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Organoids: A New Model for SARS-CoV-2 
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The 2019-novel coronavirus (SARS-CoV-2) pneumonia epidemic is a thorny public health problem faced by health 
officials and a major cause of concern for health professionals. However, the currently used immortalized cell lines 
and animal models, though easy to manipulate, can not thoroughly simulate real viral activity due to a lack of target 
cells, species isolation, and insufficient adequate tissues and organs for clinical research. Organoid that emerges as 
an effective model and time-saving approach can simulate the viral life cycle in vitro and explore a therapeutic target 
for antiviral drug development. The 3D tissue cultures contain patient-specific stem cells in vitro to mimic the complex-
ity of real tissue within the 3D microstructure that has the same functionality as the tissue of interest. It avoids the 
problems such as the distortion of genetic markers and animal ethics of using 2D cultures for animal testing and 
can be employed in studies of specific-organ viral infections to fully understand the physiopathological mechanism 
of SARS-CoV-2 infection for vaccine research and development.
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Introduction 

  The current coronavirus disease 2019 (COVID-19) epi-
demic caused by SARS-CoV-2 is life-threatening for all 
populations. There have been 71,581,532 confirmed cases 
and 1,618,374 deaths worldwide through 16 December, 
2020 (1). As a highly pathogenic virus, preexisting evi-
dence shows that SARS-CoV-2 cell entry lies in its strong 
affinity for the human angiotensin-converting enzyme 2 

(ACE2) receptor through its receptor-binding region and 
the binding of the spines protein S to ACE 2 to activate 
the cell surface protease transmembrane serine protease 
family member II (TMPRSS2). This activation triggers vi-
ral-cell membrane fusion, which allows SARS-CoV-2 cell 
entry and initiates infection, it mainly causes alveolar in-
jury and acute respiratory failure in patients, as well as 
varying degrees of damages to the nerve, circulation, di-
gestion, urinary, and immune systems, which tremen-
dously increases the probability to progress to a critical 
condition in patients with underlying diseases (2). 
  An in-vitro model shows the advantages of tracking the 
route for viral infection, identifying affected organs, ex-
ploring a series of mechanisms of pathological damage, 
and aiding in the development of vaccines and other inter-
ventions for precaution, control, and treatment for the in-
fection (3). Chu et al. (4) analyzed 25 cell lines, and found 
that only the human lung (Caco2) and small intestinal 
(Calu3) cells are vulnerable to the virus, and they also 
found that none of the cell lines cultured under laboratory 
standard conditions could compare with those living in 
patients. In terms of the degree of cell immortalization, 
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cultured cell lines cannot thoroughly mimic the actual in-
ner environment of the organ in which cells of interest 
lived. Besides, a lack of cell lines or even one representa-
tive cell line in some organs often leads to the failure of 
the establishment of an organ culture system. These issues 
bias the experimentally predicted results from the clinical 
manifestations of viral infections. However, an obvious 
limitation of an animal model is that the symptoms of ani-
mal models cannot correspond to those of human patients 
at the same stages of the viral life cycle; so virus-related 
results can be biased in an all-around way (5). At present, 
because of the advantages in accessibility and operation, 
murines are commonly representative animal models, 
which are widely employed in virus research. However, 
species variation brings about categorical, distributional, 
and structural differences in ACE2 expression between 
humans versus mice. The use of transgenic technology in 
mice made ACE2 overexpression limited in the ileum; af-
ter the SARS-CoV-2 infection, the virus was merely detect-
able in the lung and the intestine, which was inconsistent 
with multisystem damage in infected patients (6); there 
even exist distinct descriptions of mouse strains, and some 
studies reported that the coronavirus could not infect 
wide-type mice or rats (7). Since the inflammatory cyto-
kine storm theory is being known to more people, mouse 
models are inappropriate for research on immune re-
sponses to the SARS-CoV-2 infection due to a lack of key 
inflammatory mediators, such as interleukin IL-32 and 
IL-37. Neither are other animals due to part or all of the 
problems, which become evident obstacles to the grasping 
of knowledge on this virus in an all-around way and sub-
sequent vaccine development (8).
  As the confirmed cases and deaths are climbing at an 
alarming pace, it is very urgent to develop a new model 
to accurately simulate the biological characteristics of the 
virus in a short period, without the mentioned short-
comings of cell and animal models. Organoids are a useful 
research tool to culture patient-specific stem cells to devel-
op into 3D organs with organ-like properties. The organo-
id graft has a long-term survival in vivo, and it can be used 
for screening of new drug candidates, without problems 
of potential species-related differences and ethical diffi-
culties (9). In this sense, organs abundant in ACE2-ex-
pressing cells are the gateway for virus invasion. In the 
human body, in addition to the lung, ACE2 is expressed 
in the heart, kidney, small intestine, blood vessels, testis, 
and other tissues, as well as choroid, cornea, and hep-
atobiliary organoids. Hence organoid offers the most rele-
vant preclinical models to effectively explore and accu-
rately understand the pathophysiological characteristics of 

SARS-CoV-2 infection and pinpoint possible targets of 
drug action in a short period, as illustrated in Table 1. 
In this paper, we reviewed culture protocols and the effi-
cacy of currently reported COVID-19 organoids to encour-
age more in-vitro and in-vivo studies of shedding light on 
the mechanism of SARS-CoV-2 infection (Fig. 1).

Brain Organoids

  Some patients infected with SARS-CoV-2 present with 
central nervous symptoms such as headache, nausea, and 
emesis. Brain CT and MRI findings revealed multiple 
hemorrhagic lesions, and the viral RNAs were detectable 
in the cerebrospinal fluid (10). Also, SARS-CoV-2 brain 
infection was reported in mouse models. Of note, it is the 
central nervous system (CNS) infection rather than respi-
ratory infection that leads to death, which provides a new 
direction to study the mechanism of the virus with dam-
ages to multi-organ function (11). The published evidence 
is insufficient to figure out the origin of the virus and the 
exact pathogenesis of the impairment of brain function af-
ter infection. Some studies used brain-like organoids con-
taining the cell lines differentiated from human pluri-
potent stem cells (hPSC) to assess the susceptibility of 
brain cells to SARS-CoV-2 and further clarify the disease 
progression (12, 13). In the study by Jacob et al. (14, 15), 
after infection with mutant forms of SARS-CoV-2, cerebral 
organoids containing neuronal cells (astrocytes or micro-
glia) and organoids that are representative of a single 
brain region, such as the cortex, hippocampus, hypothal-
amus, and midbrain, showed distinct affinities for the 
virus. And the virus aggregation was only found in the 
choroid plexus of hippocampal organoids. The choroid or-
ganoids have been established to understand cerebral dys-
function in SARS-CoV-2 infection, and transcriptome se-
quencing revealed that AchE2, TMPRSS2, and NRP1 were 
highly expressed in SARS-CoV-2-infected choroid plexus 
epithelial cells. This suggests that choroid plexus epi-
thelial cells are probably the gateway for the entry of the 
SARS-CoV-2 virus into the CNS, which allows a cytoplas-
mic continuity between infected cells, that is, the syncy-
tium, thus increasing the infection efficiency between ad-
jacent cells (16). Besides, it was reported that cerebral or-
ganoids containing infected neurons in the replicative 
phase resulted in losses of taste and smell, delirium, 
stroke, and other neurological damages in patients. 
Although cerebral organoids imply the possible sites of 
SARS-CoV-2 entry in the brain, it is too early to conclude 
that the virus can invade the brain. Besides, cerebral orga-
noid models are still in their infancy. Due to a lack of 
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Table 1. Organoids’ cultural system for SARS-CoV-2 research

Organoids formation Cytokines Markers expression Period/meaning Reference

Choroid plexus organoid 1. Y-27632: 0.5 um
2. LDN-193189: 5 um
3. SB-431542: 1 um
4. IWP-2: 3 um
5. CHIR99021: 200 ng/ml
6. BMP4: 10 ng/ml
7. BDNF: 130 ng/ml
8. GDNF: 130 ng/m

.ACE2

.TMPRSS2

.OTX2

.FOXG1

.LMX1

.TTR

.AQP1

.OTX2

3∼7 week Jacob et al.

Ocular organoid 1. FGF2: 5 ng/ml
2. KGF: 20 ng/ml
3. Y-27632: 10 μM
*(Noggin, LDN-193189, SB-431542, 

BMP4 are added at the first four days, 
but the concentration is unknown)

.ACE2

.TMPRSS2

.Zone 3 

.E-cadherin

.Pax6 

.ZO-1 

.KRT5

.KRT8

.KRT19

.KRT13

.KRT15

.KRT19

.AQP3

8∼12 week Hayashi et al.

Lung organoid 1. Activin A: 100 ng/ml
2. SB431542: 10 μM 
3. CHIR99021: 5 μM
4. FGF7: 10 ng/ml
5. FGF10: 10 ng/ml 
6. CHIR99021: 3 μM 
7. EGF: 10 ng/ml
8. VEGF: 10 ng/ml
9. PIGF: 10 ng/ml

10. cAMP: 100 μM 
11. IBMX: 100 μM
12. BMP4: 10 ng/ml

.ACE2

.TMPRSS2

.SOX2

.FOXA2

.NKX2

.SPB

.SPC

About 7 week Han et al.

Human bronchial organoids 1. FGF2: 5 ng/ml
2. FGF7: 20 ng/ml
3. FGF10: 100 ng/ml
4. Noggin: 100 ng/ml
5. R-spondin1: 300 ng/ml
6. Y-27632: 10 μM
7. SB202190: 10 μM
8. A83-01: 10 μM

.ACE2

.TMPRSS2

.NGFR

.PROM1

.TUBA1A

.MCIDAS

.MUC20

.MUC5B

.SCGB1A1

.KLF5

.α-tubulin

.CC10

.mucin 5AC

.KRT5

About 1 week Tan et al.

other mesenchymal components in the choroid organoid, 
the blood-brain barrier (BBB) has not been well-formed 
to block foreign bodies. Secondly, whether the high-level 
expression of ACE2 receptors or a lack of BBB contributes 
to the high concentration of the virus remains uncertain. 

Thirdly, the time of the virus infection of brain organoids 
between the studies by different teams were different, so 
this model requires modification for long-term observation 
in the future.
  At present, brain organoids are used for the screening 
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Table 1. Continued

Organoids formation Cytokines Markers expression Period/meaning Reference

Heart organoid 1. BMP-4: 20 ng/mL 
2. activin A: 6 ng/mL
3. IWP-4: 5 mM 
4. IWR-1: 10 mM

.ACE2

.TMPRSS2

.MLC2v

.CD90

.CD31

.WT-1

.Ki-67

.Around 2 week Mills RJ et al.

Intestinal organoid 
(human and bat)

1. A8301: 500 nM 
2. SB202190: 10 μM
3. hEGF: 50 ng ml−1 
4. Y-27632: 10 μM
5. hGastrin I: 10 nM

.ACE2

.TMPRSS2

.CTSL

.SMOC2

.CDCA7

.OLFM4

.ASCL2

.AXIN2

.Lgr5

.4∼12 week

.The first bat intestinal 
organoid

Zhou et al.

Liver ductal organoid 1. EGF: 50 ng/ml
2. FGF10: 100 ng/ml
3. HGF: 25 ng/m
4. Nicotinamide: 10 mM
5. A83-01: 5 uM
6. FSK: 10 uM
7. Noggin: 25 ng/ml
8. Y27632: 10 uM

.ACE2

.TMPRSS2

.EPCAM

.keratin 19

.1 week

.The first infection model 
reported of SARS-CoV-2 
human organoid

Zhao et al.

Kidney organoid 1. CHIR99021: 8 mM
2. FGF9: 200 ng/ml 
3. Heparin: 1 mg/ml 
4. Activin A: 10 ng/ml 

.ACE2

.TMPRSS2

.SLC3A1

.SLC27A2

.PODXL

.NPHS1

.NPHS2

About 3 weeks Monteil et al.

Capillary organoid 1. CHIR99021: 12 μm
2. SB431542: 10 um
3. BMP4: 30 ng/ml
4. VEGF-A: 2 μm
5. FGF-2: 100 ng/ml
6. Y-27632: 50 μm
7. Forskolin: 2 μm

.ACE2

.TMPRSS2

.CD31 

.UEA-I

.von-Willebrand 

.VE-PTP,

.NG2 

.SMA 

.calponin 1 

.ICAM-1

＞2 months Wimmer et al.

of Sofosbuvir and other candicate drugs (17). Obviously, 
this platform will be much more perfect for relative appli-
cation after inducing of properly organized regional iden-
tities in brain organoids,in particular aimed at lucubrating 
SARS-CoV-2 infection.

Ocular Organoids 

  As the SARS-CoV-2 virus mainly infects the respiratory 
tract by aerosol, wearing a mask and social distancing to 

block the transmission have been undertaken. However, 
other studies indicated that ACE2 and TMPRSS2 were ex-
pressed on the ocular surface, and animal experiments 
showed that SARS-CoV-2 was detected positive in the con-
junctiva of infected rhesus monkeys (18). Therefore, using 
eye organoids to predict the infection site is needed. 
Besides, protections against eye infection is non-negli-
gible. Makovoz et al. (19) established six types of eye orga-
noids cultured from human PSCs and found that ACE2 
and TMPRSS2 were highly expressed in cornea organoids. 
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Fig. 1. Several organoids have been 
established to study SARS-CoV-2. 
The upper refers to clinical symp-
toms of different organs infected by 
COVID-19, the medium is mainly 
emphasised on the mechanism of 
Inflammatory cytokine cascade after 
virus infection, and then, the bottom 
is now there are seveal organoids 
models (1. Brain organoids; 2. Heart 
organoids; 3. Lung organoids; 4. 
Gastrointestinal organoids; 5. Kidney 
organoids) used to screen corres-
ponding anti-virual drugs, further-
more, organoids-on-the-Chips is a 
more complete model of studying 
the entire process of virus infection 
in next days.
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After one hour of infection of corneal organoids by 
SARS-CoV-2 in vitro, the viral replication was detectable. 
This suggests that the cornea can be considered as the en-
trance and proliferation site of virus infection. At the same 
time, TMPRSS11E was detected in corneal organoids, 
which showed a high degree of structural similarity with 
ACE2 and a high identity with TMPRSS2 in the domain 
and functional sites. This highlights comprehensive pro-
tective measures against SARS-CoV-2 infection, including 
eye infection, and indicates the use of TMPRSS11E as a 
potential infection site for the corresponding inhibitor 
treatment (20). Besides, the inflammation storm induced 
by a high NF-KB level in this corneal organoid model sug-
gests that whether the inflammation storm is caused by 
SARS-CoV-2 eye infection or spreading the virus to the 
eye via respiratory or systemic infections has not been 
fully understood, which needs further exploration.
  Ocular organoids, it is warranted to better clarify how 
infection in the eye may be helpful to know the pathway 
of transmission into other regions of the body.

Heart Organoids

  Clinically, 20%∼30% of infected patients showed se-
vere damages to cardiac function, such as myocardial 
damage or even acute myocardial infarction; their MRI 
showed that 54% of these patients had myocardial edema 
(21). Given that the systemic circulation is closely related 
to the pulmonary circulation, ACE2 receptors are highly 
expressed in the heart. Hence, except for acute injuries to 
the respiratory system, after the infection of the host by 
SARS-CoV-2, tissues are probably damaged, triggering in-
flammatory cytokine storm and the resultant vaso-
constriction and metabolic disturbance in myocardial cells 
due to anoxia. Both jointly lead to irreversible heart 
injuries. To develop therapeutic regimens, heart organo-
ids, as a platform for drug screening, are conducive to the 
implementation of multiple drug experiments in batch. 
Mills et al. (22) identified that the BRD4 (bromodomain 
protein 4)-fibrosis/iNOS axis was a pivotal intracellular 
mediator of severe cardiac functional damages in humans 
or even death induced by cytokine storm using heart orga-
noids, proteomic analysis, and viral sequencing. Therefore, 
the axis can be considered to be a INCB054329, and this 
agent is expected to be a candidate to reduce damage to 
cardiac function in COVID-19 patients (23). However, an-
other problem is that symptoms of arrhythmia and my-
ocardial infarction cannot be mimicked by heart organo-
ids; exempt from elimination reaction as a result of the 
absence of metabolic organs, drug doses required for heart 

organoids are significantly higher than the corresponding 
blood concentrations in humans. All these require more 
discussions about the translation of appropriate doses of 
candidate agents into clinical application.
  Generate a more complete heart organoids, from the cel-
lular composition, functional architecture to the reprodu-
cibility with the 3D bioprinting technology, making the 
organoids more advanced to simulate the changes asso-
ciated with infection in vivo (24).

Lung Organoids

  After infection with the virus, 80% of patients devel-
oped clinical manifestations such as lung injury and acute 
respiratory failure, which are related to the high ex-
pressions of ACE2 and TMPRSS2 in the airway epi-
thelium (25). However, cells within the respiratory epi-
thelium derived from mouse models did not express 
ACE2; thus, adequate animal models should be carefully 
selected for the studies of the interaction between the lung 
and SARS-CoV-2 virus. Pulmonary organoid cultures pro-
vide a functional research model in vitro for similar stud-
ies of respiratory diseases, which have been used for the 
research of respiratory syncytial, avian influenza, and par-
ainfluenza viruses (such as H1N1, H7N9, H3N2) (26, 27). 
Han et al. (28, 29) developed a bronchial epithelial cell 
culture model (or human bronchial organoid) and identi-
fied that its highly expressed ACE2 and TMPRSS2 were 
associated with cell phenotypes. This model may offers ad-
vantages in accurately assessing human lung cells infected 
with SARS-CoV-2. During close monitoring for this mod-
el, they found that a large number of SARS-CoV-2 viruses 
were spread to the culture medium after the bronchi orga-
noid was infected, making it possible to observe the proc-
ess of the virus spreading from the replicative to secretive 
phase in vitro. They cultured lung organoids to screen a 
variety of drug candidates using a 384-well plate and 
found that imatinib, mycophenolic acid, quinacrine hy-
drochloride, and chloroquine effectively blocked the ACE2 
cleavage site, thereby inhibiting viral replication in vivo. 
In their study, camostat, an inhibitor of TMPRSS2, was 
used to assess its efficacy in inhibiting viral infection and 
disease progression; the results revealed approximately 
50% inhibition by camostat, and strikingly, remarkably 
suppressed inflammation storm which had been initiated 
by the activation of the IFN-1 after SARS-CoV-2 infection, 
thus avoiding the aggravation of extensive damages to the 
respiratory system (30). Interestingly, nowadays androgen 
signaling as a vital modulator of ACE2 levels through tar-
get analysis of hit compounds, and antiandrogenic drugs, 
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such as finasteride, dutasteride, can downregulate the ex-
pression of ACE2 in lung organoids, therefore, reducing 
the susceptibility of men to SARS-CoV-19 and enriching 
the antiviral drugs candidate category (31). However, as 
the sources of stem cells reported are differed from each 
other, the susceptibility of lung organoids to the 
SARS-CoV-2 virus, the expression of virus-binding re-
ceptors, and the damage to different lung organoids after 
infection need to be further studied (32). Besides, no con-
sensus on protocols for lung organoid cultures has been 
reached among different laboratories, and the longest cell 
culture time was even as long as 50 days, which may bias 
the experimental results as a whole.
  The lung organoids are mainly accustomed for screen-
ing the FDA approved antivirual drug, with the tissue en-
gineering and precision medicine popular, this organoid 
model should realize various exploration of pulmonary 
pathogens, especially during the outbreak period of 
SARS-CoV-2.

Gastrointestinal Organoids

  In addition to the most common respiratory virus in-
fections, the number of clinical cases associated with the 
gastrointestinal tract is also on the rise. SARS-CoV-2 RNA 
was frequently detected in the feces of patients, some of 
whom with a negative nasopharyngeal test even showed 
positive anal swab. Current evidence reveals that mice can 
be infected with the virus by gavage, featuring symptoms 
of pulmonary infection (33). Along with the known evi-
dence that ACE2 is a significant regulator of intestinal in-
flammation and is highly expressed in the small intestine, 
all this implies the gastrointestinal infection or potential 
fecal-oral transmission. The gut organoid that fueled a re-
search boom of norovirus, Zika virus, avian H7N9, and 
swine H1N1 influenza is currently used for COVID-19 
(34). Given the 96% homology between SARS-CoV-2 and 
isolated coronavirus Bat-SL-CoVZC45 and Bat-SL- 
CoVZXC21 from bats, Zhou et al. (35), for the first time, 
developed both human and bat intestinal organoid cul-
tures and monitored ACE2, TMPRSS2, and cathepsin L 
levels at different time points after infection with 
SARS-CoV-2. The results showed that ACE2, TMPRSS2, 
and cathepsin L were highly expressed in intestinal orga-
noids of humans and bats. Both human and bat intestinal 
organoid cultures presented a high copy number and a 
similar proliferation rate at the same time point. This 
study serves as a warning about solicitous protections for 
gastroscopists against both potential fecal-oral trans-
mission and aerosol transmission when examining in-

fected patients (36). Besides, expressions of some in-
flammatory mediators (IFNL2 and IFNL3) were up-regu-
lated in human intestinal organoid cultures after SARS- 
CoV-2 infection, and whether the up-regulation of these 
factors in response to the host mediates the occurrence of 
corresponding clinical symptoms such as gastrointestinal 
syndromes should be confirmed (37).
  Gastrointestinal organoids are mainly used for the iden-
tification and validation of virus infection of the digestive 
tract pathways and mechanisms, however, patients have 
two major mechanisms of antiviral ex vitro, intestinal 
flora and lymphatic system, namely defense barrier, regu-
lating neutralization and destroying infection with out-
standing contribution, further improve the structure of 
gastrointestinal organoids to be suitable for COVID-19 
(38, 39).

Liver Duct Organoids

  Clinically, more than 50% of COVID-19 patients ex-
hibit elevated serum levels of ALT, AST, albumin, and bi-
lirubin, which indicate an underlying relationship be-
tween infection and liver injury. Relevant studies reported 
that ACE2 is only expressed in bile duct epithelial cells 
among digestive glands (40). Liver and bile duct organoid 
cultures are effective and time-saving methods to confirm 
the hypothesis that SARS-CoV-2 infection of the liver and 
biliary duct might indirectly cause liver injury. Yang et 
al. (41) established hepatobiliary organoids from bile duct 
epithelial cells and found the high expressions of ACE2 
and TMPRSS2 in the organoid. After 24 hours of viral in-
fection, qPCR analysis revealed high levels of viral repli-
cation, as well as up-regulated expression levels of apopto-
sis genes and down-regulated levels of the bile acid trans-
port gene ACTB, ultimately leading to programmed death 
of hepatobiliary cells. Extensive apoptosis of hepatobiliary 
cells will break the bile duct epithelial barrier, resulting 
in bile acid accumulation and a series of clinical symp-
toms (42). Although significant up-regulation of chemo-
kines in bile duct organoid cultures were observed, in-
dicating the activation of inflammatory pathways in re-
sponse to the viral infection, whether liver damage was di-
rectly caused by SARS-CoV-2 infection, inflammation 
storm, side effects from anti-SARS-CoV-2 drugs, hep-
atobiliary complications due to bile duct epithelial cell 
damage, or combined factors remains unknown. Moreover, 
this hepatobiliary organoid from human PSCs did not 
consist of important components of the immune system 
such as vascular endothelial cells and Kuffer cells, which 
cannot completely mimic human liver tissues rich in 
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blood supply and the sites of the specific immune re-
sponse following SARS-CoV-2 infection. Therefore, a 
modified hepatobiliary organoid with sufficient liver func-
tions is required.
  Hepatobiliary organoids provide insights into SARS- 
CoV-2 cell tropism, viral replication kinetics and the asso-
ciated cellular responses after viral entry. However, con-
sidering that the cellular complexity of native tissues, for 
instance specific immune cell subsets, studys the inter-
actions between human hepatobiliary epithelial cells and 
immune cells in the presence and absence of pathogens 
of COVID-19, Liver duct organoids will be commited into 
that to improve the states (41).

Kidney Organoids

  COVID-19 patients frequently reported hematuria, pro-
teinuria, and other classic symptoms of acute kidney in-
jury (43). Consistently, relevant studies have confirmed 
that ACE2 is widely expressed in the kidney, particularly 
in vascular endothelial cells within the kidney, this in-
dicates that the kidney is vulnerable to the SARS-CoV-2 
attack (44). Xia et al. (45) established organoid cultures 
of human proximal tubular epithelial cells combined with 
gene-editing techniques. They found that ACE2 ex-
pression was two times higher in 3D cultured cells than 
that in 2D cultured cells, suggesting that 3D culture con-
ditions might be more pathologically relevant than 2D 
culture conditions. Monteil et al. (46) developed a kidney 
organoid model with high ACE2 expressions, which was 
highly consistent with the renal tissue structure within 
two weeks after six days of SARS-CoV-2 infection, the lev-
el of SARS-CoV-2 RNA in the supernatant of the renal 
organoid markedly increased, indicating that the kidney 
was vulnerable to the virus invasion. To illustrate whether 
SARS-CoV-2 invades renal cells via ACE2, they added a 
trial drug human recombinant soluble ACE2 (hrsACE2) 
to competitively binding to the virus rather than host cells 
(47). As a result, the SARS-CoV-2 load decreased by about 
1000∼5000 times in a dose-dependent manner compared 
with the blank control group. The question is that current 
renal organoid cultures only mimic the renal functions of 
human fetuses in the second trimester, other than the in-
fected kidney of adults. This encourages modified in-
dividual renal organoids targeting susceptible populations 
to understand renal infection with SARS-CoV-2 and the 
resultant renal dysfunction more accurately. As renal orga-
noid models have been used for the validation of the effi-
cacy of various trial drugs, whether the inhibition of virus 
load by hrsACE2 gives way to multiple viral invasions and 

whether it may induce antibody-dependent enhancement 
are two great concerns, which are critical to the vaccine 
development (48).
  Kidney organoids containing relatively abundant ACE2 
may be another viscera of virus attacks, in addition, anti-
viral agents cause tissue organs injuries to some degree, 
so the novel model lays the foundation for clinical combi-
nation experiment as a object for screening drug replacing 
cell lines and animals.

Prospective and Challenges 

  Infection of a 3D organoid model with viruses aids in 
the study of cell/tissue dynamics in an organoid. Besides, 
differences in drug diffusion and drug delivery to various 
tissues can be minimized by enhanced cell-to-cell contact 
within the model. Studies of the life cycle of SARS-CoV-2 
and the efficacy of prevention and treatment drugs can be 
more objective by using 3D organoid models, with abun-
dantly expressed ACE2 and TMPRSS2 in the models from 
human cells of interest. Theoretically, 3D organoid models 
perfectly mimic the complexity of a multi-cell environ-
ment, tissue structures, and functions of target organs to 
explore SARS-CoV-2 infection and drug screening more 
accurately (49). It is worth mentioning that SARS-CoV-2 
often leads to type 1 diabetes in the clinic. Takebe et al. 
(50) developed pancreatic organoids from co-cultured 
PSCs, umbilical cord-derived endothelial cells, and mesen-
chymal stem cells, and transplanted the organoids into di-
abetic mice. They found that blood vessels in the host 
quickly grew into the organoid grafts, forming functional 
structures of the pancreas. Finally, the blood glucose lev-
els and the weight of these diabetic mice returned to nor-
mal levels. This model renews hope for curing type I dia-
betes induced by SARS-CoV-2 infection. Currently, the 
failure rate of drug development during the preclinical 
testing period is 96.4% (51); 2D cell line cultures, on the 
other hand, as experimental models for drug testing, have 
significant differences in substrate mechanics compared 
with an internal microenvironment and genetic in-
formation, as well as flaws such as an individual 
mismatch. At the same time, a large amount of use of ani-
mals merely provides insufficient efforts in the progress 
of speedy approval of drugs for sale. So organoids, as an 
emerging model for virus research, have higher plasticity.
  Considering that mucous membrane, membrane lining 
body cavities, and canals of the respiratory, digestive, and 
urogenital systems, as the first line of defense, are exposed 
to the outside world, protections against viral penetration 
into the first line of immune defense is a high priority 
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(52). A problem of current organoid models for COVID-19 
research is a lack of the involvement of innate immune 
cells. Therefore, a modified organoid model integrated 
with epithelium and immune cells is required to simulate 
natural immunity to SARS-CoV-2, and the dynamic proc-
ess of the immune system coinciding with the disease 
progresses. A more convincing model will aid in future 
clinical trials to ascertain the efficacy and safety of treat-
ment plans. Of note, current organoid models are devoid 
of components of multiple organs, which have not yet re-
flected organ-to-organ immunological communication 
(53). As COVID-19 is a multi-organ metabolic disease, 
studies of pathogenetic and antiviral mechanisms after in-
fection require multi-purpose organoid models to re-
sponses and evaluate the efficacy and safety before clinical 
trials. Besides, notwithstanding cost-consuming and ethic 
and strain issues, animal models have obvious superiority 
over organoids in simulating infection signs after the viral 
invasion and establishing models of underlying diseases to 
explore possibly aggregated symptoms or even death after 
infection. At the same time, current technologies cannot 
yet simulate endocrine and nervous regulations in organo-
ids and interactions between organoids and intestinal mi-
croecological conditions. Animal models can not only 
compensate these shortcomings of organoids but provide 
first-hand data of possible neuropsychiatric symptoms af-
ter virus infection as animals have behavioral and cogni-
tive competences, which is a problem of organoids, as an 
emerging model for virus research, awaiting resolutions in 
comparison with animal models (8).

Conclusions

  Organoids were ranked as one of Science’s Top 10 
Breakthroughs of 2013. So far, a variety of organoids with 
main physiological structures and partial functions have 
been successfully cultivated, such as cerebral, lung, and 
gastrointestinal models. Its combination with gene-editing 
technologies such as CRISPR/Cas9 and biomaterials such 
as Nichoid, it is a three-dimensional scaffold based on the 
precise geometry of pores (54). The cells grown on the 
scaffold are subjected to the combined action of external 
forces such as mechanical load of fluid shear force and 
osmotic force, which mainly affects the cytoskeleton to in-
duce gene rearrangement and thus lead to changes in the 
entire transcriptome (55). Therefore, organoids will be im-
proved with the assistance of Nichoid and organoids-on- 
a-chip platforms that fine-regulate the physical and chem-
ical parameters of organoid (53). As a carrier to study the 
high-throughput drug screening and the establishment of 

organoid biobanks and other techniques has achieved 
fruitful results (24). Therefore, the application of organo-
ids to COVID-19 research is conducive to mimic processes 
from mastering the infection mechanism to developing 
therapeutic measures. Advances on continuously modified 
organoid models integrated with multiple cell components 
alongside other state-of-the-art technologies to overcome 
current shortcomings are helpful to provide a more reli-
able model for the in-depth study of the COVID-19 epi-
demic and accelerate the pace of the treatment.
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