
 International Journal of 

Molecular Sciences

Review

Bacterial Phytochromes, Cyanobacteriochromes and
Allophycocyanins as a Source of Near-Infrared
Fluorescent Probes

Olena S. Oliinyk 1, Konstantin G. Chernov 1 and Vladislav V. Verkhusha 1,2,* ID

1 Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki,
00290 Helsinki, Finland; olena.oliinyk@helsinki.fi (O.S.O.); konstantin.chernov@helsinki.fi (K.G.C.)

2 Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center,
Albert Einstein College of Medicine, Bronx, NY 10461, USA

* Correspondence: vladislav.verkhusha@einstein.yu.edu; Tel.: +1-718-430-8591; Fax: +1-718-430-8996

Received: 17 July 2017; Accepted: 28 July 2017; Published: 3 August 2017

Abstract: Bacterial photoreceptors absorb light energy and transform it into intracellular signals that
regulate metabolism. Bacterial phytochrome photoreceptors (BphPs), some cyanobacteriochromes
(CBCRs) and allophycocyanins (APCs) possess the near-infrared (NIR) absorbance spectra that make
them promising molecular templates to design NIR fluorescent proteins (FPs) and biosensors for
studies in mammalian cells and whole animals. Here, we review structures, photochemical properties
and molecular functions of several families of bacterial photoreceptors. We next analyze molecular
evolution approaches to develop NIR FPs and biosensors. We then discuss phenotypes of current
BphP-based NIR FPs and compare them with FPs derived from CBCRs and APCs. Lastly, we
overview imaging applications of NIR FPs in live cells and in vivo. Our review provides guidelines
for selection of existing NIR FPs, as well as engineering approaches to develop NIR FPs from the
novel natural templates such as CBCRs.

Keywords: bacterial photoreceptor; near-infrared fluorescent protein; phytochrome;
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1. Introduction

Discovery of genetically engineered fluorescent proteins significantly accelerated development of
modern biology. The choice of a fluorescent protein (FP) for particular imaging application depends
on its properties, including molecular weight, oligomeric state, availability of chromophore and tissue
penetration of exciting and emitted light. Although green fluorescent protein (GFP) and GFP-like family
are widely applied to diverse areas of imaging, there are several applications where their performance
is limited [1]. Particularly, absorbance and fluorescence of GFP-like FPs are restricted to visible part
of a spectrum that substantially affects their efficiency in in vivo applications. To overcome these
limitations, various natural photoreceptors were employed as molecular templates for FP engineering.
The photoreceptor-derived FPs have been successfully applied to report dynamics and interaction
signaling molecules in time and space [2]. Furthermore, photoreceptors have been used to design
biosensors and optogenetic tools to monitor and control various intracellular processes including gene
expression, protein phosphorylation and degradation, a flux of calcium and other ions [3,4].

Noninvasive imaging techniques require minimal interference with normal cellular metabolism.
To achieve this, engineered FPs should efficiently fold and incorporate a chromophore available in a
cell. Flavin chromophores are readily available in different tissues and organisms due to their role as
cofactors in redox reactions. Cobalamin (vitamin B12) is involved in the synthesis of DNA, and fatty and
amino acids, and is available in a large amount in tissues. Linear tetrapyrrole biliverdin (BV), which
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is a product of heme degradation, is also present in mammalian tissues. Conversely, the availability
of linear tetrapyrrole phycocyanobilin (PCB) is restricted to plants and cyanobacteria. Therefore, FPs
engineered from photoreceptors should incorporate chromophores presented in significant quantities
in target tissue [3,4].

Light penetration is the most critical factor that must be considered for deep tissue imaging. It is
of little concern for tissue culture or single-cell organism studies but it can be a limiting factor for
experiments in whole animals. Particularly, imaging deeply in brain poses a major technical challenge
and requires reagents that are visible at a centimeter depth.

Visible light is significantly scattered by lipids and absorbed by hemoglobin and melanin
presented in mammalian tissues, whereas near-infrared (NIR) light within the spectral region of
650–900 nm, known as the “NIR tissue transparency window”, penetrates significantly deeper.
Although some GFP-like FPs exhibit substantially red-shifted emission, their excitation light is still
strongly absorbed by tissues. One way to overcome that is to use two-photon excitation. However,
because the large part of the emission spectra still lays outside the NIR window their imaging depth is
rather limited. In this regard, FPs engineered from bacterial phytochrome photoreceptors (BphPs) are
superior because their absorption and emission lay both in NIR [4–6].

In addition to spectral characteristics, other crucial parameters of FPs include molecular brightness
(a product of extinction coefficient and quantum yield), photostability and cellular (also referred to
as effective) brightness. The latter depends on the efficiency of protein folding, intracellular stability
and efficiency of incorporation of the endogenous chromophore. Importantly, other intracellular
compounds can compete with chromophore for binding to FP apoform. For example, heme-derived
compounds, such as protoporphyrin IX (PPIX), compete with BV for incorporation to BphP-derived
FPs and significantly decrease their brightness [7]. Increased brightness is often required for the
detection of sparse intracellular targets, whereas, for the long-term imaging of fusions, photostability
may be of crucial importance. Therefore, particular experimental design determines the choice of
an FP.

NIR FPs are superior for multicolor imaging because they complement existing palette of GFP-like
FPs. Moreover, a combination of blue light-sensing optogenetic tools and NIR FPs enables spectral
multiplexing [8]. The different spectral properties of NIR FPs allow researchers to separate several
populations of cells by flow cytometry using visible red and NIR lasers [9]. Multiple cell populations
labeled with multi-color NIR FPs can be separated in tissue cultures and in living mice using a
linear spectral unmixing [10]. Excellent spectral compatibility of GFP-like FPs and NIR FPs allowed
visualization and quantification of tumors both in vivo and ex vivo, as well as the evaluation of
anti-cancer treatments [11]. Therefore, multicolor imaging accelerated the establishment of the novel
in vivo models for various types of diseases. Furthermore, a combination of NIR bioluminescence and
NIR fluorescence enables multi-modal imaging for detecting of cancer cells at different scales, from
whole organs in vivo to individual metastatic cells ex vivo [12].

Here we first describe phenotypes, photoconversion mechanisms and spectral properties of
photoreceptors used as molecular templates for NIR FP engineering. We then focus on experimental
approaches employed for the development of NIR FPs. We next provide an overview for multiple
applications of NIR FPs in basic biology and biomedicine. Lastly, we discuss perspectives of NIR FP
development and their future application in imaging.

2. Photoreceptors as Molecular Templates for Engineering of Fluorescent Proteins

2.1. Structure and Photoconversion of Bacterial Phytochromes

Phytochromes were initially discovered in plants where they act as proximity sensors to modify
plant growth and development, constituting the “shade-avoidance syndrome”. Plant phytochromes
are able to photoconvert between far-red-light absorbing inactive state, termed Pr (λmax = 660 nm),
and near-infrared-light absorbing active state, termed Pfr (λmax = 730 nm) [13]. In ground Pr state,
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absorption maximum of plant phytochromes is close to that of chlorophylls. Upon vegetation, the
intensity of far-red light significantly decreases due to its absorption by photosynthetic components.
This spectral change causes accumulation of inactive Pr state of plant phytochromes. In the response,
shade-avoiding plants have enhanced elongation growth to exhibit their leaves to light [14,15].

In addition to plants, phytochromes are found in many kingdoms of life, including cyanobacteria,
algae, fungi and bacteria, but not in higher animals or archaea. In bacteria, phytochrome family
members play important roles in the intracellular signaling, regulating expression of respiration and
photosynthetic complexes [16]. All phytochromes were structurally classified into three subfamilies
according to the number of domains in their photosensory core module (PCM). Members of
the most common “canonical” phytochrome subfamily contain three domains in their PCM,
such as PAS (Per-ARNT-Sim), GAF (cGMP phosphodiesterase-adenylate cyclase-FhlA) and PHY
(phytochrome-specific domain). Although the amino acid sequences of these domains show low
sequence similarity, their structures share a common topology. Another two subfamilies include
cyanobacterial phytochromes (Cph), which lack an N-terminal PAS domain, and cyanobacteriochromes
(CBCRs), which contain a single GAF domain [17]. The PAS, GAF and PHY domains interact with each
other and mediate protein-protein interactions that result in the formation of homo- and heterodimers
with parallel, antiparallel and butterfly-like orientation of subunits [18–21].

The PAS domain contains about 110 amino acid residues and adopts three-dimensional structure
consisted of antiparallel β-sheet flanked by α-helices. This PAS fold is found in proteins from a
wide variety of prokaryotic and eukaryotic organisms [22]. These include voltage and ion channels,
protein kinases, phosphodiesterases and eukaryotic transcriptional factors regulating development,
cell division and circadian rhythms. In these proteins, PAS domains act as sensor moieties connected to
various output modules by α-helical linkers serving as wires for signal transduction. The PAS domain
binds to various cofactors, either covalently or non-covalently, allowing receptors to respond to a
diversity of chemical signals or physical stimuli such as light [23]. For example, the LOV (light, oxygen,
voltage) domains, which is a subclass of the PAS domains, bind a flavin chromophores and sense blue
light [24], whereas the PAS domains in BphPs covalently bind BV and play a role in perception of
far-red and NIR light. The most prominent structural property of canonical phytochromes is a knot
structure in which the N-terminus of the PAS domain is threaded through the elongated loop of the
GAF domain.

The GAF domain of phytochromes plays the major role in light perception because it has a cavity
between the β-sheet and three α-helices that binds a chromophore. PAS and GAF domains share the
common fold and are closely integrated with each other by the knot structure. These domains are
then connected to PHY domain by long continuous α-helices that form a helical bundle. A notable
structural feature of PHY domain is evolutionally conserved hairpin structure, termed “PHY-tongue”,
which is in a direct contact with the chromophore. PHY-tongue shields the chromophore from the
solvent and undergoes structural rearrangement upon Pr↔Pfr photoconversion, which is further
propagated through the phytochrome molecule [21,25].

While BphPs incorporate BV plant phytochromes whereas Cphs (cyanobacterial phytochromes)
can incorporate phytochromobilin (PΦB) and phycocyanobilin (PCB). Upon binding, a linear
tetrapyrrole forms a thioether covalent bond with a Cys residue located in either the PAS (in BphPs) or
the GAF domain (plant phytochromes) (Figure 1A–D). PCB and PΦB are found only in cyanobacteria
and plants, in contrast BV is present in mammalian tissues due to its constant production from heme
by heme oxygenase (HO). In mammals, BV level varies between tissues and substantially increases
during oxidative stress [26].

Linear tetrapyrroles consist of four pyrrole rings that form a conjugated π electron system.
Upon light absorption, the chromophores undergo Z/E isomerization around C15=C16 planar methine
bond located between pyrrole rings C and D. The flip of the ring D around the methine bond provokes
slight rotation of the entire chromophore relative to the protein cavity. Consequently, pyrrole rings B, C
and D interact with different sets of amino acid residues in Pr and Pfr states [24]. These conformational
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changes are further propagated throughout the PCM and cause the rotation and activation of the
downstream output domains [21].Int. J. Mol. Sci. 2017, 18, 1691  4 of 26 
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chromophores are: (A) biliverdin (BV); (B) phycocyanobilin (PCB); (C) phycoviolobilin (PVB); and (D) 
phycoerythrobilin (PEB); (E) Crystal structure of BphP XccBphP from Xanthomonas campestris. PAS 
domain is shown in green, GAF in cyan, PHY in magenta and HisK in brown (PDB ID: 5AKP); (F) 
Crystal structure of CBCR AnPixJg2 from Anabaena sp. PCC 7120 in red-light-absorbing state (PDB 
ID: 3W2Z); (G) Crystal structure of CBCR TePixJg2 from Thermosynechococcus elongatus in green-light-
absorbing state (PDB ID: 3VV4); (H) Crystal structure of APC B from Synechocystis PCC 6803 (PDB ID: 
4PO5). BV and PCB chromophores in panels E–H are shown as spheres. 

Most likely, an incorporation of the chromophore into phytochrome proceeds through two 
successive steps: the non-covalent binding to GAF domain and the formation of thioether bond 
between a side chain of ring A and a conserved Cys residue located in either PAS or GAF domain. In 
bacterial phytochromes (Figure 1E), which are the most red-shifted among phytochromes, BV binds 
to the Cys residue via a C32 carbon atom, whereas, in the plant and cyanobacterial phytochromes, 
PΦB and PCB bind to a C31 carbon atom of the side chain of ring A [27]. Therefore, the absorption 
spectra of these phytochromes in the Pr state (λmax = 650 nm) are blue-shifted compared to that of 
BphPs (λmax = 700 nm). Being the most red-shifted photoreceptors, BphPs possess maximum 

Figure 1. Chromophores and structures of selected bacterial photoreceptors. Linear tetrapyrrole
chromophores are: (A) biliverdin (BV); (B) phycocyanobilin (PCB); (C) phycoviolobilin (PVB); and
(D) phycoerythrobilin (PEB); (E) Crystal structure of BphP XccBphP from Xanthomonas campestris.
PAS domain is shown in green, GAF in cyan, PHY in magenta and HisK in brown (PDB ID: 5AKP);
(F) Crystal structure of CBCR AnPixJg2 from Anabaena sp. PCC 7120 in red-light-absorbing state
(PDB ID: 3W2Z); (G) Crystal structure of CBCR TePixJg2 from Thermosynechococcus elongatus in
green-light-absorbing state (PDB ID: 3VV4); (H) Crystal structure of APC B from Synechocystis PCC
6803 (PDB ID: 4PO5). BV and PCB chromophores in panels E–H are shown as spheres.

Most likely, an incorporation of the chromophore into phytochrome proceeds through two
successive steps: the non-covalent binding to GAF domain and the formation of thioether bond
between a side chain of ring A and a conserved Cys residue located in either PAS or GAF domain.
In bacterial phytochromes (Figure 1E), which are the most red-shifted among phytochromes, BV binds
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to the Cys residue via a C32 carbon atom, whereas, in the plant and cyanobacterial phytochromes, PΦB
and PCB bind to a C31 carbon atom of the side chain of ring A [27]. Therefore, the absorption spectra
of these phytochromes in the Pr state (λmax = 650 nm) are blue-shifted compared to that of BphPs
(λmax = 700 nm). Being the most red-shifted photoreceptors, BphPs possess maximum absorption at
750 nm in Pfr state. Most BphPs adopt biologically inactive Pr state in darkness, whereas a subset of
so-called bathy BphPs exists in the ground inactive Pfr state. Interestingly, bathy BphPs initially bind
to BV in Pr form, which then converts into Pfr form [28].

BphPs weakly fluoresce upon light absorption in their Pr form [29,30], whereas Pfr form is
non-fluorescent due to its very short excited-state lifetime, resulting in negligible quantum yield [31].
Deletions of N-terminal extension of PAS domain and PHY domain can increase BphP1 fluorescence
by impairing Pr→Pfr photoconversion. All BphPs photoconvert between far-red and NIR parts of
spectra, whereas CBCRs undergo very diverse photocycles, covering all visible spectra.

The modular structure and spectral properties of BphPs allowed their use as templates to engineer
NIR FPs. Truncation and mutagenesis of DrBphP resulted in the first NIR FP, termed IFP1.4 [32].
This protein was applied to whole-body imaging, however, required the supply of exogenous BV.
The latter can affect redox homeostasis and perturb intracellular environment [33]. The second NIR
FP, termed iRFP713, was generated from RpBphP2 and was engineered to very efficiently incorporate
endogenous BV. That is why iRFP713 proved to be superior for numerous in vivo applications [34].
Next, four spectrally distinct proteins that cover a large part of NIR spectrum, termed iRFP670, iRFP687,
iRFP702, iRFP720, were developed by mutagenesis of RpBphP6 and iRFP713. Further improvement of
BphP-derived NIR FPs was achieved by engineering a series of the monomeric miRFPs from RpBphP1
template [35] and mIFP from Bradyrhizobium sp. BrBphP [36].

2.2. Structure and Properties of Cyanobacteriochromes

CBCRs are a group of phytochrome photoreceptors found in cyanobacteria only [37]. Unlike other
phytochromes, CBCRs require only a GAF domain for attachment of a tetrapyrrole chromophore [38].
It is considered that CBCRs initially bind PCB as a chromophore, but some dual-Cys CBCRs can
then isomerize PCB into phycoviolobilin chromophore [18,39,40]. In heterologous expression systems,
some CBCRs can also autocatalytically incorporate phytochromobilin and phycoerythrobilin [40–43].
Furthermore, several CBCRs can covalently incorporate as chromophore not only PCB but also
BV [42,44–46].

Typically, CBCRs are mutlidomain photoreceptors, however, for simplicity, it was proposed
referring to CBCR as an isolated photosensory domain [47]. CBCR domain adopts the typical GAF
domain fold, structurally related to knotted PAS-GAF-PHY and unknotted GAF-PHY phytochromes.
The tetrapyrrole-binding pocket of CBCR GAF domain is formed by anti-parallel β-sheets, β1–β6,
together with α-helices, α3, α3′ and α4. The N-terminal helices α1, α2 and C-terminal helix α5 extend
to other domains [48,49] (Figure 1F,G and Figure 2A). Commonly, α4 helix contains a “canonical” or
“first” Cys residue that is connected to the C31 atom of ring A via a thioether bond. Dual-Cys CBCRs,
in addition to this canonical Cys, have a second conserved Cys residue that during photoconversion
can reversibly bind to the chromophore [40,48–50]. Comparing BphPs, in the CBCRs the pyrrole ring
A is more exposed to solvent and the unstructured loop that forms a knot is absent. Interestingly,
on available CBCR crystal structures do not contain pyrrole water, which in BphPs participates in a
hydrogen-bonding network [48,51].

In phytochromes and CBCRs, photoexcitation triggers a Z/E isomerization of the C15=C16
double-bond between pyrrole rings C and D. However, unlike phytochromes, CBCRs exhibit
significant spectral diversity with a wide variety of photocycles, such as UV/blue [40],
violet/green [52], violet/yellow [53], green/teal [54], teal/yellow [55], red/blue [56], green/red [57]
and far-red/red [58]. To generate this spectral diversity, CBCRs use additional spectral tuning
mechanisms including photochromism [57], PCB/phycoviolobilin (PVB) isomerization [59,60] and
trapped-twist isomerization [61]. To date, a number of CBCRs subfamilies that utilize specific spectral
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tuning mechanisms and can be distinguished from each other by characteristic amino acid motifs and
photocycle types have been identified.Int. J. Mol. Sci. 2017, 18, 1691  6 of 26 
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Figure 2. Structural properties of cyanobacteriochromes (CBCRs): (A) topology diagram of CBCR GAF
domain; and (B) sequence alignment of chromophore-binding pockets in CBCRs. Representative
CBCRs of the red/green subfamily (red), NpR3784 subfamily (black), DXCF subfamily (blue),
green/red subfamily (green), and far-red/orange subfamily (purple) are included. Key CBCR residues
are highlighted: Asp-motif is in green; β1 Phe, β2 Phe, helix Phe and “gate” Trp are in yellow;
chromophore-binding Cys is in red; and conserved residue following chromophore-binding Cys is
in blue.

Members of the green/red subfamily, RcaE and CcaS, are implicated in the regulation of
complementary chromatic acclimation. These CBCRs in response to green and red light optimize
expression of cyanobacterial light-harvesting phycobiliproteins [62,63]. Green/red CBCRs employ
a photochromic photocycle, which combines tetrapyrrole chromophore photoisomerization with a
subsequent shift in the chromophore’s pKa value. In the green-light-absorbing 15Z dark state the
chromophore is deprotonated and in the 15E red-light-absorbing state it is protonated. Three conserved
amino acid residues, called photochromic triad, facilitate the chromophore protonation state [64–66].
CcaS and its cognate response regulator CcaR were used to develop a light-regulated cell-recovery
system [67] and several transcriptional regulatory optogenetic tools [68,69].

Dual-Cys CBCRs of DXCF subfamily, in addition to canonical Cys, contain a second Cys residue as
a part of the DXCF amino acid motif. The DXCF motif includes an Asp residue found in other CBCRs,
as a part of the conserved Asp-motif [70]. During photoconversion, the second Cys forms an additional
thioether linkage with the C10 chromophore atom that blue-shifts the absorption [49,50,54]. Moreover,
GAF domains of DXCF CBCRs usually are able to convert the PCB chromophore into PVB, which
absorbs at shorter wavelengths [59]. TePixJ and Tlr0924, the typical members of this group, exhibit
blue/green photocycle [48–50,71], whereas some other members of this subfamily have photoproducts
absorbing teal, green or orange light [41,47,54].

Another subfamily of the dual-Cys group, termed insert-Cys CBCRs, contain second Cys
residue as a part of CXXR/K amino acid motif. Typically, members of this CBCR subfamily exhibit
violet/orange and UV/blue photocycles and do not isomerize PCB to PVB. Insert-Cys CBCRs are not
closely related to DXCF CBCRs, and most likely this subfamily arose independently [40]. Insert-Cys
CBCRs have an Asp-motif related to the Asp-motif of red/green CBCRs, and their second Cys is
located in the insertion loop [70]. The members of this subfamily utilize dual-Cys photocycle. In the
15Z dark state, the second Cys forms a thioether linkage with the C10 atom of the chromophore. During
photoconversion, this second covalent bond undergoes reversible breakage, resulting in 15E species
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with absorbance at longer wavelengths [40,70,72,73]. However, some members of this subfamily, such
as NpF2164g2 and NpR1597g2, retain the second thioether linkage in both the 15Z dark and the 15E
photoproduct state and exhibit UV/blue photocycle [40]. The DXCF CBCR, UirS, and its cognate
response regulator UirR were used to develop a transcriptional regulatory tool activated by UV-violet
light [74].

Members of DXCIP CBCRs group do not have the canonical first Cys residue, which usually
forms a thioether linkage to C31 atom of the PCB. For chromophore attachment, they utilize the second
Cys residue only. This Cys is a part of the conserved DXCIP amino acid motif, which corresponds to
DXCF motif of CBCRs from DXCF subfamily. These CBCRs exhibit 15Z green-light-absorbing dark
state and slightly blue-shifted photoproduct [42].

A new type of dual-Cys CBCR, AM1_1186g2, which exhibits reversible photoconversion between a
red-light-absorbing dark state and a blue-light-absorbing photoproduct, was found in cyanobacterium
Acaryochloris marina (A. marina) In addition to canonical Cys, AM1_1186g2 contains a unique
second Cys residue, which reversibly binds C10 chromophore atom in the blue-light-absorbing state.
The wavelength separation between AM1_1186g2 photostates is the largest found to date [56].

Canonical red/green CBCRs have a red-light-absorbing 15Z dark state and green-light-absorbing
photoproduct [75,76]. Members of this subfamily contain DX(Y/H)LQ amino acid motif and conserved
Phe residues in β2-sheet and α4 helix [61]. The mechanism of red/green photocycle is not fully
understood. According to a twist-trapped model, conserved Phe residue in β2 plays a crucial
role in the formation of the blue-shifted photoproduct. After primary photoisomerization, steric
interactions with Phe residue can constrain chromophore movement, trapping chromophore ring D
in a twisted orientation. This model also explains a mechanism of photoconversion in teal-DXCF
CBCR [61]. Another model, known as hydration model, proposes that photoisomerization leads
to the rupture of the interactions between the chromophore and conserved Trp residue. The Trp
acts as a gate allowing the influx of water molecules into the chromophore pocket. The resulting
increased solvent accessibility, which may reduce the π-electron delocalization, leads to a blue-shift of
the photoproduct [77]. However, it was shown that the chromophore protonation does not affect the
properties of green-light-absorbing photoproduct of AnPixJg2 [78]. By 13C MAS NMR spectroscopy, it
was also demonstrated that, during photoconversion, the electron density at chromophore rings C
and D is increased. Consequently, it destabilizes the LUMO of AnPixJg2 in the Pg state, resulting in
the blue-shifting of photoproduct [79]. Study of several red/green CBCRs from Nostoc punctiforme
cyanobacteria revealed significant diversity in their excited-state lifetimes, photochemical quantum
yields and primary photoproduct stabilities [80].

The CBCRs of NpR3784 subfamily exhibits red-light-absorbing 15Z dark state and photoproducts
with variable absorption. Members of this subfamily contain the DXXF amino acid motif that
corresponds to the DX(Y/H)LQ motif in canonical red/green CBCRs. To explain photocycle of
the NpR3784 group, a twist-trapped model was proposed. However, this subfamily utilizes the unique
set of Phe residues, different from the Phe residues of canonical red/green CBCRs [81].

Recently, new far-red/orange and far-red/red CBCR lineages were discovered [58]. Members of
these subfamilies exhibit unique for CBCRs photocycles with 15Z far-red-light-absorbing dark state
and 15E orange or red-light-absorbing photoproducts. Both subfamilies utilize PCB as a chromophore
but their absorption peak in the dark state is at 725–750 nm. Some of the members of this subfamily
exhibit weak far-red and NIR fluorescence [58].

Overall, CBCRs are attractive molecular templates for engineering NIR FPs (Table 1).
Their photosensory module consists of only a single GAF domain. Individual GAF domains
exhibit fluorescence when are heterologously expressed in Escherichia coli [46,58,82–84]. Furthermore,
CBCRs AM1_C0023g2 and AM1_1557g2 were expressed in mammalian HeLa cells and exhibited
NIR fluorescence upon cell treatment with PCB [46]. Contrary, BphP-based FPs consists of
PAS-GAF [10,32,34–36,85] or even PAS-GAF-PHY domains [86]. CBCRs are likely monomeric; at
least three CBCRs studied by NMR spectroscopy were monomeric in solution [50,70,87]. On the other
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hand, CBCRs utilize PCB as a chromophore, which is absent in animal cells. However, recently, three
CBCRs from A.marina that covalently attach both PCB and BV were reported [44–46]. Two CBCRs with
fluorescence at 730 and 740 nm were also described [44,58]. It is likely that these NIR CBCRs could
be engineered into NIR FPs that will be more red-shifted than iRFP720, which is currently the most
red-shifted NIR FP [10].

Table 1. Spectral properties of molecular templates from bacterial photoreceptors.

Bacterial
Photoreceptor Host Size (Amino

Acid Residues) Chromophore Absorbance
(nm) Em (nm) Quantum

Yield, % Reference

Anacy 2551g3 Anabaena cylindrica 195 PCB 716, 730 740 1.2 [58]
Cyan7822_4053g2 Cyanothece sp. 192 PCB 714, 732 736 <1.0 [58]

AM1_1557g2 Acaryochloris marina 165 PCB 649 676 1.7 [46]
AM1_1557g2 Acaryochloris marina 165 BV 700 730 0.3 [46]

AM1_C0023g2 Acaryochloris marina 151 PCB 650 879 3.0 [46]
AM1_C0023g2 Acaryochloris marina 151 BV 699 718 0.2 [46]

slr1393g3 Synechocystis sp. 162 PCB 650, 539 672, 616 6.0 [83]
Npf2164g5 Nostoc punctiforme 170 PCB 662, 640 n.a. 10.0 [75]

ApcE (36–240/∆77–153) Nostoc sp. 130 PCB 650 663 6.0 [88]
ApcD Nostoc sp. 160 PCB 650 663 7.4 [89]

2.3. Allophycocyanins as Source of FPs

Allophycocyanins (APCs) are components of phycobilisomes, large light harvesting antenna
complexes found in cyanobacteria and red algae [90]. Allophycocyanin α- and β-subunits (ApcA and
ApcB), form heterodimers, that further assemble to disk-shaped (αβ)3 trimers. ApcA/ApcB trimers
located in phycobilisome central cavity. More complex structures in phycobilisome core also contain
ApcD, ApcF and linker protein ApcE (termed LCM). Due to their intrinsically fluorescent properties,
allophycocyanin trimers widely used as labels in immunofluorescent techniques [91–93]. APCs utilize
a PCB chromophore and form a thioether bond between the conserved Cys residue and C31 atom of
pyrrole ring A. ApcE attaches PCB autocatalytically through a thioether bond at the Cys196. In contrast,
ApcA, -B, -D, and -F require so called bilin lyases for correct PCB attachment and form a thioether bond
with conserved Cys81 residues [89,94]. However, the latter APCs can also bind chromophore without
lyases with low efficiency [95,96]. The structures of all APCs are similar: an APC-like domain contains
seven α-helices adopting globin-like fold, with N-terminal extension, which is mainly involved in
oligomerization (Figure 1H) [89,97–100].

With co-expression of enzymes for PCB synthesis and appropriate bilin lyases, APCs are produced
in E.coli as red FPs [94]. Remarkably, spectral properties of APCs could vary depending on their
origin. For example, recombinant ApcD from Synechocystis sp. exhibits fluorescence with an emission
peak at 642 nm, but ApcD from Nostoc sp. has fluorescence peak at 663 nm [89]. ApcE is a large
membrane-associated protein with N-terminal APC-like domain. Its APC-like domain can be expressed
in E.coli as FP with fluorescence maximum at 672 nm and quantum yield of 15% [83]. By truncating of
the hydrophobic loop and N-terminal residues, there was engineered ApcE-based monomeric soluble
FP, with emission at 663 nm and quantum yield of 6% [88]. ApcA from Trichodesmium erythraeum
was engineered into far-red FP, smURFP. By directed mutagenesis, there were found amino acid
substitutions that made TeApcA capable of binding BV without lyases. Although smURFP fluoresces in
mammalian cells treated with an excess of exogenous BV, it is still quite dim compared to BphP-derived
NIR FPs, such as miRFPs [7,101].

Recently, additional red-shifted APCs were found in NIR photoacclimated cyanobacteria.
For example, ApcE2 from the Synechococcus sp., instead of the conserved Cys, has at the
chromophore-binding site a Val residue. It results in non-covalent binding of the PCB chromophore
and in the extremely red-shifted absorbance. A truncated monomeric ApcE2 (24–245) protein that
exhibits fluorescence at 714 nm was engineered [102]. Similarly, ApcF2 with conserved Cys replaced
by Tyr was found in Chroococcidiopsis thermalis. ApcF2 non-covalently binds PCB, absorbs at 675 nm
and fluoresces at 700 nm [96].
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APCs were optimized through natural evolution for efficient fluorescence resonance energy
transfer and are brightly fluorescent. Overall, APCs are promising molecular templates to engineer
more red-shifted NIR FPs (Table 1).

3. Engineering Approaches to Develop Near-Infrared Fluorescent Proteins

To date, BphP-based NIR FPs of different phenotypes were engineered by combining of rational
design and directed molecular evolution (Table 2). The strategies used to engineer BphP-based NIR
FPs could be applied for engineering NIR FPs from other bacterial photoreceptors.

CBCRs structurally and functionally related to BphPs. Fluorescence and signaling compete
in both CBCRs and BphPs. As light-sensing signaling molecules, they were evolved to maximize
their quantum yield for entry into the photocycle. Hence, usually BphPs and CBCRs have relatively
high extinction coefficient, but relatively low fluorescence quantum yield [6,103]. Suppression of
chromophore photoisomerization leads to significant increase of BphPs fluorescence quantum yield
and convert them to the bright fluorescence proteins [29]. APCs were evolved to collect and transfer
light energy to the photosystems I and II, and hence they have relatively high extinction coefficient
and fluorescence quantum yield. The main restriction for the APC-based NIR FPs construction is their
pure expression, complicated chromophorilation and general tendency to oligomerization.

The utility of biliprotein-based FPs in live cell and in vivo imaging depends on their intrinsic
fluorescence intensity, protein expression level, folding and stability, as well as, specificity to BV
chromophore [6]. Other important parameters including cytotoxicity, maturation time, photostability,
pH sensitivity and oligomeric state also determined FP quality [104].

Availability of tetrapyrrole chromophore is essential for billiprotein-based NIR FPs. PCB, the
natural chromophore of CBCRs and APCs, is found only in plant and cyanobacterial cells. However, in
process of heme degradation, mammalian cells synthesize BV and it is abundantly present in animal
tissues [26,105]. BV has the longest conjugated π-electron system among known linear tetrapyrroles and
provides more NIR-shifted fluorescence. For engineering of fluorescent proteins from CBCRs and APCs,
it is necessary to make them capable of incorporating BV. The combination of mutations that make
CBCR capable of binding BV is not known. However, it was shown that Leu in position 337 is important
for BV-binding property of AM1_1557g2 [44] and amino acid substitution Ser334/Gly increased the
BV-binding activity of AM1_C0023g2 [46]. CBCRs and ApcE bind chromophore autocatalytically;
the rest of APCs should be converted into lyases-independent form. Recently reported FP smURFP was
evolved from APCα of T. erythraeum to autocatalytically attach BV. Amino acid substitution Asn42/Ile
was necessary to make TeAPCα capable of binding chromophore autocatalytically and three more
mutations (Gly45/Ser, Arg61/His, Gln129/Lys) made it capable of binding BV [101].
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Table 2. Near-infrared fluorescent proteins and their reported applications in eukaryotic cells.

NIR FP Ex, nm Em, nm EC, M−1·cm−1 QY, % Molecular Brightness
vs. iRFP713, %

Oligomeric
State

Photostability in
Mammalian Cells, t1/2, s 1

Brightness in HeLa
Cells vs. iRFP713, % 2 Reference

IFP1.4 684 708 92,000 7.7 114 dimer 70 8.0 [32]
iRFP713 (aka iRFP) 690 713 98,000 6.3 100 dimer 960 100 [34]

PAiRFP1 659 3 703 3 67,100 4.8 64 dimer n.d. 25 [86]
PAiRFP2 692 3 719 3 63,600 4.7 60 dimer 25 [86]
IFP2.0 4 690 711 98,000 8.1 80 dimer 108 7.9 [85]
iRFP670 643 670 114,000 12.2 225 dimer 290 119 [10]
iRFP682 663 682 90,000 11.1 162 dimer 490 105 [10]
iRFP702 673 702 93,000 8.2 124 dimer 630 61 [10]
iRFP720 702 720 96,000 6.0 93 dimer 490 110 [10]
smURFP 642 670 180,000 18 551 dimer 300 1.0 [101]
BphP1-FP 640 669 60,000 13.0 126 monomer n.d. n.d. [27]
GAF-FP 635 670 49,800 7.3 59 monomer n.d. 2.0 [12]

mIFP 683 704 82,000 8.4 74 monomer 54 14 [36]
Wi-Phy2 696 719 118 8,7 n.d. monomer n.d. n.d [106]

miRFP670 642 670 87,400 14.0 198 monomer 155 72 [35]
miRFP73 674 703 90,900 8.6 127 monomer 394 37 [35]
miRFP79 683 709 78,400 5.4 69 monomer 192 30 [35]

The dimeric and monomeric NIR FPs are listed chronologically within each group. 1 The fluorescence decay curves obtained from transfected HeLa cells were normalized to absorbance
spectra and extinction coefficients of FPs, spectrum of the lamp, and transmission of an excitation filter. 2 Determined as effective NIR fluorescence in HeLa cells without exogenous BV
and after normalization to the fluorescence of co-transfected EGFP. 3 Corresponds to the photoactivated state. 4 Although IFP was originally reported to be a monomer [85], it was later
shown to be dimer [6,36]. Abbreviations: FP, fluorescent proteins; NIR, near-infrared; EC, extinction coefficient; QY, quantum yield.
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3.1. Examples of Rational Design of Near-Infrared Fluorescent Proteins

Engineering BphP-based NIR FPs involves suppression of their photoconversion by deleting
the PHY domain and introduce key mutations that stabilize Pr state [2,3,29,34,107]. Similar to
BphPs, blocking of photoconversion leads to increasing of CBCRs fluorescence. Photochemically
inert red/green CBCR Npf2164g5, found in Nostoc punctiforme, was unable to photoconvert; instead, it
exhibited red fluorescence with a quantum yield of 10–15% [75]. Incorporation of PEB chromophore,
which carries saturated bridge between pyrrole rings C and D and cannot isomerize [108], resulted
in five-fold higher quantum yield of CBCR, Slr1393g3, as compared to its PCB chromophorilated
form [43,84]. Suppression of CBCR photoisomerization can be achieved by mutation of the key amino
acid residues, including those within the Asp-motif, conserved residue following chromophore-binding
Cys, “gate” Trp residue and conserved Phe (Figure 2B). On the other hand, engineering of
photoactivatable NIR FPs requires retaining of photoconversion. Two photoactivatable NIR FPs,
termed PAiRFPs, constructed from bathy BphP, AtBphP2, contain its PAS, GAF and PHY domains [86].
A single GAF domain of CBCRs is sufficient for photoconversion and should allow engineering of
smaller monomeric photoactivatable NIR FP.

BphP1-FP, iRFP670 and iRFP682 proteins, in addition to conserved Cys20 in the PAS domain,
contain Cys residue in the conserved SPXH amino acid motif of the GAF domain (Cys253). NIR FPs
with this additional Cys are blue-shifted, exhibit higher quantum yield and longer fluorescence
lifetimes [27,109,110]. It was shown that mutants of such double-Cys NIR FPs, containing a single Cys
either in the PAS or in the GAF domains, demonstrate different spectral properties. The variants with
Cys in PAS domain had 35–40-nm red-shifted emission as compared to mutants carrying Cys in GAF
domain. These findings made possible the rational design of brighter and spectrally distinct NIR FPs
and were successfully applied to engineer spectrally distinct monomeric miRFPs [35]. In BphP-derived
NIR FPs, the covalent binding of BV to Cys residue in the GAF domain via C31 and C32 chromophore
atom leads to restricting ring A motion, resulting in a substantial increase of quantum yield [109].
Interestingly, these NIR FPs bind Cys in the GAF domain similarly to CBCRs, which also bind
chromophore through C31 carbon of ring A. By removing knot structure there was also engineered
single-GAF fluorescent protein, termed GAF-FP, which is capable of covalent binding of both PCB and
BV chromophores [12,111].

Monomeric BphP-based miRFPs were constructed by either structure-based monomerization or
by selection of naturally monomeric BphP templates. The first approach was used to design Wi-Phy
protein from DrBphP of Deinococcus radiodurans. Leu311 and Leu314 residues that created zipper
interactions were replaced with negatively charged Glu residues. Moreover, a Phe145 residue that can
participate in van der Waals interaction was replaced with Ser residue [112]. In contrast, RpBphP1
was chosen as a template to engineer miRFP670, miRFP703, miRFP709 and BphP1-FP. In the crystal
structure of RpBphP1, the PAS and GAF domains are not involved in the dimerizing interface [19].
The characterization of these engineering NIR FPs confirmed their monomeric state [35,113].

APCs are module components of multidomain complexes with close inter-subunit interactions.
Therefore, they usually form dimeric or oligomeric structure. However, recently, there was generated
soluble monomeric mutant of ApcE, which exhibited autocatalytic chromophore binding, red-shifted
absorption and emission spectra, and high quantum yield. The full-length N-terminal APC-like domain
of ApcE (residues 1–240) is poorly soluble. However, deletion of a hydrophobic loop (residues 80–150)
and 19 N-terminal residues resulted in a soluble 22 kDa monomeric FP [88].

3.2. High-Throughput Screening Approaches of Near-Infrared Fluorescent Proteins

Decay from the excited-state BV chromophore can occur via three competing processes:
NIR fluorescence, C15=C16 double bond photoisomerization and non-radiative decay [31,114].
The latter one limits the fluorescence quantum yield of NIR FPs. Studies of several NIR FPs suggested
that their C15=C16 photoisomerization was completely inhibited, but quantum yield was still rather
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low [109,114,115]. Hence, to improve quantum yield of BphP-based NIR FPs it is necessary to minimize
non-radiative decay [109,114].

Crystallographic analyses and homology amino acid alignment allow identification of mutations
important for inhibition of photoconversion or disrupting of a dimeric interface. However, an effect of
multiple amino acid substitutions, which increase fluorescence quantum yield, enhance the rigidity of
the chromophore packing and minimize non-radiative decay, is difficult to predict [112,116]. Moreover,
the individually introduced these substitutions do not affect FP properties [30].

The cellular brightness of NIR FPs highly depends on their BV binding properties [2].
Unlike CBCRs and APCs, BphPs utilize BV as the natural chromophore. However, reported BphP-based
NIR FPs exhibit the different efficiency of BV binding. Low specificity to BV led to the formation of
undesirable complexes with PPIX and decreased cellular brightness [7,29,106]. As a result, FPs with
comparable intrinsic fluorescence intensity, but different BV-binding efficiency, exhibit the large
difference in cellular brightness [85]. Direct addition of exogenous BV can improve the brightness
of suboptimal NIR FPs. However, this is undesirable because exogenous BV can affect cellular
metabolism [117–121]. Co-expression of NIR FPs in mammalian cells with HO does not help to
increase their cellular brightness [7]. To engineer NIR FPs applicable for mammalian cell expression,
their BV-binding properties should be improved. For example, BphP-based NIR FPs of the iRFP and
miRFP series were engineered to specifically incorporate endogenous BV in mammalian cells and can
be readily applied to live cell imaging [7,10,34–36].

In initial steps of NIR FP engineering, rational structure-based approaches allow the development
of mutant clones with improved properties. Further optimization of NIR FPs requires random
mutagenesis followed by a selection of mutants with desired properties (Figure 3). A number of
methods were proposed for mutagenesis of tagged sequence, but the most commonly used approach
involves error-prone PCR techniques. Originally, error-prone PCR protocol was designed to reduce
the fidelity of Taq DNA polymerase by increasing the concentration of MgCl2, addition of MnCl2
or nucleotides analogs and using unbalanced concentrations of nucleotides [122,123]. The main
disadvantage of error-prone PCR that utilizes Taq DNA polymerase is the different frequency of
base pair changes and bias towards transitions over transversions [124,125]. However, employing
mutazyme II DNA polymerase specifically designed to construct error-prone PCR libraries allows
generation of almost unbiased and diverse libraries [126]. Mutazyme II-based mutagenesis is widely
used for engineering NIR FPs [27,35,85]. Moreover, to overcome limitations caused by biased
polymerases, a sequence saturation mutagenesis method (SeSaM) was developed. SeSam allows
broad distribution of nucleic acid mutations and can saturate any position of the target sequence [127].
SeSaM approach is effective but labor-intensive that hampers its use in FP engineering. DNA shuffling,
a method for in vitro homologous recombination that generates diversity by combining useful
mutations from individual genes [128,129] can also be used, particularly to engineer NIR FPs from
CBCRs. Recombination between sequences of CBCRs from different subfamilies can be used to
generate FP mutants with desired properties.

Not only quality but also the frequency of mutations is important. In libraries with low mutation
rates, the majority of clones retain functional sequences but the number of unique mutations is low.
High mutation rates result in many non-functional clones and increase probability of unique mutations.
Only a few of clones from high-mutation-rates libraries are unique and functional. Identification of
such mutants requires employing high-throughput screening approaches [130].

Basic high-throughput screening for NIR FP evolution is fluorescence-activated cell sorting.
It enables easy screening of large libraries of up to 107 clones. Molecular evolution of fluorescent
proteins is mainly carried out via expression in E. coli, but yeast and mammalian cells also could
serve as a host for evolving of FPs. Selections of clones from mammalian libraries could allow
detection of bright, readily expressible and chromophrilated clones. However, using mammalian
cells in directed evolution was hampered, because they have slow growth rates, low efficiency of
stable gene integration, display variable expression levels and require time-consuming techniques.
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Employing small mammalian libraries can be an effective strategy to improve specific FP characteristics.
For example, screening of photostable red FPs from a mammalian library generated by retroviral
infection was reported [131].
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Figure 3. Molecular evolution steps, methods and techniques employed to develop near-infrared
fluorescent proteins (NIR FPs). Left column lists typical molecular evolution steps, such as gene
template mutagenesis, construction of library of mutants, methods of high-throughput screening, and
characterization of advanced variants of NIR FP in vitro and in cells. Specific conditions, techniques
and studied parameters of mutant for each molecular evolution step are indicated in the right column.

E. coli remains the most widely used host for directed evolution. The major advantages of
this common host are viability, rapid growth rates, high transformation efficiency and easy genetic
manipulation. Production of bacterial photoreceptors in E. coli requires co-expression of HO for BV
synthesis [34]. Co-expression of NIR FP and HO under control of different promoters allows regulation
of BV level in host cells. Gradual reduction of BV level allows selecting FP mutants that bind BV with
higher efficiency.

4. Biological Applications of Near-Infrared Fluorescent Proteins

Modern imaging techniques have revolutionized basic biology because they allow non-invasive
visualization of deep tissues. Imaging depth for particular tissue sample depends on its components
that absorb and scatter light. The important parameter, called attenuation length, is the distance where
the light intensity is decreased by 2.7-fold or, in other words, where about 63% of photons are absorbed
by the tissue. This parameter depends on a particular sample, light wavelength and imaging modality,
being about 100 µm or less for visible light. In contrast, attenuation length for NIR light is in the 1 mm
range [132,133], therefore, the probability for a photon to travel unimpeded though the sample is
significantly higher. Although GFP-like FPs are useful for single-cell studies, their use in macroscopic,
high-throughput and animal studies is hampered by high autofluorescence and limited penetration
depth of the visible light. Luciferase assays allow overcoming some of these difficulties but pose their
own drawbacks. For example, in vivo luciferase assays depend on the level of cellular ATP and require
injection of an exogenous substrate. Poor diffusion of the substrate in solid tumors and lack of ATP in
dead cells limits data quantification and increases the variability of results.
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4.1. Application of Near-Infrared Fluorescent Proteins to In Vivo Imaging

Initially, the performance of NIR FPs in deep tissue imaging was demonstrated in polyurethane
mouse phantom that possesses light absorption and scattering properties similar to living animals [34].
In the phantom, iRFP713 was detected at the depth of up to 18 mm that provided higher signal-to-noise
ratios than the best GFP-like red FPs. iRFP713 was also shown to be superior probe for photoacoustic
imaging due to its large extinction coefficient (105,000 M−1·cm−1) and moderate quantum yield
(~7%) [134]. Thus, in photoacoustic tomography, iRFP713 was detected at 9 mm depth in the model
tissue. In mouse xenografts, iRFP713 was substantially brighter than EGFP and TagRFP657 that
allowed detection and precise quantification of tumors on the depth of several millimeters with a
lateral resolution of hundreds of micrometers.

Transgenic mice expressing iRFP713 were healthy and expressed the protein in all tissues [26].
Their body mass, development and reproductive performance were unaltered. This correlated with
previously observed low cytotoxicity of iRFP713 in transfected cells. NIR fluorescence was observed in
all organs, being higher in lung, pancreas and liver that likely reflected the higher amount of HO in
these tissues (Figure 4A).

NIR FP labeling is ideal for retinal cells because NIR light does not cause their photobleaching
preserving their sensitivity and animal vision [135]. iRFP713 expression in hematopoietic cells is
clinically relevant for the evaluation of cytotoxic effects of various compounds. Populations of
erythrocytes, granulocytes and monocytes were undistinguishable in iRFP713-expressing and
wild-type mice. Furthermore, simultaneous cell labeling with iRFP713 and GFP-like FPs opens
new possibilities for multicolor imaging [136].

iRFP713 transgenic mice represent a powerful model for the transplantation experiments because
NIR fluorescence from transplant can be detected in tissues. Transplantation of iRFP713 labeled
pluripotent (iPS and STAP) cells allowed following cell fate after transplantation, their involvement in
regeneration process, and the efficiency of medications [136].

Monitoring cell fate over the time often requires conditionally activated expression of probe in
spatiotemporal manner. Recently, transgenic mice that bear iRFP713 under control of lox-stop-lox
recombination element were established [137]. In these mice, iRFP713 fluorescence was detectable
only upon Cre recombinase expression. It was demonstrated that iRFP713 is sensitive recombination
marker for accurate assessment of Cre recombinase activity and recombination events in different
tissues. Single iRFP713 allele integrated into the genome allowed monitoring recombination events
by flow cytometry in single cells isolated from the animal tissues. With this technique, the amount of
drugs inducing Cre activity administered to mice was significantly reduced.
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Figure 4. Applications of near-infrared fluorescent proteins. (A) Image of iRFP713 transgenic
newborn mice and their wild-type non-fluorescent littermates (adapted from [26], copyright 2014
by the Japanese Association for Laboratory Animal Science); (B) Impaired lymphatic drainage due
to metastatic spread. Lymphatic channels are shown in green and the iRFP713-labeled tumor is
shown in red (adapted from [138], copyright 2014; available under the Creative Commons Attribution
license); (C) Odyssey LI-COR scan of iRFP expressing 3T3 fibroblasts 16 days post transfection
with cMyc/Ha-RasG12V. Fluorescent signal is shown in pseudocolor (adapted from [139], copyright
2014; available under the Creative Commons Attribution license); (D) Photoacoustic microscopy
image of multiple layers of RpBphP1-expressing cells (right). Depth is shown in pseudocolor
(adapted from [140]); (E) Detection of the bJun-bFos interaction in living mice expressing two
split-iRFP713 constructs. Fluorescence pseudocolor images of tumor xenografts expressing bJun-iRN
and iRC-bFos fusion proteins. Images for the constructs split at positions 97 (left) and 123 (right) of
iRFP713 are shown (adapted from [141], copyright 2015 by Elsevier B.V.); (F) Drosophila brain cells
co-expressing Histone-2B-GFP and the iCasper protease reporter. Apoptotic cells are shown in red
(adapted from [142]); (G) Fluorescence lifetime images of cells expressing the mKate2-DEVD-iRFP713
reporter before (left) and after (right) induction of the apoptosis (adapted from [143], copyright 2016 by
BioTechniques); (H) Stimulus-induced degradation of the NIR IκBα reporter, upon activation of the
NF-κB pathway (adapted from [35]); (I) NIR Fucci cell cycle reporter in cells at different time points
during cell cycle progression (adapted from [35]).

4.2. Near-Infrared Fluorescent Proteins in Cancer Research

Non-invasive NIR fluorescent imaging of iRFP713-expressing cancer cells was used to monitor
tumor progression in mouse models [144]. Lentivirus constructs encoding iRFP713 were used to
generate labeled cell lines that were employed to monitor subcutaneous tumor growth in vivo.
Moreover, intraosseous and intracranial implants were detected. The orthotopic xenograft tumor
lung model was generated by labeling cancer cells with iRFP713 and Venus FPs [11]. In that
case, NIR imaging allowed following cancer development in mice, whereas Venus fluorescence
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provided quantification of tumors ex vivo. This multicolor technique provided sensitivity to detect
delicate changes of tumor development and evaluate the efficiency of therapeutic treatment that was
challenging with conventional methods.

Metastatic spreading through lymphatic vessels and nodes in vivo was monitored by real time
imaging of iRFP713-labeled cancer cells [138,145] (Figure 4B). In surgery, NIR fluorescent imaging
also enabled accurate detection of cancer margin and image-guided resection of tumors. Multicolor
labeling of tumors with iRFP713 and NIR-labeled antitumor antibodies helps to significantly reduce
chances of residual disease and damage to critical structures proximal to tumor tissue [146].

Palette of five NIR FPs, such as iRFP670, iRFP682, iRFP702, iRFP713 and iRFP720, was used to
label populations of cancer cells in vitro with confocal microscopy and flow cytometry and in vivo
using whole-body imager [9,10]. A combination of bioluminescence and florescence increased the
sensitivity of deep-tissue imaging. To achieve that, two chimeric luciferases consisting of Renilla
luciferase fused with either iRFP670 or iRFP720 were engineered. Administration of the substrate
caused a bioluminescence resonance energy transfer (BRET) from luciferase to iRFPs, resulting in NIR
light bioluminescence [12].

4.3. Near-Infrared Imaging in High-Throughput Applications

Commercially available NIR scanners can detect NIR fluorescence in 700 and 800 nm channels
allowing high-throughput quantification of cell number in vitro and ex vivo. The linear correlation
between the iRFP713 signal and cell number allowed quantifying cells over several orders of magnitude
that was impossible with other biomarkers [139]. Interestingly, iRFP713 signal did not increase in
non-proliferating cells. The high speed of fluorescence analysis and absence of the requirement to
collect and lyse cells make this method more robust than luciferase assay. Moreover, iRFP713 enables
real-time monitoring of cell growth in various conditions, saving cost and time. In colony-based
transformation assays, iRFP713 was employed for high-throughput screening of medicinal drugs.
Because expression of a majority of NIR FPs of the iRFP family is non-toxic for cells, they are robust
markers for evaluation of drug treatment on cell proliferation (Figure 4C).

High-throughput NIR fluorescent assay is particularly useful in veterinary medicine to determine
elevated levels of BV upon pathological states in avian and reptilian species [147]. Binding of BV
to iRFP713 results in increase detected fluorescence with plate reader. This assay allows accurate
determination of BV concentrations in the micromolar range.

Some heavy metals can compete with BV chromophore for binding to NIR FP apoprotein,
preventing the formation of covalent bond between the chromophore and Cys residue. Therefore, NIR
FPs can determine the presence of heavy metals in various environmental studies. For example,
IFP1.4 detects nanomolar concentrations of mercury in vitro. However, in cells, its sensitivity
was substantially lower [148], perhaps due to neutralization of heavy metals by thiol-containing
compounds, such as glutathione.

4.4. Near-Infrared Fluorescent Proteins in Microbiology and Parasitology

To date, a majority of the bacterial infection studies is based on the detection of bioluminescence
in bacteria. Novel NIR fluorescence-based assays depend on the external source of light and
could give higher background than luciferase, but they do not require administration of luciferase
substrate. Therefore, iRFP713-expressing Lactococcus lactis, Lactobacillus plantarum and E. coli bacteria
are promising tools for imaging of gastrointestinal microflora in vivo [149]. These bacteria were used
to evaluate the time needed for food transit through the gastrointestinal tract, providing additional
insights into the process of digestion. Moreover, the combination of iRFP713 and iRFP682-expressing
bacteria enabled simultaneous detection of two different bacteria species in the animal using linear
spectral unmixing. In future, labeled bacteria can be used as intra-intestinal factories for production
and targeting of biologically active molecules. In parasitology, the introduction of iRFP713-expressing
Leishmania parasites allowed their monitoring in mice and screening of medical drugs in vivo [150].
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4.5. Near-Infrared Fluorescent Proteins in Advanced Imaging Techniques

Nevertheless, dimeric NIR FPs, such as iRFPs, possess limitations because of their oligomeric
state that can interfere with normal function of a tagged protein. Therefore, tagging proteins with
monomeric NIR FPs are preferable for imaging of intracellular structures, especially those possessed
dynamic properties. For these purposes, tagging with miRFP670, miRFP703 and miRFP709 was used
to visualize fine intracellular structures beyond the diffraction limit in super-resolution structured
illumination microscopy [35]. Labeling of intracellular proteins with monomeric TagGFP2, mCherry
and miRFP703 enabled multicolor super-resolution wide-field imaging.

The introduction of NIR FPs accelerated the development of advanced imaging techniques.
For example, fluorescence molecular tomography (FMT) and diffuse tomography (DT) allow 3D
reconstruction of organs and tissues at the centimeter depth [151]. In living animals, organs and
closely located tumors were resolved by DT using the combination of iRFP670 and iRFP713 [10].
Another method, called time-domain imaging technology (TD) possess increased sensitivity and
higher signal-to-background ratio, compared to epifluorescence techniques. It measures fluorescence
decay after delivery of short (10−11–10−10 s) laser pulses to sample, which allowed decreasing
autofluorescence. Using this method, three tumors labeled with iRFP670, iRFP702 and iRFP720
were simultaneously detected [152]. Application of X-ray computed tomography and NIR imaging
allow determining the exact position of a tumor inside the brain [152].

Photoacoustic tomography detects ultrasound waves generated by thermal expansions resulting
from the thermal relaxations of periodically excited chromophores. Application of RpBphP1
to photoacoustic imaging allowed developing differential photoacoustic techniques, such as
reversible-switchable photoacoustic tomography (RS-PAT) and reversible-switchable photoacoustic
microscopy (RS-PAM) [140]. These techniques are based on the difference in extinction coefficients
of RpBphP1 in Pfr and Pr states at 780 nm. The absorbance of BphP1 in Pfr state at 780 nm is
five-fold higher than in Pr state, which generates significant differences in photoacoustic signal upon
illumination of the sample with 780 nm light. RS-PAT detected metastasis in living mice at 1 cm depth
and RS-PAM resolved multiple layers of RpBphP1-expressing cultured cells (Figure 4D).

Photoactivatable and photoswitchable NIR FPs are a good alternative to constitutively fluorescent
FPs in applications that require spatiotemporal labeling and tracking of proteins, organelles or cells.
For that purposes, photoactivatable PAiRFP1 and PAiRFP2 are the optimal choices. PAiRFPs can be
selectively and non-invasively photoactivated and visualized in vivo with a signal-to-background ratio
higher than for constitutively fluorescent FPs. In the darkness, fluorescence of PAiRFPs exponentially
decreases with time, allowing multiple photoactivation cycles [86].

4.6. Biosensors and Reporters Designed from Near-Infrared Fluorescent Proteins

NIR FPs are applied to engineer biosensors and reporters for detection of intracellular metabolites
and protein-protein interactions (PPIs). Split protein reporters were created by splitting iRFP713 per
two parts at the unstructured loop spanning PAS and GAF domains. The resultant constructs, termed
iSplit, was used in bimolecular fluoresce complementation assay (BiFC) to detect PPI in HeLa cells and
in vivo. Later, other split iRFP713 pairs were constructed for visualization of PPI between bJun and
bFos proteins (Figure 4E) [141]. These pairs were employed also to monitor dynamics of PPI between
viral and cellular proteins upon virus infection. Another split reporter, called IFP PCA was generated
by splitting of IFP1.4. The split IFP1.4, termed IFP PCA, demonstrated apparent reversibility in yeast
and mammalian cells but possessed significantly decreased brightness compared to iSplit. IFP PCA
was useful to determine dissociation constants for PPIs in living cells.

Spectrally distinct miRFP670 and miRFP709 split pairs were generated from the respective
monomeric NIR FPs [35]. These two mSplits have excellent spectral compatibility for simultaneous use
in microscopy or flow cytometry. miSplits were used to detect mRNA distribution in live mammalian
cells. Interestingly, both mSplits share the same PAS domain, but their GAF domains differ. Therefore,
single PAS domain can interact either with mGAF670 or with mGAF709, reconstituting miRFP670 or
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miRFP709, respectively. Therefore, it is possible to discriminate between two different PPIs by using
two mSplits. They also can be applied to monitor protein distribution between two compartments.

Proteolysis is an important process that regulates cell fate, ontogenesis and pathogenesis. NIR FPs
were used to engineer fluorescent and FRET-based protease reporters. FRET protease reporters,
such as mKate2-DEVD-iRFP713 and eqFP650-DEVD-iRFP713, were exploited to detect apoptosis
in mammalian cells, following activation of caspase-3 [143]. Another reporter, called iProtease,
detects changes in fluorescence intensity upon proteolytic digestion of non-fluorescent precursor [142].
iProtease can be used in applications where utility of FRET-based reporters is limited by poor signal
and necessity of image processing. iProtease was used for visualization of protease activity in cultured
mammalian cells and in tumorigenesis in Drosophila embryos (Figure 4F,G).

Dynamic changes of intracellular protein levels upon posttranslational modification can also
be monitored with NIR FPs. For example, activation of NF-κB signaling pathway was detected
with IκBα-miRFP703 biosensor [35]. Upon activation of this pathway, the biosensor was targeted for
degradation, resulting in fluorescence decrease in cultured cells treated with TNF-α. In mice, this
occurred during the acute liver inflammation induced by injection of lipopolysaccharide (Figure 4H).

NIR Fucci sensor (fluorescence ubiquitination-based cell cycle indicator) is used to visualize
dynamics of cell cycle progression. This sensor was engineered by fusing spectrally distinct miRFP670
and miRFP709 to Cdt1 and Gem proteins, respectively. Accumulation of miRFP670-hGEM fusion was
obtained during S/G2/M cell phases, whereas miRFP709-Cdt1 fusion was accumulated during G1 cell
phase (Figure 4I). [35]. Later, smURFP and IFP2.0 pair was exploited in similar approach. However,
for this pair, an addition of exogenous BV chromophore was required for optimal imaging [101].

5. Conclusions

Progress in the development of advanced light sources and imaging instrumentation has allowed
non-invasive visualization of ongoing processes deeper in animal tissues. Moreover, design of NIR
FPs has accelerated the development of advanced imaging techniques including diffuse optical
tomography, photoacoustic tomography and bioluminescence imaging. NIR FPs possess excellent
spectral compatibility with blue-light-activated optogenetic tools, allowing spatiotemporal control
and visualization of intracellular processes. NIR FPs also complement GFP-like FPs, substantially
extending a color palette available for high-throughput applications, live cell and in vivo imaging.
Moreover, multicolor imaging allows simultaneous visualization of several biological processes.

Recent achievements in the engineering of BphP-based NIR FPs together with their structural
and functional studies provided a solid background for rational design and directed molecular
evolution of novel NIR probes. The described above different families of bacterial photoreceptors
share common chromophore binding moiety, incorporate the same chromophores and have rather
similar photoconversion mechanisms. Therefore, novel NIR probes can be designed using the already
tested for BphP-based NIR FPs approaches, such as inhibition of Pr↔Pfr photoconversion, reducing
non-radiative decay and enhancing efficiency of chromophore incorporation.

CBCRs are attractive templates for NIR FP engineering due to their small size, monomeric nature
and absence of knot structures. These properties make expression and genetic manipulations of CBCRs
extremely robust. Notably, the most NIR-shifted bacterial photoreceptors are found among CBCRs.
They can be employed to engineer probes extending the NIR region currently covered by BphP-based
NIR FP.

CBCRs can be also used to design small photoactivatable NIR FPs consisting of a single GAF
domain. The difference in absorption and emission maxima between two photostates of CBCRs can be
very large, exceeding 200 nm. This property can dramatically increase a signal-to-background ratio in
deep-tissue differential imaging.

APCs are also promising molecular templates because they are naturally brightly fluorescent.
The main obstacles for engineering of NIR FPs from APCs are poor expression, requirements of lyase
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for chromophore incorporation and oligomerization. Likely, advanced engineering approaches should
be developed to overcome these obstacles in future.

The development of NIR FPs of small size and increased molecular brightness will advance
biological studies at different scales, from single molecule to whole organisms. We anticipate that,
in near future, NIR FPs, reporters and biosensors will be employed in high-throughput in vivo
applications, in transgenic animal models and in various preclinical studies.
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APC Allophycocyanin
BphP Bacterial phytochrome photoreceptor
BV Biliverdin
CBCR Cyanobacteriochrome
FP Fluorescent protein
HO Heme oxygenase
iRFP Near-infraRed Fluorescent Protein
miRFP Monomeric near-infraRed Fluorescent Protein
NIR Near-infrared
PCB Phycocyanobilin
PCM Photosensory core module
PEB Phycoerythrobilin
PPIX Protoporphyrin IX
PΦB Phytochromobilin
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