIONS

Conceptualization, R.I.E; Methodology, R.I.E; Software, R.I.E; Validation,

R.I.E; Formal Analysis, R.I.E; Investigation, R.I.E.; Resources, M.S. and A.J.;

Data Curation, R.I.E.; Writing – Original Draft, R.I.E; Writing – Review & Editing,

R.I.E, M.S., and A.J.; Visualization, R.I.E; Supervision; A.J.; Funding Acquisi-

tion, A.J.
DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: August 26, 2020

Revised: November 8, 2020

Accepted: December 17, 2020

Published: January 21, 2021
REFERENCES

1. LeCun, Y., Kavukcuoglu, K., and Farabet, C. (2010). Convolutional net-

works and applications in vision. In Proceedings of 2010 IEEE

International Symposium on Circuits and Systems (IEEE), pp. 253–256.

2. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., and Zisserman, A.

(2010). The Pascal Visual Object Classes (VOC) challenge. Int. J. Comput.

Vis. 88, 303–338.

3. Bozek, K., Hebert, L., Mikheyev, A.S., and Stephens, G.J. (2018). Towards

dense object tracking in a 2D honeybee hive. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (IEEE),

pp. 4185–4193.

4. Mathis, A., Mamidanna, P., Cury, K.M., Abe, T., Murthy, V.N., Mathis,

M.W., and Bethge, M. (2018). DeepLabCut: markerless pose estimation

of user-defined body parts with deep learning. Nat. Neurosci. 21,

1281–1289.

5. Pereira, T.D., Aldarondo, D.E., Willmore, L., Kislin, M., Wang, S.S.-H.,

Murthy, M., and Shaevitz, J.W. (2019). Fast animal pose estimation using

deep neural networks. Nat. Methods 16, 117–125.

6. McQuin, C., Goodman, A., Chernyshev, V., Kamentsky, L., Cimini, B.A.,

Karhohs, K.W., Doan, M., Ding, L., Rafelski, S.M., Thirstrup, D., et al.

(2018). CellProfiler 3.0: Next-generation image processing for biology.

PLoS Biol. 16, e2005970.
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