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Background. Behçet’s disease (BD) is a chronic inflammatory multisystem disease characterized by oral and genital ulcers, uveitis,
and skin lesions. MicroRNAs (miRNAs) are key regulators of immune responses. Differential expression of miRNAs has been
reported in several inflammatory autoimmune diseases; however, their role in BD is not fully elucidated. We aimed to identify
miRNA expression signatures associated with BD and to investigate their potential implication in the disease pathogenesis.
Methods. miRNA microarray analysis was performed in blood cells of BD patients and healthy controls. miRNA expression
profiles were analyzed using Affymetrix arrays with a comprehensive coverage of miRNA sequences. Pathway analyses were
performed, and the global miRNA profiling was combined with transcriptoma data in BD. Deregulation of selected miRNAs
was validated by real-time PCR. Results. We identified specific miRNA signatures associated with BD patients with active
disease. These miRNAs target pathways relevant in BD, such as TNF, IFN gamma, and VEGF-VEGFR signaling cascades.
Network analysis revealed several miRNAs regulating highly connected genes within the BD transcriptoma. Conclusions. The
combined analysis of deregulated miRNAs and BD transcriptome sheds light on some epigenetic aspects of BD identifying
specific miRNAs, which may represent promising candidates as biomarkers and/or for the design of novel therapeutic strategies
in BD.

1. Introduction

Behçet’s disease (BD) is a rare and chronic multisystem
disease characterized by a triple-symptom complex of
recurrent oral aphthous ulcers, genital ulcers, and uveitis.
Moreover, manifestations of vascular, articular, neurologic,
urogenital, gastrointestinal, pulmonary, and cardiac involve-
ment may occur. Hippocrates described BD in the fifth cen-
tury BCE. In 1930, the Greek ophthalmologist Benediktos
Adamantiades reported a patient with inflammatory arthri-
tis, oral and genital ulcers, phlebitis, and iritis. The disease
is named after the Turkish dermatologist Hulusi Behçet,
who identified it in a patient in 1924 and published a
description of the disease in 1937.

As virtually no unique histological or laboratory features
have been identified to help in the diagnosis of the disease,

clinical features are used to define and diagnose Behçet
syndrome. An international study group on Behçet’s disease
has recently revised the criteria for the classification/
diagnosis of BD [1].

There are sporadic cases of BD all around the world, but
it is most frequently seen along the ancient Silk Route
because of its frequency in the Middle East and far-east Asia
(prevalence of 14–20/100,000 inhabitants), and these regions
have traditionally been considered the endemic areas for the
condition [2].

BD is a sporadic disease, but a familial aggregation is well
known. Carriers of HLA-B51/HLA-B5 have an increased risk
of developing Behçet’s disease compared with noncarriers.
HLA-B51 is the strongest associated genetic factor, and it
has been shown to be more prevalent in Turkish, Middle
Eastern, and Japanese populations, with a higher prevalence
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of Behçet’s disease in these populations [3]. Non-HLA genes
also contribute to the development of BD [3]. Genome-wide
association studies have shown that polymorphisms in genes
encoding for cytokines, activator factors, and chemokines are
associated with increased BD susceptibility. Among cyto-
kines, IL-10 polymorphisms cause a reduction in the serum
level of IL-10, an inhibitory cytokine that regulates innate
and adaptive immune responses; on the other hand, IL-23
receptor polymorphism, which reduces the response to
IL-23 stimulation, is associated with protection from BD
[3–5]. Recent data reported also associations with CCR1,
STAT4, and KLRC4 encoding for a chemokine receptor,
a transcription factor implicated in IL-12 and IL-23 signaling
and a natural killer receptor [6, 7]. Finally, susceptibility
genes involved in the innate immune response to microbial
exposure have recently been identified by Immunochip
analysis [8].

Increased Th1, CD4+ and CD8+ T cell, γδ+ T cell, and
neutrophil activities have been found both in the serum
and in inflamed tissues of BD patients, suggesting the
involvement of innate and adaptive immunity in the patho-
genesis of BD [2, 9]. Studies on T lymphocytes have sug-
gested a Th1-predominant response. Both CD4+ and CD8+

lymphocytes are higher in the peripheral blood, with
increased levels of IL-2 and interferon- (INF-) γ cytokines
[10]. The cytokine Th17 may also play an important role
in the pathogenesis of the disease [2, 11]. This hypothesis
is supported by the observation of high IL-21 and IL-17
levels in sera of patients affected by BD with neurologic
involvement [12, 13]. Another study has reported a higher
Th17/Th1 ratio in peripheral blood of patients with BD
compared to healthy controls, and this ratio was higher in
patients with uveitis or folliculitis compared with patients
without these manifestations [14, 15].

MicroRNAs (miRNAs) are small noncoding RNAs that
play an important role in the regulation of several biological
processes through their interaction with cellular messenger
RNAs [16]. Inflammatory responses have an impact on
miRNA expression, regulating their biogenesis by altering
the transcription and processing of precursor transcripts
or influencing the stabilization of mature miRNAs [17, 18].
In recent years, the number of miRNAs implicated in
immune system development and function has dramatically
enhanced, and there has been widespread discussion of their
potential use as therapeutics for immunological diseases
[16]. Indeed, the aberrant expression of miRNAs frequently
occurs in human diseases, including hematological disor-
ders and autoimmunity [19, 20]. The concept that miRNAs
participate in the pathogenesis of diseases, especially refrac-
tory diseases with unidentified mechanisms, might lead to
a novel effective treatment. A number of studies have
reported a differential expression of miRNAs in several
inflammatory autoimmune diseases, such as in rheuma-
toid arthritis (RA), multiple sclerosis, systemic lupus ery-
thematosus, psoriasis, and systemic sclerosis [21]. These
studies highlighted a deep implication of miRNAs as reg-
ulatory molecules in autoimmunity and the intriguing
possibility to use miRNAs as disease biomarkers in these
immunological disorders.

As far as BD concerns, little is known about miRNA
expression; moreover, no high-throughput miRNA expres-
sion studies have been conducted to identify miRNAs specif-
ically associated with the disease and no study has been so far
performed which combines the analysis of blood microRNAs
with transcriptional profiles in patients with BD.

In the present study, we performed a miRNA microarray
analysis on peripheral blood mononuclear cells (PBMCs) of
BD patients. We identified specific miRNA signatures associ-
ated with patients with active BD. These deregulated miR-
NAs target signaling pathways typically implicated in BD
pathogenesis, such as TNF, interferon gamma, and VEGF
and VEGFR signaling cascades.

The modular analysis of differentially expressed genes in
BD revealed pathogenetically relevant networks that are
possibly targeted by the identified miRNAs. This study
sheds light on some aspects of BD pathogenesis identifying
deregulated miRNAs as promising candidates for the discov-
ery of disease biomarkers and/or as molecular tools for
designing novel therapeutic strategies in BD.

2. Materials and Methods

2.1. Patients. A group of 6 subjects with BD was used for the
gene array study. All the patients attended the Unit of Auto-
immune Diseases at the University Hospital in Verona, Italy.

All patients fulfilled the International Criteria for Behçet
Disease (ICBD): oral aphthosis, genital ulcers, and ocular
lesions were each given 2 points, whereas 1 point was
assigned to each of skin lesions, vascular manifestations,
and neurological manifestations. A patient scoring 4 points
or above was classified as having BD [22, 23]. At enrollment,
none of the patients had active infections or was affected
by malignancies.

The clinical features of the patients are reported in
Table 1 that also includes a description of the BD patients
selected for the gene array study.

Table 1

Patients utilized for gene array study 6 (100%)

Sex

Male 4

Female 2

Clinical features

Aphthous stomatitis 6 (100%)

Genital ulcers 2 (33%)

Erythema nodosum-like lesions 1 (17%)

Papulopustular lesion 5 (83%)

Uveitis 2 (33%)

Epididymitis 0

Neurological symptoms 0

Vasculitis 4 (67%)

Joint manifestation 3 (50%)

Gastrointestinal involvement 0

Association with HLA-B51 4 (67%)
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A written informed consent was obtained from all the
participants to the study. The study was approved by the
local Ethical Committee of the Azienda Ospedaliera Uni-
versitaria of Verona, Verona, Italy. All investigations have
been conducted according to the principles expressed in
the Helsinki declaration.

2.2. Microarray Analysis. Blood samples were collected in BD
Vacutainer K2EDTA tubes using a 21-gauge needle. Periph-
eral blood mononuclear cells (PBMC) were obtained upon
stratification on Lympholyte® cell separation density gradi-
ent (Cedarlane, Burlington, Canada). Total RNA extraction
from PBMC was performed with miRNeasy Mini Kit follow-
ing the manufacturer’s protocol (Qiagen GmbH, Hilden,
Germany). RNA concentration and purity were evaluated
by spectrophotometric analysis (NanoDrop 2000; Thermo
Fisher Scientific, Wilmington, DE, USA), and a further check
for RNA integrity was performed with 2100 Bioanalyzer
(Agilent Genomics, Santa Clara, CA, USA) before microar-
ray hybridization. Sample hybridization and scanning were
performed as recommended by the Affymetrix (Affymetrix;
Thermo Fisher Scientific Inc.) supplied protocols, by the
Cogentech Affymetrix Microarray Unit (Campus IFOM-
IEO, Milan, Italy), and Affymetrix GeneChip® miRNA 4.0
(Affymetrix; Thermo Fisher Scientific Inc., Waltham, MA,
USA) was used. The GeneChip miRNA 4.0 arrays contain
more than 30,000 probes including those encoding for 2578
mature human miRNAs, according to Sanger miRBase v.20.

The arrays were analyzed employing the Transcriptome
Analysis Console (TAC) 4.0 software (Applied Biosystems,
Foster City, CA USA, by Thermo Fisher Scientific, Waltham,
MA, USA). The Signal Space Transformation- (SST-) Robust
Multiarray Average (RMA) algorithm was applied to back-
ground-adjust, normalize, and log-transform signal intensity.

Relative expression levels of each microRNA were
validated applying a one-way analysis of variance (ANOVA)
and false discovery rate (FDR) correction (p ≤ 0 01). Micro-
RNAs with an expression level of at least 1.5-fold different
in the test sample versus control sample were analyzed.

Targeted genes of significantly modulated miRNAs
were identified using the integrative database for human
microRNA target predictions mirDIP [24]. All the source
filters and a very high confidence class were applied for
our analyses.

Pathway enrichment analysis of miRNA gene targets and
differentially expressed genes (DEGs) in Behçet’s disease was
carried out using FunRich (http://www.funrich.org/) [25],
and only Bonferroni-corrected enriched p values ≤0.01 calcu-
lated by the hypergeometric test were considered.

Pathways enrichment analysis of DEGs in BD was also
performed employing the Panther expression analysis tools
(http://pantherdb.org/) [26].

2.3. Protein-Protein Interaction (PPI) Network Construction
and Network Clustering. Differentially expressed genes
(DEGs) in BD samples from our previous analyses
(Puccetti et al. unpublished observations) were mapped to
the STRING database (version 1.0; http://string-db.org/)
[27] to detect protein-protein interactions (PPI) pairs

validated by experimental studies. A score of ≥0.7 for each
PPI pair was selected to construct the PPI network. For the
topological analysis of the built network, Cytoscape software
was used and network clustering analysis was performed
with the MCODE plugin of Cytoscape, based on the thresh-
olds of module score > 1 5 [28].

2.4. Real-Time PCR. Mature miRNA expression was assayed
by TaqMan® Advanced miRNA assay chemistry (Applied
Biosystems, Foster City, CA, USA). Briefly, 10 ng of total
RNA was reverse transcribed and preamplified with TaqMan
Advanced miRNA cDNA synthesis kit following the manu-
facturer’s instructions (Applied Biosystems, Foster City, CA,
USA). Preamplified cDNA was diluted 1/10 in nuclease-
free water, and 5μL of diluted cDNA for each replicate
was loaded in PCR. 20μL PCR reactions were composed
by 2x Fast Advanced Master Mix and TaqMan Advanced
miRNA assays for hsa-miR-143-3p (477912_mir), hsa-miR-
199a-5p (478231_mir), and hsa-miR-4505 (477842_mir).
The mean of Ct for hsa-miR-16-5p (477860_mir) and hsa-
miR-26a-5p (477995_mir) expression was used to normalize
miRNA expression. Real-time PCR was carried out in trip-
licate on a QuantStudio 6 Flex instrument (Applied Bio-
systems, Foster City, CA, USA). Expression values were
reported as fold change with respect to healthy controls
by the ΔΔCt method using QuantStudio Real-Time PCR
system software versus 1.3.

3. Results

3.1. High-Throughput MicroRNA Expression Profiling in
Peripheral Blood Mononuclear Cells of Behçet’s Disease. Since
a global miRNA expression analysis in BD with an updated
coverage of miRNA sequences has not been performed yet,
we wanted to provide a careful description of miRNAs asso-
ciated with BD by interrogating the transcription of a large
amount of different microRNA sequences in BD PBMCs by
microarray strategy.

Therefore, PBMCs derived from 6 patients with BD and 6
healthy age- and sex-matched donors were analyzed using a
dedicated and high-density array with a coverage for more
than 2500 human microRNA transcripts and all mature
miRNA sequences in miRBase Release 20. The clinical
features of patients included in the microarray study are
reported in Table 1.

Microarray analysis revealed a high number (269) of
modulated miRNAs that satisfied the FDR-corrected p value
criterion (p ≤ 0 01) and the fold change criterion (FC ≥ ∣1 5∣),
showing a robust and statistically significant variation
between BD and healthy control samples (Supplementary
Table 1). Such a large number of modulated transcripts
clearly reflect the high performance of the array in the
detection of a wide range of microRNA sequences. We
thereafter sharpened our analysis by selecting only
modulated miRNAs annotated as “high confidence” in
miRBase 21 (http://www.mirbase.org), and to make our
results more informative, we further narrowed down the
analysis to miRNAs for which gene targets were annotated
in FunRich.
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By these criteria, we selected 47 modulated miRNAs
that are shown in Table 2. Interestingly, almost all (45/
47) miRNAs were down-modulated with only two up-reg-
ulated microRNAs.

Selected miRNAs significantly deregulated in the micro-
array analysis were validated by real-time PCR in the entire
series of patients analyzed (see Figure 1).

3.2. Pathway Enrichment Analysis of miRNAs Deregulated in
Behçet’s Disease. In a second part of our analysis, we wanted
to identify all the molecular pathways that were targeted by
the selected miRNA performing a pathway enrichment
analysis based on annotated gene targets in FunRich. The
software allows to evaluate the miRNA regulatory effect and
to identify controlled pathways based on predicted and/or
validated miRNA-target interactions. We also applied a
pathway enrichment analysis on the dataset of differentially
expressed genes (DEGs) obtained in our previous study of
gene expression profiling in BD (Puccetti et al., unpublished
observations). In this study, we were able to select modulated
genes that may play an important role in BD pathogenesis
since they are involved in biological processes strongly con-
nected to the typical features of the disease.

Despite the strong statistical stringency applied to the
two datasets (p ≤ 0 01), we obtained a high number of
significantly enriched pathways both from the miRNA
target datasets (277) and from the BD DEGs (164)
(Supplementary Tables 2 and 3). Notably, we found that a
large proportion of pathways from the BD DEGs was also
enriched in the list of miRNA-validated targets (64%, 106/
164; Supplementary Table 4), indicating that the selected
miRNAs exert a strong impact on the molecular pathways
altered in the disease. Moreover, the large number of
enriched pathways clearly reflected the multisystemic
involvement typical of Behçet’s disease. Figure 2 shows a
graphical representation of selected commonly enriched
pathways. Interestingly, the enriched categories were
involved in vascular biology (i.e., glypican pathway, vascular
endothelial growth factor, VEGF and VEGFR network,
endothelin pathway, PAR1-mediated thrombin signaling
events, thrombin/protease-activated receptor (PAR) pathway,
EGFR-dependent endothelin signaling events, platelet-
derived growth factor (PDGF) receptor signaling network,
and urokinase-type plasminogen activator (uPA), and
uPAR-mediated signaling) and in apoptosis (TRAIL, p53,
and FAS signaling pathways). In addition, other relevant
pathways enriched in the two datasets were related to the
immune response (i.e., IL6-mediated signaling events, TCR
and BCR signaling, calcineurin-regulated NFAT-dependent
transcription in lymphocytes, and toll-like receptor cascades)
and to the inflammatory response (i.e., tumour necrosis
factor, TNF receptor, IFN-gamma, p38 MAP kinase,
pathway, and IL1- and CXCR4-mediated signaling events.

3.3. Comparative Analysis of Selected miRNA Gene Targets
and Differentially Expressed Genes in BD. To better define
the role played by miRNAs in BD pathogenesis, we wanted
to select miRNAs that were able to target genes modulated
in BD. Therefore, we used a more sophisticated integrative

database for human microRNA target predictions (mirDIP)
[24] to obtain the lists of genes that were targeted, with a very
high score class, by each of the selected miRNAs. Then, we
compared the resulting target lists to genes differentially
expressed in BD from our previous study (Puccetti et al.,
unpublished observations) and we observed that 65% of
DEGs were targeted by the selected miRNAs. Interestingly,
the vast majority of these DEGs showed an opposite mod-
ulation with respect to the relative targeting miRNA
(Figure 3(a)), consistently with the typical role of miRNAs
as negative regulator of gene expression (i.e., typically, up-
regulated genes are targeted by down-modulated miRNAs
and underexpressed genes are targeted by overexpressed
miRNAs). All the above-mentioned miRNAs are presented
in Figure 3(b) along with the compiled lists of their
targets DEGs.

All these selected miRNAs targeted genes involved in
biological processes implicated in the disease pathogenesis
including apoptosis, immune response, inflammation, and
vascular damage (Figure 4). Thus, we could identify micro-
RNAs that may control the gene modulation involved in
the disease pathogenesis. Table 3 shows all the targeted genes
and their corresponding targeting miRNAs.

Selected miRNAs targeted many DEGs that sustained the
inflammatory response typically associated with BD includ-
ing TNF, IL1A, IL10, IL6R, CXCL2, CXCR4, TNFAIP3,
OLR1, S100A8, HSP90B1, and CCL3 (see Figure 3(b) and
Table 3). Interestingly, TNF (targeted by hsa-miR-181d-5p
and -181a-5p), CCL3 (targeted by hsa-let-7e-5p, -7d-5p,
and -7f-5p), IL10 (targeted by hsa-let-7f-5p, -7e-5p, -7d-5p,
-miR-146a-5p, and -27b-3p), and IL1A (targeted by hsa-
miR-505-3p, -181d-5p, and -181a-5p) have been detected at
increased concentrations in sera or plasma of BD patients
when compared to normal subjects [29–31]. Moreover,
down-modulated miRNAs targeted DEGs involved in the
adaptive immune response including genes that played a role
in T and in B cell immune response. Among these genes,
several miRNAs targeted CD28 (hsa-miR-143-3p, -27b-3p,
-15b-5p, and -195-5p), CD4 (hsa-miR-181a-5p), ICOS
(hsa-miR 27b-3p and -let-7f-5p, -7e-5p, and -7d-5p), CTLA4
(hsa-miR-143-3p), EGR1 (hsa-miR-143-3p, -146a-5p, -181a-
5p, -199b-3p, and -199a-3p), and AKIRIN2 (hsa-miR-139-
5p, -27b-3p, and -181a-5p). Interestingly, 18 miRNAs tar-
geted genes of the TH-17 gene signature including CD28,
CD4, ICOS, SOCS3, IL6ST, YY1, IL6R, TNF, CXCL2, and
SOCS1 (Figure 3(b)).

In addition, selected miRNAs could also control DEGs
involved in the innate immune response including, for
example, NKTR (hsa-miR-181a-5p, -486-5p, -151-3p, and
-27b-3p), KIR2DL4 (hsa-miR-146a-5p), STAT1 (hsa-miR-
584-5p, -27b-3p, -128-3p, and -146a-5p), STAT2 (hsa-miR-
143-3p), and DEGs belonging to the Toll-like receptor
(TLR) pathway such as TLR2, IKBKB, JUN, REL, NAMPT,
HSP90B1, HSPA4, and ARF3. In particular, we have to men-
tion that TLR2 (targeted by hsa-miR-143-3p and -146a-5p) is
thought to be up-regulated in BD patients [32, 33]. As many
as 22 miRNAs targeted genes of the type I interferon signa-
ture like VEGFA, DDX3X, and the above-mentioned STAT1,
STAT2, SOCS1, and IL10. The coexpression of miRNAs
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Table 2: miRNAs modulated in BD patients versus healthy subjects.

ID Probe set name Transcript ID (array design) Fold change FDR p value Accession

20518901 MIMAT0019041_st hsa-miR-4505 9.46 0.0001 MIMAT0019041

20500781 MIMAT0004609_st hsa-miR-149-3p 6.05 0.0003 MIMAT0004609

20500119 MIMAT0000065_st hsa-let-7d-5p −1.55 0.0066 MIMAT0000065

20500444 MIMAT0000256_st hsa-miR-181a-5p −1.76 0.0095 MIMAT0000256

20500778 MIMAT0000449_st hsa-miR-146a-5p −1.87 0.0032 MIMAT0000449

20501197 MIMAT0000703_st hsa-miR-361-5p −1.88 0.0013 MIMAT0000703

20503908 MIMAT0004780_st hsa-miR-532-3p −1.92 0.0032 MIMAT0004780

20502123 MIMAT0004748_st hsa-miR-423-5p −2 0.0052 MIMAT0004748

20501036 MIMAT0000617_st hsa-miR-200c-3p −2.12 0.0032 MIMAT0000617

20501182 MIMAT0000692_st hsa-miR-30e-5p −2.17 0.0081 MIMAT0000692

20500158 MIMAT0000085_st hsa-miR-28-5p −2.2 0.0016 MIMAT0000085

20500422 MIMAT0000244_st hsa-miR-30c-5p −2.49 0.0019 MIMAT0000244

20501276 MIMAT0000751_st hsa-miR-330-3p −2.53 0.0089 MIMAT0000751

20500797 MIMAT0000460_st hsa-miR-194-5p −2.6 0.0028 MIMAT0000460

20502124 MIMAT0001340_st hsa-miR-423-3p −2.61 0.0025 MIMAT0001340

20500159 MIMAT0004502_st hsa-miR-28-3p −2.66 0.0012 MIMAT0004502

20500718 MIMAT0000417_st hsa-miR-15b-5p −2.94 0.0005 MIMAT0000417

20500424 MIMAT0000245_st hsa-miR-30d-5p −2.99 0.0003 MIMAT0000245

20500795 MIMAT0004614_st hsa-miR-193a-5p −3.01 0.0015 MIMAT0004614

20500385 MIMAT0000222_st hsa-miR-192-5p −3.06 0.0019 MIMAT0000222

20500758 MIMAT0000438_st hsa-miR-152-3p −3.06 0.0046 MIMAT0000438

20500151 MIMAT0000081_st hsa-miR-25-3p −3.2 0.0003 MIMAT0000081

20503811 MIMAT0002821_st hsa-miR-181d-5p −3.3 0.0005 MIMAT0002821

20500123 MIMAT0000067_st hsa-let-7f-5p −3.34 0.0041 MIMAT0000067

20504274 MIMAT0003218_st hsa-miR-92b-3p −3.43 0.0018 MIMAT0003218

20500162 MIMAT0000087_st hsa-miR-30a-5p −3.74 0.0006 MIMAT0000087

20500488 MIMAT0000280_st hsa-miR-223-3p −4.32 0.0043 MIMAT0000280

20503887 MIMAT0002876_st hsa-miR-505-3p −4.58 0.0023 MIMAT0002876

20500733 MIMAT0000424_st hsa-miR-128-3p −5.07 0.0029 MIMAT0000424

20501291 MIMAT0000759_st hsa-miR-148b-3p −5.43 0.0084 MIMAT0000759

20501278 MIMAT0000752_st hsa-miR-328-3p −5.63 0.0029 MIMAT0000752

20500798 MIMAT0000461_st hsa-miR-195-5p −5.8 0.0012 MIMAT0000461

20500121 MIMAT0000066_st hsa-let-7e-5p −5.98 0.0052 MIMAT0000066

20500187 MIMAT0004514_st hsa-miR-29b-1-5p −6.81 0.0093 MIMAT0004514

20504378 MIMAT0003297_st hsa-miR-628-3p −6.83 0.0032 MIMAT0003297

20500170 MIMAT0004507_st hsa-miR-92a-1-5p −6.84 0.0005 MIMAT0004507

20500723 MIMAT0000419_st hsa-miR-27b-3p −7.22 0.0041 MIMAT0000419

20504553 MIMAT0004819_st hsa-miR-671-3p −8.16 0.0006 MIMAT0004819

20501287 MIMAT0000757_st hsa-miR-151a-3p −8.47 0.0084 MIMAT0000757

20503105 MIMAT0002177_st hsa-miR-486-5p −17.98 0.0066 MIMAT0002177

20500400 MIMAT0000232_st hsa-miR-199a-3p −21.75 0.0049 MIMAT0000232

20500458 MIMAT0004563_st hsa-miR-199b-3p −21.75 0.0049 MIMAT0004563

20500769 MIMAT0000445_st hsa-miR-126-3p −26.32 0.0023 MIMAT0000445

20504312 MIMAT0003249_st hsa-miR-584-5p −51.18 0.002 MIMAT0003249

20500399 MIMAT0000231_st hsa-miR-199a-5p −63.55 0.0023 MIMAT0000231

20500432 MIMAT0000250_st hsa-miR-139-5p −66.67 0.0027 MIMAT0000250

20500752 MIMAT0000435_st hsa-miR-143-3p −83.47 0.0046 MIMAT0000435
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targeting DEGs involved in the type I IFN signaling and
Th-17 related genes may reflect the presence of a synergy
between IFN and Th17 pathways that is typical of autoim-
mune diseases [34–43], thus suggesting that an autoim-
mune mechanism can be involved in the BD pathogenesis.

Noteworthily, several miRNAs targeted all the eight genes
involved in the JAK/STAT signaling pathway that we found
up-regulated in our previous work (Puccetti et al., unpub-
lished observations) including PIK3R1 and the above-
mentioned STAT1, STAT2, IL6ST, IL6R, IL10, SOCS1, and
SOCS3. The downmodulation of miRNAs targeting this
pathway further supports the hypothesis of an autoimmune
origin of BD since its activation is very frequently associated
with autoimmune diseases [44]. Moreover, the JAK/STAT
signaling pathway is active in CD4+ T cells of patients with
BD [45].

Interestingly, modulated miRNAs targeted DEGs involved
in the vascular damage associated with BD that is charac-
terized by myointimal proliferation, fibrosis, and thrombus
formation [46]. Indeed, several miRNAs targeted DEGs
associated with blood coagulation (i.e., THBS1, F5, and
LMAN1; see Table 3), a process whose alteration is
typically associated with BD vasculitis. Noteworthily, 10
down-modulated miRNAs (hsa-let-7d/7e/7f-5p, hsa-miR-
151-3p, -628-3p, -139-5p, 143-3p, -194-5p, -199a-3p, and
-199b-3p) targeted THBS1, suggesting a crucial role of
THBS1 in the pathogenesis of vascular damage. Other
modulated miRNAs targeted DEGs that played a role
in angiogenesis including MMP8, VEGFA, NR4A3, and
NAPA. Moreover, NR4A3 is a transcription factor involved
in vascular development [47] and NAPA promotes vascular
endothelial- (VE-) cadherin localization at endothelial junc-
tions [48]. Interestingly, increased serum levels of soluble
VE-cadherins have been detected in BD patients [49].
Among the above-mentioned genes, we have to notice that
VEGFA was predictively targeted by a high number (9)
of down-modulated miRNAs, including hsa-miR-199a-3p,
-15b-5p, -195-5p, -361-5p, -126-3p, -486-5p, -199a-5p,
199b-3p, and hsa-miR-139-5p. Other DEGs involved in

vascular damage and targeted by modulated miRNAs were
FOSL2, THBD, and PTX3. THBD, targeted by hsa-miR-
139-5p, is increased in sera of BD patients compared with
healthy subjects, and PTX3, targeted by hsa-miR-628-3p,
is considered as a marker of small vessel vasculitis [50].

Moreover, DEGs involved in the apoptotic process were
targeted, and among these, we can cite MCL1, DNAJB1,
BCL2L11, ARHGDIA, ZNF331, and IER3 (Table 3). Finally,
several modulated miRNAs targeted DEGs that played a role
in cell proliferation, a process that can be induced in response
to both apoptosis and to skin ulcer formation. Among these
miRNAs, we can mention those that targeted BTG2, EREG,
PRRC2, and APLP2. In particular, EREG (targeted by hsa-
miR-199a-3p, -199b-3p, and -181a-5p and by hsa-miR-192-
5p) and APLP2 (targeted by hsa-miR-199a-3p, -199b-3p,
-139-5p, and -181a-5p) were involved in the proliferation
of corneal epithelial cells and in corneal epithelial wound
healing, respectively [51, 52]. Thus, this gene regulation
may have a role in ocular manifestations of BD like keratitis.

3.4. Network Analysis of Genes Differentially Expressed in BD.
We performed a network analysis in which the functional
interactions between the protein products of modulated
genes in BD were evaluated. By this approach, a protein-
protein interaction (PPI) network comprising 171 genes
(nodes) and 3272 pairs of interactions (edges) was con-
structed (Figure 5(a)). We then performed a clustering
analysis to identify areas of densely interconnected nodes
(clusters/modules; CL) that are predicted to be involved in
common biological processes and to have a crucial role in
the disease pathogenesis. We could detect six clusters that
are graphically represented in Figures 5(b)–5(g). Comparing
the list of miRNA targets to DEGs included in the six clusters
(Supplementary Table 5), we found that, in each cluster, a
large number of DEGs were targeted (Supplementary
Table 6 and Figures 5(b)–5(g)). In particular, we observed
that several of these genes were involved in immune and
inflammatory responses including TNF (CL2), IL10 (CL2),
and IL1A (CL1). Moreover, many of such genes played a
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Figure 1: Validation of differentially expressed miRNAs by real-time PCR. Real-time PCR for the indicated miRNAs were performed in
healthy controls (Healthy) and in BD patients (Behçet). Values are calculated as fold change with respect to healthy samples with the
ΔΔCt method. miR-16-5p and miR-26-5p were used as endogenous controls for miRNA expression (see Material and Methods).
Histograms indicate mean values; bars indicate standard deviation (SD). p = 0 05 (Mann–Whitney test).
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role in B cell response, like EGR1 (CL1), or in T cell response
like, for example, CTLA4, CD4, and MLL (CL1); DUSP2
(CL3); and CD28 (CL4) and NR4A2 (CL5). Other DEGs
targeted in clusters were involved in TLR signaling
including HSPA4, IKBKB, JUN, REL, S100A8, TLR2 (CL1),
and ARF3 and NAMPT (CL2). Interestingly, in the six
clusters, we also observed that various genes involved in
angiogenesis and/or in vascular damage were targeted by
selected miRNAs including THBS1, MMP8, VEGFA (CL1),
FOSL2, THBD (CL2), HIPK1 and DDX6 (CL3), PGK1
(CL4), and ACTR2 (CL6).

Given the well-known biological significance of highly
connected gene clusters, to gain insight on the most relevant
signaling networks that were controlled by the deregulated
miRNAs, we performed a pathway enrichment analysis on

targeted genes that were present in the six clusters. All
the above-mentioned enriched pathways are listed in the
Supplementary Table 7, and Table 4 shows a selection of
the most relevant enriched signaling networks.

The TLR and the JAK/STAT signaling networks, two
pathways notoriously involved in immune response and
frequently associated with autoimmunity, were enriched
in CL1-targeted genes (CL1-TGs). Other pathways impli-
cated in the immune response were enriched in several
genes targeted in clusters including T cell activation
(CL1-TGs, CL2-TGs, and CL4-TGs), B cell activation
(CL1-TGs), and PI3K signaling (CL2-TGs and CL3-TGs).
This pathway is a crucial element in the regulation of
adaptive and innate immune response [53, 54] and is a
key player in inflammatory response. Therefore, in recent
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Figure 3: Selection of miRNAs that targeted genes differentially expressed in BD. (a) Pie chart showing the percentage of BD DEGs that were
targeted by miRNAs modulated in BD. (b) BD-modulated miRNAs and their respective targeted BD DEGs. Genes associated with Th17 cells
are written in bold characters.
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years, highly selective inhibitors of PI3K have been devel-
oped for anti-inflammatory treatments [55]. An enrich-
ment in signalings involved in the inflammatory response

was also found in CL1-TGs (inflammation mediated by
chemokine and cytokine and interleukin pathways) and
in CL5-TGs (integrin pathway).
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Figure 4: Functional classification of BD DEGs targeted by selected miRNAs. Pie charts showing the different GO biological processes in
which BD DEGs targeted by selected deregulated miRNAs in BD can be classified.
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Figure 5: Continued.
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In CL1-TGs and in CL3-TGs, the oxidative stress
response pathway was enriched. Interestingly, an increased
oxidative stress has been described in BD and it has been cor-
related to the severe inflammatory and degenerative clinical
manifestations of the disease [56]. Several networks clearly
connected to vascular damage were enriched in cluster
TGs including PDGF, angiogenesis (CL1-TGs and CL5-
TGs), Wnt, blood coagulation, endothelin, VEGF (CL2-
TGs), and cadherin (CL6-TGs) signaling pathway. VE-
cadherins have a crucial role in endothelial barrier integ-
rity, and noteworthily, in CL6 the ACTR2 gene was tar-
geted, known to stabilize adherens junctions between
endothelial cells of the vascular wall interacting with cad-
herins [57]. Moreover, the Wnt signaling pathway is criti-
cally involved in vascular biology [58]. Finally, in CL1-TGs
and in CL2-TGs the apoptosis and the p53 pathways were
enriched, respectively.

4. Discussion

A systematic analysis of miRNA expression profiles in BD
has not been performed yet. The aim of our work is therefore
to provide a compiled description of miRNAs associated with
BD using an array able to query a very large number of
transcripts in the attempt to dissect the possible regulatory
effects exerted by these molecules on the molecular pathways
relevant for the disease pathogenesis.

In a previous work, we investigated BD-associated tran-
scriptional profiles by a gene expression analysis of PBMC
derived from BD patients and identified a gene modulation
strictly connected to the disease pathogenesis (Puccetti
et al., unpublished observations). Moreover, we showed the
presence of a type I interferon and Th-17 gene signature,
which suggests an autoimmune origin of BD. In this study,
we aimed to complement this gene expression analysis
detecting modulated miRNAs that may target differentially
expressed genes (DEGs) identified in our previous analysis.

To this purpose, we used a sophisticated target prediction
system (mirDIP) [24] to obtain the list of miRNA targets,
which was then compared to the list of DEGs identified in

blood samples of BD patients. The comparison of the two
analyses (gene expression and miRNAs) allows selecting
within deregulated miRNAs only those related to the modu-
lation of genes that would be effectively altered in the PBMCs
of BD patients and might have therefore a pivotal role in the
pathogenesis of the disease.

We observed that there was a good overlap (60%)
between the selected miRNA targets and the BD-modulated
genes, indicating that the majority of the identified miRNAs
regulate genes differentially expressed in BD. Such target
genes belonged to functional classes strictly connected to
typical features of BD. Indeed, several miRNAs targeted pro-
inflammatory genes such as TNF and IL1A. Moreover, tran-
scripts involved in both adaptive and innate immune
response were also targeted. In this regard, we have to men-
tion that selected down-modulated miRNAs controlled
several Th17 cell-associated genes and transcripts involved
in type I interferon response that we found up-regulated in
our previous analysis. This may suggest a loss of control in
BD on two synergistic mechanisms typically associated with
an autoimmune response. We moreover observed a down-
regulation of miRNAs that control members of TLRs and
JAK/STAT pathways, two molecular signalings involved
in autoimmune diseases [44, 59] that are also active in
BD [32, 60, 61]. In addition, miRNAs target genes
involved in angiogenesis, and in blood coagulation, two
processes commonly associated with BD vasculitis were
also down-modulated in BD samples.

Consistently with the tight correspondence between
deregulated miRNA and DEGS in BD, we observed a good
overlap (64%) between the pathways enriched in the deregu-
lated miRNA targets and in the genes differently expressed in
BD. This indicated that, globally, the pathways identified by
the selected miRNAs reflected fairly well the gene regulation
described in our gene expression study, suggesting that the
criteria applied for the selection of miRNAs had effectively
identified miRNAs able to explain the gene modulation
which we had previously described.

Interestingly, we found that both in BD-miRNA and in
BD-DEGs dataset, meaningful signaling networks including,

CL5

(f)

CL6

(g)

Figure 5: Network analysis of genes modulated in Behçet’s disease. (a) PPI network of differentially expressed genes in BD. (b–g) Graphical
representation of the six clusters that were extracted from the PPI network of modulated genes in BD. Red dots indicate DEGs that are
targeted by modulated miRNAs in BD.
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for example, VEGF and VEGFR, endothelins, PDGF recep-
tor, TNF receptor, and IL1- and IL6-mediated TCR and
BCR pathways were enriched.

A pivotal task in molecular biology is to understand gene
modulation in the context of biological networks. Indeed,
proteins achieve their functions in the protein-protein-
interacting network, and interestingly, the dynamics of such
networks can be influenced by miRNAs [62]. We therefore
wanted to identify significant relationships among modu-
lated miRNAs and the PPI network in which the protein
product of modulated genes in BD can be involved. More-
over, since it is known that the repressive effect of a miRNA

may lead to more severe biological effects when it is exerted
on proteins with more interacting partners [62], to highlight
more efficient interrelations, we focused our attention on the
most connected proteins of the network, inspecting the
presence of miRNA targets inside the six clusters extracted
from the PPI network. We found that the six clusters identi-
fied were extensively targeted by several modulated miRNAs,
thus indicating that the deregulation of selected miRNAs
may have a meaningful effect on the dynamics of a protein
network that control the disease pathogenesis. Indeed, genes
targeted in the six clusters played an important role in vascu-
lar biology (i.e., VEGFA, THBS, THBS1, etc.), in inflamma-
tion (i.e., TNF, IL1A, IL6R, CXCR4, etc.), and in immune
response (i.e., CD28, CTLA4, EGR1, TLR2, etc.). Moreover,
the analysis of pathways that were enriched in the target
genes present in the clusters confirmed the essential role
of these transcripts and their relative targeting miRNA in
BD pathogenesis.

In conclusion, this work represents the first analysis
performed on such a large number of miRNAs and inte-
grated with the study of the profiles of gene expression in
BD. The study allowed correlating the expression of miRNAs
and the modulation of genes important for the pathogenesis
of the disease. Using this approach, we have been able to
identify the specific molecular pathways on which the regula-
tion of these miRNAs may occur.

This study sheds light on some epigenetic aspects of
BD identifying specific miRNAs, which may represent
promising candidates for the identification of disease bio-
markers and/or the design of novel therapeutic strategies
in BD.
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Supplementary 1. Supplementary Table 1: miRNAs signifi-
cantly modulated in BD.

Supplementary 2. Supplementary Table 2: pathways enriched
in genes targeted by modulated miRNAs in BD.

Table 4: Pathways enriched in DEGs targeted in each cluster.

Panther pathways p value

CL1

Toll-like receptor signaling pathway 8.44E− 07
Apoptosis signaling pathway 2.34E− 05
Inflammation-mediated by chemokine and cytokine
signaling pathway

3.09E− 05

Interleukin signaling pathway 1.68E− 04
PDGF signaling pathway 1.14E− 03
Oxidative stress response 1.46E− 03
B cell activation 1.80E− 03
T cell activation 3.49E− 03
JAK/STAT signaling pathway 3.81E− 03
Angiogenesis 1.79E− 02
CL2

Wnt signaling pathway 1.20E− 02
Hypoxia response via HIF activation 1.87E− 02
Blood coagulation 2.03E− 02
Insulin/IGF pathway-protein kinase B signaling
cascade

2.31E− 02

p53 pathway feedback loops 2 2.87E− 02
PI3 kinase pathway 3.15E− 02
VEGF signaling pathway 3.64E− 02
Endothelin signaling pathway 4.41E− 02
T cell activation 4.74E− 02
p53 pathway 4.90E− 02
CL3

5HT1-type receptor-mediated signaling pathway 2.07E− 02
PI3 kinase pathway 2.63E− 02
Oxidative stress response 2.72E− 02
CL4

Glycolysis 6.63E− 03
T cell activation 2.79E− 02
CL5

PDGF signaling pathway 2.71E− 02
Angiogenesis 3.03E− 02
Integrin signaling pathway 3.04E− 02
CL6

Cadherin signaling pathway 2.10E− 02
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Supplementary 3. Supplementary Table 3: pathways enriched
in differentially expressed genes in BD.

Supplementary 4. Supplementary Table 4: pathways enriched
both in genes targeted by BD deregulated miRNAs and in BD
differentially expressed genes.

Supplementary 5. Supplementary Table 5: differentially
expressed genes in BD that were included in the six clusters.

Supplementary 6. Supplementary Table 6: differentially
expressed genes in BD that were included in clusters that
are targeted by modulated miRNAs in BD.

Supplementary 7. Supplementary Table 7: enriched pathways
in target genes that are included in clusters.
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