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Purpose: Qinghai province has invariably been under an ongoing threat of tuberculosis

(TB), which has not only been an obstacle to local development but also hampers the

prevention and control process for ending the TB epidemic. Forecasting for future epidemics

will serve as the base for early detection and planning resource requirements. Here, we aim

to develop an advanced detection technique driven by the recent TB incidence series, by

fusing a seasonal autoregressive integrated moving average (SARIMA) with a neural net-

work nonlinear autoregression (NNNAR).

Methods: We collected the TB incidence data between January 2004 and December 2016.

Subsequently, the subsamples from January 2004 to December 2015 were employed to

measure the efficiency of the single SARIMA, NNNAR, and hybrid SARIMA-NNNAR

approaches, whereas the hold-out subsamples were used to test their predictive perfor-

mances. We finally selected the best-performing technique by considering minimum metrics

including the mean absolute error, root-mean-squared error, mean absolute percentage error

and mean error rate .

Results: During 2004–2016, the reported TB cases totaled 71,080 resulting in the morbidity of

97.624 per 100,000 persons annually in Qinghai province and showed notable peak activities in

late winter and early spring. Moreover, the TB incidence rate was surging by 5% per year.

According to the above-mentioned criteria, the best-fitting basic and hybrid techniques consisted

of SARIMA(2,0,2)(1,1,0)12, NNNAR(7,1,4)12 and SARIMA(2,0,2)(1,1,0)12-NNNAR(3,1,7)12,

respectively. Amongst them, the hybrid technique showed superiority in both mimic and

predictive parts, with the lowest values of the measured metrics in both the parts. The sensitivity

analysis indicated the same results.

Conclusion: The best-mimicking SARIMA-NNNAR hybrid model outperforms the best-

simulating basic SARIMA and NNNAR models, and has a potential application in forecast-

ing and assessing the TB epidemic trends in Qinghai. Furthermore, faced with the major

challenge of the ongoing upsurge in TB incidence in Qinghai, there is an urgent need for

formulating specific preventive and control measures.

Keywords: tuberculosis, SARIMA model, NNNAR model, hybrid model, forecasting,

incidence rate

Introduction
Tuberculosis (TB) is a highly infectious disease caused by the Mycobacterium tuber-

culosis infection and still imposes a heavy burden on the world with estimated cases of

10.0 million people and 1.6 million deaths in 2017, though great efforts toward ending

the TB epidemic have been made worldwide, with an approximately 2% reduction in
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the TB morbidity rate per year.1,2 Furthermore, because of

TB, individuals encounter costs or suffer a loss of as much as

50% of their income.3 According to the most recent WHO

report, nearly 87% new infections occurred in 30 high TB

burden countries, among which, China has the second high-

est TB burden, and also ranks the second for drug-resistant

TB, despite a 3% decline of the TB incidence rate annually

since 2005.1 In recent years, owing to the growing transient

population, drug-resistant TB, co-infections of HIV-TB and

other TB co-morbidities such as diabetes mellitus, hyperten-

sion, and immune-compromising disorders, etc., which have

caused a continued public health challenge for goal of ending

TB with milestones by 2020 and 2025 and targets by 2030

and 2035 in China.2,3 A key aspect of reaching the WHO’s

goals for China is to better prevent and control the TB spread

in high-risk areas, such as in Qinghai province, where the TB

morbidity rate was constantly leading the list of 39 notifiable

infectious diseases and was more than double the average

level in 2018 in China (140.00 per 100,000 persons versus

59.01 per 100,000 people),4,5 and more importantly, in con-

trast to the general downward trend in China, displays an

upward tendency.4,6 Hence, more prevention and control

strategies should be implemented in this high-risk area of

TB, which is also great significance in facilitating and pro-

moting the achievement of ending the TB epidemic in China.

Among all strategies, the accurate projection for upcoming

temporal patterns with advanced statistical models is basic to

any implementation of prevention and control measures.

In recent decades, coinciding with increasingly rapid

advances in the technology of computers, the use of sta-

tistical techniques for modelling and forecasting has

become widespread. Of these statistical techniques, the

autoregressive integrated moving average (ARIMA)

method based on an assumption of linearity is currently

the most extensively applied to analyze and evaluate the

morbidity or mortality time series of contagious diseases,

such as TB,7 scarlet fever,8 human brucellosis,9

pertussis,10 etc. Yet the incidence series of contagious

diseases over time includes not only linearity but also

nonlinearity due to their secular trend, cyclic pattern, sea-

sonality and stochastic fluctuation, and therefore may

result in a limited ability to extract the nonlinear clues

using the ARIMA model.11 Therefore, to better capture the

various components contained in the incidence series, the

combined techniques of the ARIMA model and artificial

neural networks (ANNs) capable of approximating arbi-

trary nonlinear and non-stationary sequences by virtue of

their powerful non-linear mapping function have been

gaining much attention, as they give sufficient considera-

tion to both the linear and nonlinear information hidden

behind a time series. Moreover, such a hybrid model has

been confirmed to attain the desired and expected results

in most epidemiological forecasting.11–13 However, on one

hand, earlier literature mainly focused on hybrid models

that comprise the ARIMA method and static ANNs such

as back-propagation networks (BP)14 and generalized

regression neural networks (GRNN),11 etc., while much

work has shown that the dynamic ANNs, such as Jordan,

Elman and neural network nonlinear autoregression

(NNNAR) models can improve the performance compared

with the static ANNs, owing to their short-term memory

function.9 On the other hand, for time series with notice-

able seasonality, it is fairly useful to treat the last sample

points from the same period as inputs as well.15 In this

regard, the NNNAR technique is successful where pre-

vious commonly employed models failed. Thereby, given

the superiority of the NNNAR method and the challenge

posed by an upsurge in TB for public health in Qinghai

province, we aim to develop an ARIMA-NNNAR hybrid

method for fitting and projecting TB epidemic trends.

Whilst used for validating the suitability of the application,

the basic ARIMA and NNNAR models were also con-

structed to model the data, and subsequently, their mimic

and predictive powers were compared with the data-driven

SARIMA-NNNAR hybrid method.

Materials and Methods
Study Area and Data Collection
Qinghai province is located at 89°35′~103°04′ east long-

itude and 31°36′~39°19′ north latitude in the northwest of

mainland China and covers an area of about 722.300 km2,

and as of the end of 2018, the number of permanent

residents amounted to 6.0323 million. In this time series

analysis, 156 observed values of the monthly and yearly

TB incidents from January 2004 to December 2016 were

extracted from the data-center of the China public health

science (http://www.phsciencedata.cn/Share/en/index.jsp)

and the population data came from the Qinghai

Provincial Bureau of Statistics. Thereafter, the datasets

from January 2004 to December 2015 were deemed as

the model-training subsamples, whereas the rest were

regarded as the model-testing subsamples. In this study,

any ethical approval or informed consent was considered

unnecessary because all the observed values used for the

analyses were obtained from publicly accessible
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surveillance data sources, and no detailed personal infor-

mation were needed.

Building SARIMA Method
The classical ARIMA(p, d, q) model has been identified as

an effective and useful forecasting tool for time series with

an absence of seasonality.16 Nonetheless, given the fact

that the incidence series of infectious diseases exhibitscy-

clical or periodic behavior, a seasonal ARIMA method,

also known as SARIMA(p, d, q)(P, D, Q)s, was considered

as this technique can unearth associations in sequentially

lagged relationships which frequently exist in a series with

cyclicity and seasonality.17 In the SARIMA model, the

projections can be viewed as a linear function of recently

observed points and produced residuals, and the corre-

sponding formula is

φ Bð ÞΦ Bsð ÞΔdΔD
s Xt ¼ θ Bð ÞΘ Bsð Þεt

E εtð Þ ¼ 0;Var εtð Þ ¼ σ2ε ;E εtεsð Þ ¼ 0; s�t
E Xsεtð Þ ¼ 0;"s<t

8<
: (1)

Here B signifies the backshift operator, ɛt is the errors

of prediction, S denotes the periodicity of the observed

series, d and D represent the non-seasonal and seasonal

differencing, respectively. p, q, P and Q are the orders

of non-seasonal and seasonal autoregressive (AR and

SAR, respectively) and moving average (MA

and SMA, respectively) approaches, respectively.

�d ¼ 1� Bð Þd ,�D
S ¼ 1� Bð ÞSD;φ Bð Þ ¼ 1� φ1B� � � �

� φpB
p, θ Bð Þ ¼ 1� θ1B� � � � � θqBq; Φ Bsð Þ ¼ 1�Φ1

Bs � � � � �ΦPBPs, Θ Bsð Þ ¼ 1� Θ1Bs � � � � � ΘQBQs.

The SARIMA modelling procedures used are given

below. Initially, the stationarity of the TB incidence series

was examined.7 The SARIMA approach is designed to

model series with stationarity. Thereby the augmented

Dickey–Fuller (ADF) test was employed to verify the

assumption of stationarity in the TB morbidity series.7

With nonstationary TB series, log transformation or differ-

encing was adopted to help accomplish stationarity. Then,

model parameters were identified and the autocorrelation

function (ACF) and partial ACF (PACF) plots to select the

plausible parameters for the SARIMA approach were

used.16 Next, the model fit was evaluated. Applying

some information criteria (IC) like the Schwarz Bayesian

IC (SBC), Akaike IC (AIC), corrected Akaike IC (AICc)

and log-likelihood (LL) function to the chosen models, the

SARIMA approach with the minimum SBC, AIC and

AICc values as well as the maximum LL value was chosen

as the optimal.11 Once the best-modelling approach was

found, the produced residuals were identified as a white

noise series with the ACFs and PACFs being within their

uncertainty limits and with a significant result for all the

parameters.16 Finally, forecasting was produced.

A projection into the future was accomplished by employ-

ing the optimal model obtained.

Erecting NNNAR Method
The uncertainty and complex nonlinear patterns contained

in the incidence series of infectious diseases are most

frequently encountered in practical forecasting applica-

tions, which leads to a performance reduction when

using linear approaches.6 In order to offset such a defect,

ANNs are attracting considerable interest in handling such

a series thanks to their powerful self-organizing and self-

learning capabilities, which give it the flexibility to

approach any expected accuracy.14 Dynamic ANNs tech-

niques, unlike static methods, include feedback links that

help better capture time-varying effects.16 NNNAR, one of

the dynamic ANNs, can store not only the current and past

values of the inputs and outputs but also the states of the

network by using tapped delay lines.18 Also, this network

can employ the last sample points from the previous sea-

son as predictors for forecasting.18 A simple NNNAR(p,

k) network can be written as (Figure S1)

ŷ tð Þ ¼ f y t � 1ð Þ; y t � 2ð Þ; � � �; y t � pð Þð Þ (2)

Here, y(t) denotes the simulations and projections obtained

by using the earlier inputs at lags p, f represents

a nonlinear function with k hidden neurons.

Further, with the seasonal time series, an extension of

the basic NNNAR(p, k) network can be in the form of

NNNAR(p, P, k)m

ŷ tð Þ ¼ f ðy t � 1ð Þ; y t � 2ð Þ; � � �; y t � pð Þ; y t � mð Þ;
y t � 2mð Þ; � � �; y t � Pmð ÞÞ (3)

Here y(t) represents the simulations and projections pro-

duced by applying the last P sample points from the

same m season besides the earlier inputs at lags p.

In earlier publications, it was demonstrated that it can

attain a satisfactory result and can attenuate overfitting to

a great extent when the ANNs with 2–7 lagged inputs and

2–20 nodes in the hidden layer were used to conduct

forecasting.7,18-21 Thus, in this study, to identify the best-

predicting NNNAR network, we adopted a strategy of

repeated attempts to seek the suitable number of the lagged

inputs and the hidden neurons in the rangesmentioned above.

Among all the possible methods, NARNN network that has
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the lowest mean absolute percentage error (MAPE) and root-

mean-square error (RMSE) values between the outputs and

targets and reveals uncorrelated sample ACFs and PACFs in

the residuals without leading to obvious overfitting, is the

best fitting.

Establishing SARIMA-NNNAR Hybrid

Model
As mentioned before, the SARIMA approach has favorable

qualities for mining linear information, while the NNNAR net-

work shows powerful potentials for extracting nonlinear

information.18 Thus, inspired by their individual merits, the

SARIMA-NNNAR hybrid model was thus built. A flow chart

is presented in Figure S2.As shown, in this combined approach,

the SARIMAmethodwas applied to the TB incidence series for

unearthing the linear clues. After that, the NNNAR approach

was established to investigate the residuals determined by the

SARIMAmethod. The best predictive results were obtained by

adding them together. As such, this data-driven hybrid approach

is able to capture both the linear and nonlinear components

which are included in the TB morbidity series.

Predictive Performance Measures
The modelling and forecasting performances were judged

by comparing the values of two types of measures including

the scale-dependent such as mean absolute error (MAE) and

root mean squared error (RMSE), and the percentage errors

such as mean absolute percentage error (MAPE) and mean

error rate (MER). Of them, the one with the lowest values

was viewed as the preferred approach.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N

i¼1ðYi � bYiÞ2
r

(4)

MAE ¼ 1
N
∑N

i¼1 Yi � bYi��� ��� (5)

MER ¼
1
N ∑

N
i¼1 Yi � bYi��� ���

Yi
(6)

MAPE ¼ 1

N
∑N

i¼1

Yi � bYi��� ���
Yi

� 100 (7)

Here Yi is the actual values, Ŷi denotes the simulating and

forecasting values from the SARIMA, NNNAR and their

hybrid techniques, �Yi signifies the average value of Yi.

Statistical Analysis
Multiple statistical packages including “fUnitRoots,” “frac-

diff,” “forecast,” “tseries,” “FinTS,” “zoo,” “nnet” and

“neuralnet” of R (version 3.4.3, R Development Core

Team, Vienna, Austria) were employed to establish the

SARIMA, NNNAR and SARIMA-NNNAR models. Also,

a sensitivity analysis was further performed to authenticate

the models’ uncertainty with the datasets between

January 2004 and July 2016 for the models’ development,

while the remaining data were used for the models’ valida-

tion. Additionally, the Lagrangian multiplier (LM) test was

used to examine autoregressive conditional heteroscedastic

(ARCH) effects in the observed data and errors.22,23 A two-

sided P value of less than 0.05 was regarded statistically

significant.

Results
Descriptive Analysis
Over the study span, the reported cases totaled 71,080, with

an annual of 5468 cases, and this gave rise to a morbidity rate

of 97.624 per 100,000 persons annually. During the period

from 2004 to 2016, Qinghai witnessed a dramatically

increased trend in the TB incidence rate with an annual

average increase of about 5% (Figures 1A and B). In 2016,

the incidence rate was 128.698 per 100,000 persons; there

was a rise of 77.380%, compared with 2004 when it was only

52.555 per 100,000 persons. Besides, the multiplicative sea-

sonal decomposition for the TB incidence series displayed

a notable seasonal pattern that was repeated every 12 months

with peak activities in January until July, particularly in

January and March, and a trough in August until

December, especially in December (Figures 1C and D).

Results from the SARIMA Model
Considering that there was a unit root (ADF=0.840, P=0.346)

and notable seasonal behavior in the TB morbidity series

(Figure S3). As a result, the target data were seasonally differ-

enced once to smooth the rapid seasonal fluctuation prior to

modelling, a significant result (ADF=−4.536, P<0.001) meant

stationary (Figure S4). Then, by comparing the ACF and

PACF graphs plotted with this differenced series, some see-

mingly plausible models were determined. However, the para-

meters were too simple to effectively capture the serial

characteristics of some datasets. Thus, six possible models

were further developed in our experiments. Among them,

further tests indicated the SARIMA(2,0,2)(1,1,0)12 model, as

it had the parameter values that minimized the information
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criteria with AIC=410.24, AICc=411.14 and SBC=430.42,

and maximized the function criterion with LL=−198.12
(Table 1). Next, further verifying for the coefficients and

residual series produced by this preferred model, it was deter-

mined that all the estimated coefficients for the

SARIMA(2,0,2)(1,1,0)12 model were significant and the resi-

dual series without correlated sample ACFs and PACFs

showed white noise (Tables 2 and 3 and Figure 2). Moreover,

none of the volatility behaviors were found in the residuals

using the LM tests (Table 4). These diagnostic statistics con-

firmed that the preferred SARIMA method was valid and

adequate for modelling the TB incidence series. Therefore,

this model was ultimately used to produce out-of-data fore-

casting (Table 5).

Results from the NNNAR Model
In order to identify the optimum parameters for the

NNNAR network, we trained the NNNAR network with

the lagged inputs and hidden nodes ranging from 2–7 to

2–20, respectively, by trial and error, and for each network

structure, we compared the in-data mimic and out-of-data

predictive performances between the outputs and targets.

Finally, we selected an optimal NNNAR network with

p=7, P=1, k=4 and m=12, as these were the parameters

that minimized the MAPE and RMSE values in the in-data

simulations (0.068 and 0.625, respectively) and achieved

Figure 1 Morbidity rate of TB and decomposed trend, seasonality and random pattern with the multiplicative seasonal decomposition technique during January 2004 to

December 2016 in Qinghai Province. (A) Time plot for the TB morbidity rate series; (B) Trend pattern for the TB morbidity rate series; (C) Seasonal pattern for the TB

morbidity rate series; (D) Error component for the TB morbidity rate series.

Table 1 Information Criteria Values of the Six Candidate

SARIMA Models

Models AIC AICc SBC LL

SARIMA(1,0,1)(0,1,1)12 417.84 418.16 429.37 −204.92

SARIMA(1,0,1)(1,1,0)12 418.07 418.39 429.60 −205.04

SARIMA(2,0,1)(1,1,0)12 419.96 420.43 434.37 −204.98

SARIMA(2,0,1)(0,1,1)12 419.77 420.24 434.18 −204.88

SARIMA(2,0,2)(1,1,0)12 410.24 411.14 430.42 −198.12

SARIMA(2,0,2)(0,1,1)12 421.66 422.33 438.96 −204.83

Abbreviations: SARIMA, seasonal autoregressive integrated moving average; SBC,

Schwarz Bayesian criteria; AIC, Akaike information criterion; AICc, corrected

Akaike information criterion; LL, log-likelihood.
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the best results for the out-of-data forecasts (0.112 and

1.558, respectively) compared with other candidate models

(Table 6). Although these measures over the training sam-

ples were less than half those of the testing samples, given

that this model performed 12-step ahead forecasts, thus

there was no substantial overprediction. Further diagnostic

statistics of the errors offered a test and verification that

this NNNAR(7,1,4)12 network fitted the TB incidence data

with sufficient suitability and validity as there were not

dependent sample ACFs and PACFs and no statistical

significance at the 5% level for the residual series in the

Ljung–Box and LM statistics except for the one at lag 1 in

the LM test (Tables 3 and 4 and Figure 3). Accordingly,

this NNNAR network was determined to be the best for

proceeding to forecasting as the next step (Table 5).

Results from the SARIMA-NNNAR

Hybrid Model
In this combined technique, the residual series determined

from the basic SARIMA approach was treated as a univariate

time series. Subsequently, following the basic NNNARmod-

elling procedure, a series of experiments were undertaken to

help find one that minimized the mimic and forecasting

criteria. After performing a search over a wide array of net-

works, an NNNAR(3,1,7)12 network was suggested because

when fused with the basic SARIMAmethod, it accomplished

the lowest values of MAPE of 5.610 and 7.649, respectively,

and RMSE of 0.564 and 0.979, respectively, in both the

mimic and predictive stages. This model also performed

similarly for both subsamples (Table 6); hence, there is likely

no overfitting. Also, the sample ACFs and PACFs for the

residual series remained very small and were all within their

two standard error bounds (Figure 4), and the Ljung–Box and

LM tests exhibited P values greater than 0.05 (Tables 3

and 4). Based on the aforementioned results for the errors,

we believe that the SARIMA-NNNAR hybrid approach

selected is the best-fitting and is appropriate for extracting

the dynamic information contained in the TB incidence ser-

ies. At this time, this hybrid approach can be applied to

forecast future TB epidemic patterns (Table 5).

Sensitivity Analysis and Performance

Evaluation
In our currentwork,we further performed a sensitivity analysis

with the data from January 2004 to July 2016 in order to test the

models’ uncertainty. In this analysis, themodelling steps for all

the models were the same as those mentioned above. All the

results of the analysis are given in Tables S1–S3 and Figures

S5–S7. Afterward, the results emerging from the two analyses

were compared and summarized in Table 6, showing that the

data-driven advanced SARIMA-NNNAR hybrid model gave

the lowest values of the measures including MAE, MAPE,

RMSE and MER among the three identified models, and

similar findings were also observed in the sensitivity analysis.

Meanwhile, as illustrated by Figure 5, the advanced hybrid

technique was able to better model the seasonal and cyclic

behaviors relative to other models, suggesting that the

SARIMA-NNNAR hybrid method remained more accurate

and robust than the single SARIMA and NNNAR approaches

in fitting the TB morbidity series. Besides, we noted that the

basic SARIMA method presented a better performance in the

12-step forecasting stage than the NNNAR approach, which

was in contradiction to in the 5-step forecasting stage.

Table 2 Resulting Parameter Estimates and Their Statistical Tests

of the Best-Fitting SARIMA(2,0,2)(1,1,0)12 Model

Variables Estimates Standard Error t P

AR1 1.955 0.023 85.746 <0.001

AR2 −0.980 0.022 −43.933 <0.001

MA1 −1.794 0.074 −24.149 <0.001

MA2 0.818 0.073 11.245 <0.001

SAR1 −0.610 0.078 −7.838 <0.001

Abbreviations: SARIMA, seasonal autoregressive integrated moving average; AR1,

autoregressive, lag1; AR2, autoregressive, lag2; MA1, moving average, lag1; MA2,

moving average, lag2; SAR, seasonal autoregressive, lag1.

Table 3 Ljung–Box Q Statistics for the Residual Series Yielded

by the Best-Performing Three Techniques at Various Lags

Lags SARIMA Model NNNAR Model SARIMA-

NNNAR Model

Box–

Ljung Q

P Box–

Ljung Q

P Box–

Ljung Q

P

1 0.720 0.396 0.001 0.977 0.002 0.964

3 1.849 0.604 1.089 0.780 0.461 0.927

6 10.661 0.099 8.700 0.191 2.953 0.815

9 14.955 0.134 11.531 0.241 5.985 0.817

12 15.705 0.205 13.686 0.321 6.085 0.912

15 18.932 0.217 14.451 0.492 10.126 0.812

18 20.282 0.378 20.275 0.318 11.674 0.864

21 21.178 0.448 23.395 0.323 12.012 0.939

24 27.687 0.362 25.152 0.343 16.316 0.876

27 29.122 0.355 28.571 0.382 17.909 0.906

30 31.127 0.409 31.071 0.412 19.809 0.921

33 32.158 0.509 32.831 0.476 19.838 0.966

36 32.372 0.642 34.639 0.533 20.826 0.980

Abbreviations: SARIMA, seasonal autoregressive integrated moving average;

NNNAR, neural nonlinear autoregression.
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Discussion
Currently, TB is still a major public problem in Qinghai

province due to its continued upsurge in recent years.4

Early prediction models have served as a useful tool for

forming effective intervention strategies and allocating

limited health resources. However, as far as we are

aware there is no report so far using advanced techniques

to model the epidemic trajectories of TB in Qinghai

province. Under such conditions, we initiated this

research with the aim of developing an advanced predic-

tion model by fusing a SARIMA with an NNNAR for

analyzing the TB incidence series. The validity and flex-

ibility of this approach were evaluated and tested by

a series of comparative experiments with investigations

that used only one method. Our results showed that the

best-performing SARIMA-NNNAR technique was more

accurate and robust than the best-fitting SARIMA and

NNNAR approaches separately, be it in the in-data

subsamples, or in the hold-out subsamples. Commonly,

a MAPE value of less than 10% is considered highly

accurate for a forecast.6 Exhilaratingly, such a desired

and satisfactory performance was attained by this pro-

posed advanced hybrid method, which provided strong

evidence for the efficacy of this approach. Whilst we also

built a dynamic Jordan neural network simulating to the

TB incidence data; which has recently been shown to

provide a deeper insight into the epidemic patterns of

contagious disease compared with the common Elman

network.9 Likewise, by considering the four measure

indices, it can be suggested that the SARIMA-NNNAR

mixture model also outperforms this dynamic network

(Tables S4–S6 and Figure S8). Considering its excellent

performance, this combined approach can act as a basis

for the decision-making process of measures for TB pre-

vention. Also, according to the results of the performance

measures, the basic SARIMA and NNNAR methods had

Figure 2 Test statistics for the residual series of TB incidence rate from the SARIMA(2,0,2)(1,1,0)12 model. (A) Standardized residual series; (B) Autocorrelogram (ACF) for

the residual series; (C) Partial autocorrelogram (PACF) for the residual series; (D) P values for Ljung–Box statistic. It was seen that none of correlation coefficients except

that at lag 31 in the PACF graph exceeded the estimated 95% confidence intervals. For this point at lag 31, it is reasonable as the higher lag is easily outside the limits by

chance. All these above intimated that the identified SARIMA technique seems adequate and applicable in describing the dynamic dependence of the data.
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a good fitness for tracking the TB epidemic, yet an

intriguing finding was that the NNNAR network showed

a better accuracy in the 5-step ahead forecasts than the

SARIMA model, which is contrary to the results of the

12-step ahead forecasts, which further provided evidence

for the suitability of the NNNAR network for applica-

tions in capturing the short-term dynamic dependence.

Additionally, we found that the constructed SARIMA-

NNNAR mixture model tended to react slowly for

changes in the real data. This may stem from the fact

that the TB incidence rate showed a more noticeable

upturn from 2015 to 2016 (Figure 5).

The SARIMA model has been a popular tool for ana-

lyzing and exploring time series with noticeable seasonal

and periodic behaviors such as economic data and infec-

tious incidence or mortality data.11,22 Despite its relatively

high forecasting capability, this model is unable to handle

nonlinear information reasonably well owing to its

assumption of linearity. To offset this drawback, the

NNNAR network has emerged as a promising alternative

thanks to its short-term memory function in addition to the

properties of common BP, GRNN and RBF, etc., which

allows it to handle any nonlinear dynamic system problem

without any constraints.20 Motivated by the individual and

Table 4 ARCH Effects for the Actual TB Incidence Rate and Residual Series Yielded by the Best-Performing Three Techniques at

Various Lags

Lags Actual Values SARIMA Model NNNAR Model SARIMA-NNNAR Model

LM-Test P LM-Test P LM-Test P LM-Test P

1 38.232 <0.001 2.005 0.157 11.555 0.001 0.322 0.571

3 45.620 <0.001 2.599 0.458 5.262 0.154 1.788 0.618

6 54.448 <0.001 5.378 0.496 2.886 0.823 3.620 0.728

9 59.299 <0.001 8.428 0.492 8.914 0.445 4.392 0.884

12 71.480 <0.001 11.208 0.511 6.331 0.899 5.711 0.930

15 79.015 <0.001 10.726 0.772 11.508 0.716 7.336 0.948

18 81.479 <0.001 16.244 0.576 12.757 0.806 13.840 0.740

21 81.264 <0.001 16.447 0.744 16.966 0.713 16.093 0.764

24 86.993 <0.001 17.775 0.835 21.490 0.610 23.368 0.498

27 91.258 <0.001 17.654 0.914 24.304 0.613 23.342 0.667

30 90.533 <0.001 19.140 0.937 31.482 0.392 23.025 0.814

33 87.516 <0.001 20.632 0.954 36.810 0.297 22.009 0.927

36 85.060 <0.001 22.848 0.957 43.485 0.183 21.408 0.974

Abbreviations: ARCH, autoregressive conditional heteroscedastic; SARIMA, seasonal autoregressive integrated moving average; NNNAR, neural nonlinear autoregression;

LM, Lagrangian multiplier.

Table 5 Forecasts Between January 2016 and December 2016 Achieved by Adopting the Best-Fitting Three Techniques

Months Actual Values SARIMA Model NNNAR Model SARIMA-NNNAR Model

Projections MAE Projections MAE Projections MAE

January 13.035 11.766 1.269 10.193 2.842 11.919 1.116

February 12.267 10.549 1.718 9.378 2.889 11.113 1.154

March 13.329 12.392 0.937 11.178 2.150 13.280 0.049

April 11.812 11.041 0.771 11.377 0.435 10.958 0.854

May 11.509 9.628 1.880 11.078 0.431 10.945 0.564

June 11.425 9.243 2.182 9.774 1.651 9.282 2.143

July 10.700 10.136 0.564 11.533 0.833 10.622 0.078

August 9.638 8.916 0.722 9.498 0.141 8.746 0.892

September 8.004 7.801 0.203 9.141 1.137 7.670 0.334

October 7.987 8.306 0.319 8.749 0.762 8.906 0.919

November 8.897 8.220 0.677 10.449 1.552 9.252 0.355

December 9.116 8.699 0.417 9.145 0.029 10.293 1.177

Abbreviations: SARIMA, seasonal autoregressive integrated moving average; NNNAR, neural nonlinear autoregression; MAE, mean absolute error.
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opposing superiorities of the SARIMA and NNNAR meth-

ods in addressing various problems; in this study, the

combined SARIMA-NNNAR model was thus customized

for use with linear and nonlinear information of TB inci-

dence data in order to improve the forecasting ability of

either of the approaches alone. As expected, this hybrid

model outperforms the SARIMA and NNNAR models

alone, which concurs well with prior work regarding fore-

casting using other hybrid models of the SARIMA-BP and

SARIMA-GRNN.11,14 In this regard, this hybrid technique

gained an insight into the TB incidence series in Qinghai,

and its importance as a decision-making supportive tool

for facilitating the end of the TB epidemic in the future

should be emphasized. Worth noting is that this hybrid

model is significantly better for short-term forecasting,

whereas long-term forecasting may be of even greater

value for decision-making with reference to the prevention

and control of TB epidemics. Importantly, with recent

rapid advances in ANNs and wavelet decomposition tech-

niques, some ANNs capable of capturing long-term

dynamic dependent information have been proposed and

have been used for forecasting time series. For example,

several studies have established models by incorporating

convolution neural networks (CNN) as well as ensemble

empirical mode composition (EEDM) and long short-term

memory neural network (LSTM) to undertake forecasting

for PM2.5 concentrations.24,25 Accordingly, what is now

needed are studies concentrating on the potential applica-

tions of the aforementioned novel combination of methods

for the TB incidence series prediction, and performance

comparisons between our hybrid model and others.

Besides, another issue worthy of attention is the overpre-

diction or underprediction when using the basic NNNAR

and SARIMA-NNNAR hybrid models. In the current

work, to attenuate or avoid this issue: firstly, we divided

our data into training and testing subsamples. Then, we

selected suitable ranges for the knots in the hidden layer

and the lagged inputs based on those reported by a body of

earlier literature;7,18-21 and next, every time we ran the

network, the performance measures on both subsamples

of MAPE and RMSE were computed and compared, as

such, until the minimum values were found on both sub-

samples simultaneously.

Understanding the seasonal characteristics of infectious

diseases acts as a vital role in deciding when and which

preventive and control measures to be implemented.26 In

this time analysis, we observed that there were noticeable

seasonal fluctuations in the TB morbidity series in

Table 6 Comparisons of the Mimic and Predictive Performance Measures Among the Best-Performing Three Models

Models Fitting Power Projected Power

MAE MAPE RMSE MER MAE MAPE RMSE MER

In-Sample Dataset During January 2004 to December 2015 12 step-ahead projections

SARIMA 0.746 9.525 1.008 0.095 0.972 8.685 1.153 0.091

NNNAR 0.463 6.767 0.625 0.058 1.238 11.176 1.558 0.116

SARIMA-NNNAR 0.424 5.610 0.564 0.053 0.803 7.649 0.979 0.075

Reduced Percentages (%)

C versus A 43.164 41.053 44.048 44.211 17.372 11.968 15.120 17.415

C versus B 5.228 12.632 6.052 5.263 44.736 40.621 50.304 44.797

In-Sample Dataset During January 2004 to July 2016 5 step-ahead projections

SARIMA 0.724 9.137 1.014 0.090 0.795 9.450 0.920 0.091

NNNAR 0.606 8.477 0.803 0.074 0.735 8.860 0.914 0.084

SARIMA-NNNAR 0.508 6.596 0.722 0.063 0.656 7.879 0.803 0.075

Reduced Percentages (%)

C versus A 29.881 27.790 28.839 29.978 17.526 16.614 12.685 17.453

C versus B 16.218 22.170 10.138 14.459 10.724 11.061 12.102 10.689

Notes: A is the SARIMA approach; B is the NNNAR approach; C is the SARIMA-NNNAR hybrid approach.

Abbreviations: SARIMA, seasonal autoregressive integrated moving average; NNNAR, neural nonlinear autoregression; MAE, mean absolute error; MAPE, mean absolute

percentage error; RMSE, root mean squared error; MER, mean error rate.
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Qinghai, which matches the conclusion found in prior

work that TB is a seasonal illness.27 Qinghai had peak

activities of TB mainly in late winter and early spring, and

a trough primarily presented itself during the whole of

autumn and early winter. This is in agreement with reports

at the national level and most of the northwest areas of

China, as well as other countries such as Japan and

Spain,27–30 but fails to be in line with Eastern Cape and

northern India.12,31 Furthermore, inconsistent with all pre-

vious work,12,27-31 the TB morbidity of Qinghai also

exhibited basically exclusive semi-annual seasonal char-

acteristics with longer peak activities from January until

July and trough activities from August until December. In

Qinghai, it seems that a number of factors are associated

with this seasonal peak pattern. One plausible explanation

may be the fact that Qinghai province, as a world-famous

tourist city, attracts tens of millions of domestic and for-

eign tourists every year, with tourists amounting to

42.0438 million in 2018.32 Of them, the numbers visiting

during the high-risk seasons of TB nearly accounted for

80% of the cases.32 High numbers may help the spread of

TB, which also matches the trend observed in the high-risk

seasons in the temporal sequence. Besides, the climatic

characteristics of Qinghai province with its strong winds,

sandstorms, drought, great diurnal range of temperatures

and low temperatures may result in an upsurge of TB as

most people undertake their activities under relatively poor

ventilation and overcrowded conditions for these

reasons.4,33 Furthermore, another cause may be ascribed

to the “spring festival effects”,6 because Qinghai witnesses

the largest-scale population movement within the two

months before and after the spring festival. Thus, this

“spring festival effects” may be mainly responsible for

the high-risk seasons, on account of the fact that TB is

required to experience a latent period with 4 to 8 weeks

from infection to medical diagnosis,34 which fits well with

Figure 3 Diagnostic tests for the residual series of TB morbidity rate from the NNNAR(7,1,4)12 technique. (A) Standardized residual series; (B) Autocorrelation function

(ACF) plot for the residual series; (C) Partial autocorrelation function (PACF) plot for the residual series; (D) Q-statistic P-values. As seen, the sample ACF and PACF of

residuals revealed no significant serial correlations suggesting that the chosen NNNAR method is suitable for capturing the serial dependence of the data.
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the maximum peak in March. Additionally, other possible

factors correlated with the peak activities in TB morbidity

are subject to further investigation.

In contradiction to the fact that the TB morbidity rate is

currently dropping by 2% per year globally and by 3% in

China,6 we observed in this work that the TB morbidity has

exhibited an upsurge with a yearly average increment of

approximately 5% since 2004, despite in the context of

universal coverage of directly observed treatment, a short-

course (DOTS) strategy.35 While progress has been made

toward achieving the goal of a world free of TB by 2035,

the annual decline in TB morbidity needs to be accelerated

to an average of about 5% by 2020, 10% by 2025 and 17%

between 2025 and 2035 worldwide.3 Obviously faced with

such a daunting challenge, the TB incidence rate in Qinghai

province has been a major obstacle to the accomplishment

of the goal of ending the TB epidemic during different

periods. In Qinghai province, a poor primary health-care

infrastructure and low socio-economic conditions,33 ranked

it second last of 31 provinces and municipalities in 2018,36

which may act as a pivotal trigger for the ongoing upsurge

of TB incidence; another main contributor may be asso-

ciated with the local environment and climatic conditions.33

Therefore, to ensure that China is on the track to reach the

targets of a world free of TB, some comprehensive and

targeted control and intervention strategies must be put into

practice, and there is an imminent need that concentrates on

exploration for the feasibility of additional preventive

measures.

In this time series, we focused on developing an advanced

technique driven by the TB incidence data in Qinghai pro-

vince and the SARIMA-NNNAR hybrid model that we have

identified indeed assists in our understanding of future epi-

demic patterns of TB. However, several flaws still need to be

acknowledged. Firstly, there is currently scant guidance in

choosing suitable-lagged inputs and knots in the hidden

Figure 4 Tests of goodness of fit for the error series of TB morbidity rate from the SARIMA-NNNAR(3,1,7)12combined method. (A) Standardized residual series; (B)
Autocorrelation function (ACF) plot for the residual series; (C) Partial autocorrelation function (PACF) plot for the residual series; (D) Q-statistic P-values. As presented,

there were no sample ACF and PACF falling approximately out of the 95% uncertainty bounds other than that at lag 10 in the ACF and PACF graphs. These manifested its

adequacy and suitability of this data-driven hybrid model for the data.
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Figure 5 Resulting comparisons of the in-sample mimics and out-of-sample projections using the preferred three models. A projection for the hold-out 12 months’ data was

as the shaded area. Overall, it was seen that the simulations and forecasts (black solid line) with the advanced data-driven SARIMA-NNNAR combined model provided

a better approximation to the actual morbidity rate (red solid line) than both the SARIMA and NNNAR models. (A) SARIMA model; (B) NNNAR model; (C) SARIMA-

NNNAR model.
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layer. In applications, repeated trials may be the best avenue.

Secondly, adding influencing factors correlated with TB

transmission into this model may help improve the forecast-

ing performance, but this was not considered in this study.

Thirdly, the SARIMA model does well in short-term predic-

tion, which means that a long-term forecast should be under-

taken with attention on using the hybrid SARIMA-based

method. Lastly, the generalizability of this approach requires

further authentication through other work.

Conclusion
In conclusion, despite its shortcomings, the analytic results

do demonstrate the contributions of this SARIMA-NNNAR

hybrid technique over both the basic SARIMA and NNNAR

methods in the TB incidence forecasting in Qinghai pro-

vince, which will be a helpful tool for the decision-making

process of TB prevention. Furthermore, comprehensive and

effective strategies must be taken to address the upsurge

issue in the TB incidence of Qinghai province.
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