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Diacylglycerol (DG) is unique in lipid metabolism because it serves not only as
an intermediate product for triglyceride synthesis, but also as a signaling molecule
that activates proteins containing DG-responsive elements, such as protein kinase
C. Consequently, DG acts as a hub between energy metabolism and intracellular
signaling. Of DG metabolizing pathways, DG kinase (DGK) phosphorylates DG to
produce phosphatidic acid, which also serves as a second messenger. Several lines of
evidence suggest that DGK is deeply involved in metabolic diseases such as obesity
and insulin resistance. Of DGK isozymes, DGKε is simplest in terms of structure,
but it is characterized by substrate specificity toward arachidonoyl-DG. Recently, we
have reported that DGKε deficiency promotes adipose tissue remodeling in mice
during the course of high fat diet (HFD) feeding regimen including obesity, insulin
resistance, and beige adipogenesis. DGKε ablation engenders altered expression of
other lipid metabolizing enzymes, including adipose triglyceride lipase (ATGL), hormone-
sensitive lipase (HSL), and diacylglycerol acyltransferase (DGAT). Subcellular localization
of DGKε in the endoplasmic reticulum suggests involvement of this isozyme in lipid
energy homeostasis. This review presents current findings of DGKε in lipid-orchestrated
pathophysiology, especially unique phenotypes of DGKε-knockout mice in the early and
late stages of obesogenic conditions.

Keywords: adipose tissue, adipose triglyceride lipase, beige adipogenesis, diacylglycerol kinase, glucose
tolerance, obesity, uncoupling protein 1

INTRODUCTION

Lipid is an indispensable constituent of cells. It composes biological membranes surrounding the
cell itself, the nucleus, and subcellular organelles. In addition, lipid is stored as an energy source
in a specialized organelle called lipid droplet. Of lipids, diacylglycerol (DG), a basic structure of
phospholipids, comprises at least 50 molecular species (Sakane et al., 2018) containing two acyl
chains of various combinations at sn-1,2, sn-1,3, or sn-2,3 positions (Zechner et al., 2012). In terms
of energy metabolism, DG-containing acyl chains at sn-1 and sn-2 positions (1,2-DG) serves as
an intermediate product for triglyceride (TG) synthesis. In terms of signal transduction, 1,2-DG
is known to serve as an intracellular signaling molecule that activates several proteins including
conventional and novel types of protein kinase C (PKC), Unc-13, RasGRP, and transient receptor
potential channels (Kanoh et al., 1990; Nishizuka, 1992; Sakane et al., 2007; Goto et al., 2014).
Consequently, DG acts as a hub between lipid metabolism and intracellular signaling.
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As depicted in Figure 1, DG derives from various sources.
It is metabolized via several enzymatic pathways. In signal
transduction cascade, 1,2-DG derives from phosphatidylinositol
4,5-bisphosphate (PIP2), a minor component of biological
membrane, via phospholipase C (PLC) upon receptor
stimulation (Goto et al., 2007; Blunsom and Cockcroft,
2020). In the course of energy metabolism, DG represents both
a precursor of TG synthesis by DG acyltransferase (DGAT)
and a product of TG hydrolysis by adipose triglyceride lipase
(ATGL) (Zechner et al., 2012). In this regard, the former is
1,2-DG, whereas the latter is 1,3-DG or 2,3-DG. Therefore,
these DGs are not intermingled and are separately metabolized.
Other DG metabolizing enzymes include the following: (1)
Hormone-sensitive lipase (HSL) hydrolyzes 1,3-/2,3-DG to
monoacylglycerol (MG); (2) DG lipase α acts on 1,2-DG to
produce 2-monoacylglycerol (2-MG); and (3) DG kinase (DGK)
phosphorylates 1,2-DG to produce phosphatidic acid (PA). This
catalysis is reversed by PA phosphatase, which dephosphorylates
PA to generate DG (Goto et al., 2014; Sakane et al., 2018).

Of DG metabolizing enzymes, the significance of DGK
has been reviewed comprehensively elsewhere (Sakane et al.,
2007; Goto et al., 2014; Mérida et al., 2019). Briefly, DGK
comprises an enzyme family composed of 10 isozymes in
mammalian species. The DGK isozymes are classified into types
I-V based on molecular structure. Each DGK isozyme shows a
distinct enzymatic property, tissue distribution, and subcellular
localization (Goto et al., 2007, 2014; Sakane et al., 2007; Topham
and Epand, 2009). Considering these biochemical routes of DG
metabolism described above, it is noteworthy that 1,2-DG, a
substrate of DGK, lies at the crossroads of both TG precursor
and second messenger. This arrangement implicates DGK in the
regulation of both energy homeostasis and signal transduction.

Of the DGK family, DGKε is simplest in structure (64 kDa)
and belongs to type III DGK (Tang et al., 1996). The most
prominent feature of DGKε is its substrate specificity toward
sn-2-arachidonoyl (20:4) DG species (Glomset, 1996; Tang
et al., 1996; Nakano et al., 2016). Since polyphosphoinositides
(PPIns) are composed mostly of sn-1-stearoyl-2-arachidonoyl
acyl chains, arachidonoyl-DG is incorporated efficiently into
PPIns (Glomset, 1996). However, catalysis of arachidonoyl-
DG by DG lipase α generates 2-arachidonoyl glycerol (2-AG),
an endocannabinoid that serves as endogenous “marijuana”
in the brain (Bisogno et al., 2003; Tanimura et al., 2010).
Therefore DGKε can be reasonably expected to participate in
various pathophysiological events. This expectation is supported
by several reports describing that DGKε is implicated in
kidney diseases (Lemaire et al., 2013; Zhu et al., 2016), seizure
(Rodriguez de Turco et al., 2001), inflammatory reaction
(Yamamoto et al., 2014), and endoplasmic reticulum (ER) stress
(Matsui et al., 2014).

From the perspective of subcellular localization, DGKε

localizes to the ER (Kobayashi et al., 2007; Matsui et al., 2014;
Nakano et al., 2016; Hozumi et al., 2017). Actually, ER is a
central site for lipogenesis, from which lipid droplets protrude
from the ER membrane stuffed with TG for storage. Therefore,
ER-resident DGKε is thought to regulate 1,2-DG for signaling
and energy metabolism. Recently, dynamic alterations of adipose

tissue physiology under DGKε-deficient conditions have been
reported (Nakano et al., 2018, 2020). This review specifically
assesses the functional implications of DGKε in lipid orchestrated
pathophysiology of adipose tissues under short-term and long-
term high fat diet (HFD) feeding conditions.

DIACYLGLYCEROL KINASE
ε-KNOCKOUT MICE SHOW OBESITY
AND GLUCOSE INTOLERANCE UNDER
SHORT-TERM HIGH FAT DIET FEEDING
CONDITIONS

To investigate metabolic syndrome, an abnormal lipid
metabolism characterized by obesity and insulin resistance,
HFD feeding is a useful model (Li et al., 2005; Lee et al.,
2011; Benoit et al., 2013; Cantley et al., 2013). This model
induces energy stress by overloading a fat-enriched diet,
causing excessive TG accumulation in adipose tissues. In
normal or healthy individuals, however, these obese conditions
can be managed by homeostatic mechanism to keep the
organism within a physiological range or at least to avoid
immediate deterioration. In this regard, investigating how
the phenotype is developed during the course of the model
and identifying a primary event of a defect or mutation of a
given gene is important because the final stage of metabolic
syndrome shows a quite similar phenotype despite the
distinct causes.

Nakano et al. (2018) have examined how lipid metabolism
is altered in DGKε-knockout (KO) mice under HFD feeding
conditions. At 21 days of HFD feeding, a very early phase of
obesogenic conditions, DGKε-KO mice tend to increase more
body weight compared with wild-type (WT) mice. At 40 days
of HFD feeding, DGKε-KO mice show considerable body weight
gain and expanded mass of epididymal (i.e., visceral) white
adipose tissue (WAT). At cellular level, the adipocyte cell size in
DGKε-KO mice increases compared with that of WT controls.
Consequently, WAT expansion is ascribed to accelerated lipid
overloading in adipocytes of DGKε-KO mice. These results
demonstrate that DGKε-KO mice are prone to obesity during
early HFD feeding (Figure 2).

A clue to understanding this phenotype in DGKε-KO mice
might be obtained based on results of glucose tolerance test
(GTT) in Figure 2 (Nakano et al., 2018). Regular chow feeding
leads to no difference in body weight gain between WT and
DGKε-KO mice. It is particularly interesting that in GTT under
regular chow feeding, plasma glucose kinetics reveals that glucose
tolerance is enhanced in DGKε-KO mice compared with WT
controls, although plasma insulin level tends to be lower in
DGKε-KO mice. However, results in GTT after 40 days of
HFD feeding show the inverse pattern: Glucose excursion is
blunted in DGKε-KO mice compared with WT controls. The
opposite patterns of glucose clearance in WT and DGKε-KO mice
between regular chow and HFD feedings might be explained as
follows: glucose uptake is intrinsically facilitated in DGKε-KO
mice than WT controls, thereby leading to enhanced TG
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FIGURE 1 | Schematic view of the DG in lipid metabolism and signal transduction. DGs in the endoplasmic reticulum (ER) include various species from distinct
sources. 1,2-DG is derived from MG by MG acyltransferase and from phospholipase C-mediated PIP2 breakdown. 1,3-DG and 2,3-DG are lipolytic products of TG
by adipose TG lipase. These DGs are not intermingled and separately metabolized. Note that 1,2-DG serves not only as an intermediate product for TG synthesis,
but also as a lipidic second messenger. It is phosphorylated by the action of DGK to produce phosphatidic acid (PA). DG, diacylglycerol; DGKε, DG kinase ε; MG,
monoacylglycerol; PA, phosphatidic acid; PIP2, phosphatidylinositol 4,5-bisphosphate; TG, triglyceride; 2-MG, 2-monoacylglycerol.

accumulation under energy excess conditions. This inference
is supported by results demonstrating that oleic acid uptake
is also facilitated in DGKε-deficient fat tissues (Nakano et al.,
2018). Once TG storage exceeds the limit after 40 days of HFD
feeding, obesity ensues, thereby causing insulin resistance, as
described later.

Recent reports have described that TG overloading in
adipocytes coincides with higher rates of basal lipolysis to
dissipate extra energy (Wang et al., 2008; Kolditz and Langin,
2010). This machinery is crucially important for the maintenance
of whole body energy homeostasis. The TG lipolysis in adipocytes
is initiated by adipose TG lipase (ATGL), followed by hormone-
sensitive lipase (HSL). ATGL catalyzes TG to generate DG, which
is cleaved by HSL to release fatty acids. Intermediate product DG
in TG lipolytic pathway represents 1,3/2,3-DG, which is distinct
from and which is not intermingled with second messenger 1,2-
DG (Zechner et al., 2012). However, in TG synthetic pathway,
fatty acids are incorporated into MG to generate 1,2-DG, which
is acylated immediately into TG by DGAT. This immediate
conversion apparently attenuates 1,2-DG because excessive 1,2-
DG might serve as a second messenger to induce aberrant
activation of DG signaling pathway such as PKC. Actually, DGAT
expression level is upregulated considerably in WT adipose tissue
(Nakano et al., 2018). It is noteworthy that DGAT expression
level is induced only slightly in DGKε-deficient adipocytes, which
contrasts sharply to WT controls. Taken together, alterations

of TG metabolizing enzymes in DGKε-KO mice under short-
term HFD conditions can be summarized as follows: ATGL and
HSL expression levels in TG lipolytic pathway are downregulated
significantly, whereas the DGAT expression level in TG synthetic
pathway is not induced. These alterations engender accumulation
of TG and 1,2-DG.

How does TG and 1,2-DG accumulation exert effects on
adipocytes? First, overaccumulation of TG in lipid droplets
induces an inflammatory reaction in adipose tissues via TNF-α
produced by infiltrated macrophages (Cinti et al., 2005; Lumeng
et al., 2007). TNF-α facilitates Akt/PKB breakdown, thereby
impairing insulin-dependent Akt/PKB signaling (Medina et al.,
2005). Second, excessive accumulation of 1,2-DG triggers
hyperactivation of DG-sensitive PKCθ in adipocytes, thereby
increasing serine phosphorylation of insulin receptor substrate-1
(IRS-1). This increase exerts a negative effect on insulin signaling
(Kim et al., 2004; Samuel and Shulman, 2012). Collectively,
TG and 1,2-DG accumulation exerts “double negative effects”
on insulin signaling, thereby inducing insulin resistance in
DGKε-deficient adipose tissues under short-term HFD feeding.
It must be described that other insulin-reactive organs such as
liver and skeletal muscle of DGKε-KO mice exhibit no changes
in PKC and Akt/PKB expression and activation status, suggesting
that insulin signaling is specifically disturbed in adipose tissues of
DGKε-KO mice under short-term HFD feeding conditions. This
inference is consistent with results of an earlier study showing
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FIGURE 2 | Summary of phenotypical alteration of DGKε-KO mice during the course of HFD feeding regimen. Pathophysiological alterations in body weight,
adiposity in epididymal white adipose tissue (insets), and glucose tolerance are shown during the course of HFD feeding (Nakano et al., 2018, 2020). Note that in
DGKε-KO mice under long-term HFD feeding beige adipogenesis as shown by multilocular cells is induced, which coincides with improved glucose tolerance. HFD,
high fat diet; εKO, DGKε-KO mice; WT, wild-type mice.

that skeletal muscle insulin sensitivity is unchanged in DGKε-KO
mice (Mannerås-Holm et al., 2017).

BEIGE ADIPOGENESIS IS INDUCED IN
WHITE ADIPOSE TISSUE OF
DIACYLGLYCEROL KINASE
ε-KNOCKOUT MICE UNDER
LONG-TERM HIGH FAT DIET FEEDING
CONDITIONS

Under short-term (40 days) HFD feeding, a presymptomatic
phase of obesity in WT mice, DGKε-KO mice show severe obesity
and insulin resistant phenotype, whereas WT mice remain

normal. Earlier reports of some studies have described that
obese phenotype occurs after 14 weeks of HFD feeding in WT
animals (Benoit et al., 2013; Cantley et al., 2013). Next, Nakano
et al. (2020) investigated the manner in which this phenotype
is changed in DGKε-KO mice under long-term HFD feeding
conditions (Figure 2). In WT mice, the obese phenotype becomes
evident after 90 days of HFD feeding. The obesity worsens at
180 days. It is particularly interesting that the situation reverses
in DGKε-KO mice: During the course of HFD feeding, plasma
glucose kinetics of DGKε-KO mice in GTT exhibits the worst
pattern at 40 days. At 90 days, however, it improves better and
seems similar to that of WT controls. A surprising finding is
that glucose tolerance in DGKε-KO mice is enhanced further at
180 days, and exhibits a much improved picture compared to that
of WT controls: Plasma glucose kinetics in DGKε-KO mice at
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180 days of HFD feeding is close to that observed in WT controls
under regular chow feeding.

What sorts of changes are visible in WAT during HFD
feeding? Epididymal WAT represents visceral WAT. It is useful
to monitor changes in mass because it is demarcated clearly
from surrounding tissues. In comparison, epididymal WAT mass
shows no difference between WT and DGKε-KO mice under
regular chow feeding. After 40 days of HFD feeding, however,
the WAT mass in DGKε-KO mice increases approximately two-
fold compared with that in WT mice. In sharp contrast to
short-term (40 days) HFD feeding, it is noteworthy that under
prolonged HFD feeding such as 90 and 180 days, the WAT
mass in DGKε-KO mice decreases by nearly half in WT mice.
Histological examination reveals that epididymal WAT is filled
mainly with unilocular white adipocytes throughout the course
of HFD feeding in WT mice. However, in DGKε-deficient WAT,
UCP1-positive cells having multilocular vacuoles in abundant
cytoplasm and round nuclei are scattered throughout the tissue
at 90 and 180 days. Since UCP1 is a marker for beige/brown
adipocyte (Harms and Seale, 2013), those findings suggest that
beige adipogenesis or browning of white adipocytes is induced
in DGKε-deficient WAT under long-term HFD feeding. Taking
glucose tolerance data and histological findings together, a
hypothesis can be proposed: In DGKε-KO mice under long-term
HFD feeding, beige adipogenesis contributes to efficient energy
dissipation, which enhances glucose tolerance. This hypothesis is
supported by an earlier study showing that absence of functional
beige adipocytes renders mice prone to obesity, insulin resistance,
and hepatic steatosis upon HFD feeding (Cohen et al., 2014).

DISCUSSION

High fat diet studies reveal that under long-term (90 days
∼) HFD feeding conditions, beige adipogenesis is induced
in white adipose tissue, which may contribute to enhanced
glucose tolerance in DGKε-KO mice. Should DGKε be a
therapeutic target for obesity? It is not so simple because
DGKε-KO mice show severe obesity and insulin resistant
phenotype under short-term (40 days) HFD feeding conditions.

In addition, several questions remain unsolved, although
regulatory roles of DGKε in adipose tissues have been elucidated
gradually. First, glucose and fatty acid uptake is apparently
facilitated in DGKε-KO mice on regular chow. How does
DGKε regulate energy uptake? Second, protein expression
of ATGL, a TG lipolytic enzyme, is downregulated under
obese conditions. In this case, ATGL mRNA level remains
unchanged in regular chow and HFD feedings (Nakano
et al., 2018). Is ATGL protein degradation promoted in the
absence of DGKε? Third, beige adipogenesis is induced in
DGKε-deficient WAT under long-term HFD feeding. Is this
beiging merely a homeostatic reaction against excess energy
accumulation to dissipate extra energy? Or is it regulated
directly by DGKε? Further studies must be conducted to
address these points.

The primary function of beige/brown adipocytes is
thermogenesis. These cells consume glucose and fatty acids to
generate heat, instead of ATP production. Results of recent
studies suggest that cold exposure facilitates thermogenesis
by beige adipogenesis and browning of white adipocytes, in
which UCP1 regulates uncoupled respiration to generate heat
(Vegiopoulos et al., 2010; Bayindir et al., 2015). Examination of
how beiging and browning are regulated by DGKε on exposure
to cold is expected to be interesting.
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