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Abstract: Drone audition techniques are helpful for listening to target sound sources from the sky,
which can be used for human searching tasks in disaster sites. Among many techniques required for
drone audition, sound source tracking is an essential technique, and thus several tracking methods
have been proposed. Authors have also proposed a sound source tracking method that utilizes
multiple microphone arrays to obtain the likelihood distribution of the sound source locations.
These methods have been demonstrated in benchmark experiments. However, the performance
against various sound sources with different distances and signal-to-noise ratios (SNRs) has been
less evaluated. Since drone audition often needs to listen to distant sound sources and the input
acoustic signal generally has a low SNR due to drone noise, making a performance assessment
against source distance and SNR is essential. Therefore, this paper presents a concrete evaluation of
sound source tracking methods using numerical simulation, focusing on various source distances and
SNRs. The simulated results captured how the tracking performance will change when the sound
source distance and SNR change. The proposed approach based on location distribution estimation
tended to be more robust against distance increase, while existing approaches based on directional
estimation tended to be more robust against decreasing SNR.

Keywords: drone audition; sound source detection; sound source tracking; microphone array

1. Introduction

Drones have recently been required to be used at disaster sites. By attaching auditory
sensors, drones can obtain auditory information, and this field of auditory information
processing for drones is referred to as “drone audition”. Drone audition techniques enable
drones to find targets in low light conditions and have higher quality scene analysis with
sound recognition techniques. In particular, microphone arrays are commonly used since
they can estimate sound source directions by calculating the time difference of arrival
between microphones. One example of drone audition applications is to carry out people
searching tasks [1–3]. By estimating the sound direction of people calling for help, drones
will be able to find them even if they are covered in rubble. The main goal of this people
searching task is to localize a stationary sound source (the person to be rescued), but only
localizing stationary sound sources is not enough to accomplish this task. In addition
to localization of stationary sources, tracking moving sound sources and sound source
separation are also required.

Since different sound sources can exist in the disaster site, drones will also hear non-
target sound sources (such as rescue staff, heavy machinery, and so on), and the input to
a microphone array is often a mixture of several acoustic signals. In order to enable the
drone to recognize which sound source to target, identifying the movement and individual
acoustic signal of each sound source is necessary. If the drone realizes that a human-
like audio signal has been emitted from a stationary sound source, it is likely to be the
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target sound source. Besides, research shows that the information of the source location is
helpful for sound source separation techniques [4,5], which demonstrates the importance of
tracking moving sound sources in drone audition. Therefore, several sound source tracking
methods for drones has been proposed [1,6–8]. Authors also have proposed a sound source
tracking method that utilizes multiple microphone arrays [9,10]. By integrating the spatial
spectra computed from each microphone array, the likelihood distribution of the sound
source location, which is useful for sound source tracking, can be obtained. Many sound
source tracking methods have also been proposed, not only for drones. For example,
microphones can be equipped around a room to track human activities [11,12]. Similar to
drones, land-based robots can also benefit from microphone arrays, so they can detect and
localize sound sources and recognize the environment of the surroundings [13–17]. These
tracking methods can be applied to drone systems. However, it is questionable whether
these tracking methods are affected by (1) a long distance to the target sound source and
(2) significant drone noise. Most research evaluates tracking performance by conducting a
few experiments and does not provide an exhaustive evaluation of distance or SNR. For
example, Lauzon et al. proposed a sound source tracking method for drone detection and
showed its effectiveness through a single outdoor experiment, but tracking performance
against various scenarios was not examined [18]. Brandstein et al. also proposed a sound
source tracking method and demonstrated experiments to evaluate tracking performance
against various source distances. However, the source distance varied between 1 and 3 m,
which is not sufficient in terms of drone applications [19]. Since experiments using drones
take time and involve high costs, it is difficult to perform exhaustive evaluations through
real-world experiments. Therefore, this paper aims to assess the tracking performance of
tracking methods by performing numerical simulations for various scenarios, especially
various source distances and SNRs.

The rest of the paper is organized as follows. Related work is mentioned in Section 2
and the proposed method [10] is explained in Section 3. The evaluation via numerical
simulation is described in Section 4. Finally, the conclusion is written in Section 5.

2. Related work

In the field of acoustic signal processing, microphone arrays are well used to localize
the direction or location of the sound source. To track sound source locations using
microphone arrays, several measures have been taken. One idea is to estimate the distance
between a microphone array and a sound source by applying Bayesian filtering to estimated
directions [13,14,20]. However, sound source tracking using a single microphone array is
difficult since estimation converging to the ground truth takes time, which is concerning
when the sound source is moving.

Therefore, using multiple microphone arrays is much more popular when it comes
to tracking sound source locations. As well as using a single microphone array, applying
Kalman filtering or particle filtering to estimated directions obtained from multiple micro-
phone arrays shows high tracking performance [18]. Another way is to use triangulation to
obtain the sound source location. One of the biggest benefits of using multiple microphone
arrays is that we can explicitly obtain the sound source location through triangulation.
Since the approximate location can be obtained from one direction estimation, conver-
gence to the ground truth is much faster. Therefore, there are many studies that utilize
triangulation for both localizing stationary sound sources [21,22] and tracking moving
sound sources [9,23]. If the sound source is assumed to be on the ground, calculating the
intersection point between the sound source direction and the ground surface is also a
good way to localize the sound source [1,6]. However, when it comes to drone applications,
severe ego-noise and wind noise may distort estimation results of the direction, which will
negatively affect triangulation methods. Since both commonly used direction estimation
and triangulation have discreteness in their calculation, a little distortion will turn to a
large tracking error.
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Therefore, we introduce a sound source tracking method that estimates the location
distribution of the sound source without using triangulation. Generally, direction estima-
tion methods first calculate the likelihood distribution of the direction and then search
for the direction with the largest likelihood. In previous work, we integrated likelihood
distributions obtained from each microphone array and obtained the location likelihood dis-
tribution instead of estimating directions and computing triangulation points [10]. In this
way, the information of the sound source location is represented in a location distribution,
which is a more continuous representation than a group of triangulation points, and we
expect that it will be more robust to drone noise. We apply this location distribution to
particle filtering techniques in order to track moving sound sources. In this paper, we
will evaluate the tracking performance of existing work [18,23] and the proposed method
named particle filtering with integrated MUSIC (PAFIM) [10] via numerical simulation in
order to understand the performance against different source distances and different SNRs.

3. Method

This section explains PAFIM [10], a sound source tracking method based on location
likelihood estimation. The likelihood distribution of the location is obtained by integrating
the likelihood distribution of the sound source direction.

3.1. Settings

We consider tracking a sound source by multiple microphone arrays. We assume that
N microphone arrays are mounted to drones and each microphone array is numbered as
follows.

MA1, . . . , MAn, . . . , MAN

Each microphone array is mounted to a drone, and the state of MAn is described as
below, and assumed to be known.

mn,k =
[
xn,k, yn,k, zn,k, φn,k, θn,k, ψn,k

]T (1)

where k indicates the time step, xn,k, yn,k, and zn,k indicate the center of MAn in three-
dimensional coordinates and φn,k, θn,k, and ψn,k indicate the three-dimensional rotational
angles of MAn. Each microphone array consists of M microphones. We assume the sound
source to be a point source, and its location is described as below.

ek =
[
xe,k, ye,k, ze,k

]T (2)

The problem addressed in this paper is to estimate the sound source trajectory by
repeatedly estimating the sound source location ek from the state of all N microphone
arrays and recorded sound signal s1, . . . , sN ∈ RM.

3.2. System Outline

This method is based on the integration of direction likelihood distributions obtained
by source direction estimation. In most cases, direction estimation methods calculate the
likelihood P(φ, θ) for each azimuth φ and elevation θ, and assume the direction with the
largest P(φ, θ) is the sound source direction. The approach of this method is to estimate the
sound source location by converting the direction likelihood P(φ, θ) of each microphone ar-
ray into the likelihood of a three-dimensional location. Figure 1 illustrates the procedure of
the proposed tracking method. This method estimates the sound source trajectory through
particle filtering, with each particle being given the location likelihood as its weight.
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Figure 1. Procedure of proposed method (for one time step).

3.3. Estimation of Direction Likelihood Distribution

Some indicators can be regarded as likelihoods for sound source direction. The
cross-power spectrum phase (CSP) coefficients are used in the CSP method [24], which
is a method for estimating the time difference of arrival (TDOA) with two microphones,
and the spatial spectrum obtained from the delay-and-sum beamformer includes scalar
quantities whose parameters are the sound source direction, and they generally have a peak
in the direction of the source [20]. In this paper, we use a MUSIC spectrum, which produces
sharp peaks in the direction of the sound source as the direction likelihood. The MUSIC
(multiple signal classification) method analyses the eigenspace of the spatial correlation
matrix and estimates the source azimuth and elevation by using the orthogonality between
the subspaces of the target sound source and the noise [25]. Let a(ω, φ, θ) ∈ CM be the
transfer function of a sound signal of a frequency component ω from a direction (φ, θ),
then the spatial spectrum, which is known as the MUSIC spectrum, can be expressed as

P(φ, θ) =
1

ωH −ωL + 1

ωH

∑
ω=ωL

a(ω, φ, θ)Ha(ω, φ, θ)

a(ω, φ, θ)HEN(ω)EN(ω)Ha(ω, φ, θ)
(3)

where EN is a matrix consisting of eigenvectors of the noise subspace of the spatial correla-
tion matrix. In general, the sound source direction is considered to be the direction where
the MUSIC spectrum has peaks when estimating the direction. In this paper we regard
the MUSIC spectrum as a direction likelihood of the sound source and we integrate the
MUSIC spectra obtained from each microphone array and convert them into a location
likelihood of the sound source.

3.4. Converting to Location Likelihood Distribution

Let Pn(φ, θ) be the MUSIC spectrum calculated from MAn. We express the likelihood
distribution of the sound location by simply summing Pn(φ, θ). Let an arbitrary three-
dimensional location be x, and the direction from point x to MAn be (φn, θn). Then, the
location likelihood L at a location x is described as follows.

L(x) = ∑
n

Pn(φ̃
round
n , θ̃round

n ) (4)

φ̃round
n = round(φ̃n), θ̃round

n = round(θ̃n) (5)cos φ̃n cos φ̃n
sin φ̃n cos φ̃n

sin φ̃n

 = R−1
n

cos φn cos φn
sin φn cos φn

sin φn

 (6)

where round(·) is a function that rounds the direction according to the resolution of
transfer function a(ω, φ, θ) and Rn is the rotation matrix representing the posture of MAn,
which can be defined by (φn,k, θn,k, ψn,k). In other words, location likelihood L(x) is the
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summation of direction likelihoods corresponding to directions towards x seen from each
microphone array.

3.5. Tracking Based on Location Likelihood Distribution

Since we can obtain the location likelihood of an arbitrary 3D location x, it is able
to track the sound source location by applying this location likelihood L(x) to particle
filtering. Let I be the number of particles and xi

k, wi
k be, respectively, the state and weight of

the i-th particle at a time step k. The state xi
k includes the location and velocity of particle i.

xi
k =

[
xi

k, yi
k, zi

k, ẋi
k, ẏi

k, żi
k
]T (7)

3.6. Initialization of Particle Filter

Initial particles are sampled from the following distribution.

xi
0 ∼ N (µ0, Σ0) (8)

µ0 =
[
µ0,pos, 0, 0, 0

]T
(9)

Σ0 =

[
σ2

pos I O
O σ2

vel I

]
(10)

where µ0,pos is the mean of the initial distribution. µ0,pos can be determined if there is
initial information of the sound source, or it can be derived from triangulation based on
direction estimation [9]. After calculating triangulation points, µ0,pos is obtained by taking
the average of all triangulation points.

3.7. Particle Update

We use an excitation-damping model for the prediction model [18].

xi
k = Fxi

k−1 + Hv (11)

F =

[
I TI
O aI

]
, H =

[
O
bI

]
(12)

v ∼ N (0, I) (13)

where I ∈ R3×3 is an identity matrix and O ∈ R3×3 is a zero matrix. Variables a and b
determine the ratio of velocity to carry on from the previous time step and the excitation of
particles, respectively. Each particle gains weight proportional to L(xi

k,pos), hence

wi
k = wi

k−1

L(xi
k,pos)

∑i L(xi
k,pos)

(14)

where xi
k,pos = [xi

k, yi
k, zi

k]
T . Resampling would be necessary if effective particles are less

than a threshold Nthr. Hence, when

1

∑i(wi
k)

2
≤ Nthr (15)

is satisfied, the weight of each particle should reset to 1/I.

3.8. Location Estimation

Finally, the estimated sound source location at time step k is obtained by taking the
weighted average of the particles.

x̂e,k = ∑
i=1

wi
kxi

k (16)
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4. Evaluation

In this section, we perform a numerical simulation to evaluate the tracking perfor-
mance of several tracking methods. When performing source tracking, various challenges
are taken into account such as source distance, SNR, presence of obstacles, microphone
array placement, and self-positioning of the drone. However, it is difficult to evaluate
all the factors at once because it is difficult to identify which factor is responsible for the
performance change. Hence, factors to be evaluated should be narrowed. In outdoor
environments the range of the sound source that can be heard can be very wide. Hence,
how far the sound source tracking can succeed is a big interest. Besides, since loud drone
noise will be input to the microphones, robustness against low SNR is also a big concern.
Therefore, in this evaluation, we focus only on the two important factors: source distance
and SNR.

4.1. Evaluation Outline

We performed a numerical simulation via MATLAB to evaluate the performance of
PAFIM and existing methods in sound source tracking. We considered a scenario of sound
source tracking with two drones surrounding a single sound source (see Figure 2). Each
drone has two microphone arrays equipped as shown in Figure 3 and each microphone
array consists of 16 microphones placed spherically (See Figure 4). Microphones record
acoustic signals at 16 kHz, 24 bits, and the transfer function used to calculate the MUSIC
spectrum has a resolution of 5 degrees. The simulated recording is calculated by a definitive
transfer function from the sound source, and noise during the sound transmission is
omitted. Both drones are hovering still at a 30 m height, which means they do not move
through the simulation.

Figure 2. Top view of simulation scenario (horizontal distance = 30 m, sound source movement = circle).

Figure 3. Drone noise source (red dots) in the simulation.
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Figure 4. Microphone placement in a microphone array.

In this simulation, we focused on the concern in relation to tracking performance
with respect to the change in source distance and the change in signal-to-noise ratio
(SNR). Therefore, we evaluated the performance of tracking methods by moving the
source distance and SNR independently, which means the SNR does not correlate with the
source distance. We moved the horizontal distance between the sound source and drones
from 10 m to 80 m in increments of 10 m, and we varied the SNR from −60 dB to 10 dB.
The range of distance was decided as above since a simulated rescue demonstration has
been performed against a sound source 20 to 30 m away [6], and we wanted to evaluate
performance limits in terms of distance. The range of SNR was decided by reports of
indoor experiments showing that the SNR could be −15 to −25 dB [8,26]. In addition,
outdoor environments could make SNR lower, since drones for outdoors tend to make
louder noise and wind noise input to the microphones. Drone noise is added to the input
by adding prerecorded drone noise to the recorded signal, and the SNR is set by adjusting
the amplitude of the drone noise. Drone noise is assumed to be emitted from the red dots
illustrated in Figure 3. As the horizontal distance increases, the tracking result is expected
to worsen due to the direction estimation’s discreteness. As the SNR decreases, the tracking
result is expected to worsen since the direction estimation will be affected by low SNR.
In order to evaluate the tracking performance for various source motions, simulations were
performed for three types of motion: stationary, circular, and random walk. Stationary
motion does not permit the sound source to move at the origin. Circular motion lets the
sound source move in a circle with a radius of 5 m and the circle center is set to the origin.
While the sound source is moving in a circle, the speed of the sound source is constant,
and it takes 10 s to go around the circle. Random walk motion lets the sound source move
randomly with the following behavior starting from the origin.

xe,k+1 = xe,k + vk+1

cos φk+1
sin φk+1

0

 (17)

vk+1 = vk + T∆v, ∆v ∼ 0.5N (0, 1) (18)

φk+1 = φk + T∆φ, ∆φ ∼ 1000× π

180
×N (0, 1) (19)

For the sound source, we prepared thirty sound clips (ten male voices, ten female
voices, and ten white noise clips). Human voice clips were made from a corpus that
reads Japanese news [27]. Each tracking method estimated the sound source location
every T = 0.2 s during 10 s. For all tracking methods, we utilized the MUSIC method
for direction estimation (or calculation of location likelihood) in this simulation, although
some methods use different direction estimation methods. In the MUSIC method, we
used a transfer function with a resolution of 5 degrees, and the range of frequency was
ωL = 200 Hz to ωH = 2200 Hz. Results obtained in this simulation are described in the
next subsection.
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4.2. Simulation Results and Discussion

We mainly evaluate tracking performance by looking at the tracking error. We define
the tracking error as the Euclidean distance between the estimated location and the ground
truth. We also use root-mean-square error (RMSE), which is defined as below, to evaluate
the error of the entire trajectory, where K is the number of time steps in the simulation.

RMSE =

√√√√ 1
K

K

∑
k=1

error2
k (20)

Table 1 summarizes the figures showing the tracking errors. Each figure shows the
simulated RMSE of each method. Basically, each figure shows the RMSE for each distance
and SNR, although for the sake of clarity, figures for a specific distance (=30 m) and for
a specific SNR (=−20 dB) are also shown. Given these results, we discuss the tracking
performance of the three methods. Through the simulations, significant results were
obtained in terms of source distance, SNR, and tracking methods.

Table 1. Table of figures showing RMSE of simulation results for each source movement and sound type.

Female Male White Noise

Stationary Figure 5

Overall Figure 6

Figure 7Fixed the distance at 30 m Figure 8

Fixed the SNR at −20 dB Figure 9

Circle Figure 10

Overall Figure 11

Figure 12Fixed the distance at 30 m Figure 13

Fixed the SNR at −20 dB Figure 14

Random walk Figure 15

Overall Figure 16

Figure 17Fixed the distance at 30 m Figure 18

Fixed the SNR at −20 dB Figure 19

Figure 5. RMSE of tracking a stationary sound source emitting female voice.
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Figure 6. RMSE of tracking a stationary sound source emitting male voice.

Figure 7. RMSE of tracking a stationary sound source emitting white noise.

Figure 8. RMSE of tracking a stationary sound source emitting male voice (focusing on source
horizontal distance = 30 m).
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Figure 9. RMSE of tracking a stationary sound source emitting male voice (focusing on SNR = −20 dB).

Figure 10. RMSE of tracking a sound source moving in a circle emitting female voice.

Figure 11. RMSE of tracking a sound source moving in a circle emitting male voice.
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Figure 12. RMSE of tracking a sound source moving in a circle emitting white noise.

Figure 13. RMSE of tracking a sound source moving in a circle emitting male voice (focusing on
source horizontal distance = 30 m).

Figure 14. RMSE of tracking a sound source moving in a circle emitting male voice (focusing on SNR
= −20 dB).
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Figure 15. RMSE of tracking a randomly moving sound source emitting female voice.

Figure 16. RMSE of tracking a randomly moving sound source emitting male voice.

Figure 17. RMSE of tracking a randomly moving sound source emitting white noise.
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Figure 18. RMSE of tracking a randomly moving sound source emitting male voice (focusing on
source horizontal distance = 30 m). Tracking results of Potamitis’s method did not converged when
the SNR is less than −40 dB.

Figure 19. RMSE of tracking a randomly moving sound source emitting male voice (focusing on SNR
= −20 dB).

4.2.1. Discussion: Distance

For any source movement, the tracking error increases as the source distance increases.
We believe that the main cause of this phenomenon is the resolution of the transfer function
a(φ, θ), which is used in every method. As in the simulation, if the resolution is five
degrees, the estimation error at a point l m away will be πl/36 m if the source direction
estimation is off by one element. For example, if the sound source is 50 m away, the source
location estimation error will be about 4.4 m. This tendency can be seen in the RMSE of
PAFIM from Figures 9 and 14.

4.2.2. Discussion: SNR

Similar to distance, tracking error increases as the SNR decreases. Besides, this increase
is more noticeable than the increase due to distance. This is because the direction estimation
error is largely affected by SNR rather than the source distance, which could be seen in
Figures 20 and 21. Both figures illustrate the direction estimation error of one microphone
array by box plot. The direction estimation error significantly deteriorates when the
SNR gets lower than −40 dB. This can be taken as a threshold to determine the level of
effectiveness of the source direction estimation. When the SNR surpasses this threshold,
the RMSE of each method rises sharply. In this simulation, we used the SEVD-MUSIC
method, which is the simplest MUSIC method that does not use noise reduction algorithms.
Therefore, SEVD-MUSIC has difficulty outputting a proper MUSIC spectrum when the
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SNR is lower than 0 dB. In this simulation, drone noise is set to be output from the red dots
in Figure 3 while the target sound source emits from a single point. It seems that even if the
SNR is lower than 0 dB since the drone noise emits from several points, the directionality
has blurred compared to the target signal, which has lowered the threshold SNR.

Figure 20. Box plot of the direction estimation error for the lower right microphone array in Figure 2.
Considered scenario is tracking a circular motion sound source emitting a male voice.

Figure 21. Direction estimation error shown in Figure 20 focusing on distance = 30 m.

4.2.3. Discussion: Overall Performance

In this section, we assess the overall performance by comparing the simulated methods.
Since the nature of tracking error differs between the change in distance and SNR, the
nature of the source tracking error for each tracking method also differs. When the source
distance is large, the tracking errors of PAFIM [10] and method [18] do not get larger
compared to method [23]. This is considered because the source location is represented in
the form of a location distribution rather than a discrete representation such as triangulation
points or source directions. The discreteness of triangulation points leads to large tracking
error because even if the direction estimation error is minimum (=5 degrees) the location
error of the triangulation points will be about 3 to 5 m and this gets worse as the source
distance increases. However, PAFIM reduces the increase in tracking error with increasing
distance by using all the microphone arrays to compute a location distribution. Comparing
PAFIM and method [18], PAFIM has performed slightly better tracking against increasing
distance since PAFIM utilizes the entire MUSIC spectrum (rather continuous information)
while method [18] only uses the direction that takes the peak of the MUSIC spectrum
(rather discrete information).

In terms of SNR, we see that PAFIM has a larger error than other methods when
the SNR gets lower, and method [23], which uses triangulation, sometimes results in
uncomputable error since direction estimation fails and triangulation cannot be performed.
Two main reasons are considered as to why PAFIM fails in sound source tracking. Since
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PAFIM tries to reduce discreteness by estimating the source location distribution, a non-
informative distribution will be obtained in a situation where direction estimation fails
repeatedly, which means the likelihood distribution of the source direction is distorted.
Regardless of the iterative estimation, if the source distribution is highly skewed, it will
not converge to the correct distribution. However, methods with triangulation or direction
estimation have a chance to capture the correct location or direction of the sound source
at some time step, which can lead the tracking to the correct trajectory. This might be one
of the reasons why method [18,23] has a smaller RMSE than PAFIM. Another reason for
PAFIM’s vulnerability to SNR is that PAFIM does not have a reliable initialization method
and has to rely on triangulation in the first step. As mentioned before, triangulation is not
reliable when the SNR is too low, and it is difficult for particle filters to get to the correct
trajectory when the initial state is too far from the ground truth. However, PAFIM only
shows the worst results when the SNR is lower than the assumptions of the direction
estimation method. If the direction estimation method can withstand the SNR, we see that
PAFIM can outperform other methods from Figures 8, 13 and 18.

In short, numerical simulations show that PAFIM is strong against distant sound
sources compared to existing methods since PAFIM tries to reduce the discreteness of
direction estimation. Since drones generally perform their tasks in vast fields, this is
a key strength for drone audition. When it comes to low SNR, PAFIM has the largest
tracking error since it is hardly possible to obtain a feasible location distribution. However,
SNR observed in real-world experiments is about −20 dB, for which PAFIM had the least
tracking error. In summary, PAFIM was found to be more robust to increasing distance
than the compared methods if the drone noise was not less than −20 dB.

5. Conclusions

In this paper, we evaluated the performance of sound source tracking among several
tracking methods that can be used in drone audition. In the numerical simulation, we
focused on the performance difference against source distance and SNR. Simulation results
address that the nature of tracking error is different between changes in distance and SNR,
and this difference brings to light the advantages and disadvantages of tracking methods.
The proposed method (PAFIM), which integrates MUSIC spectra to capture the sound
source location distribution, has been found to be robust when the target sound source is far
from the drones. However, methods that utilize discrete information such as directions and
triangulation points are sensitive to low SNR since there is a chance to obtain the correct
direction even if the MUSIC spectrum is noisy, while PAFIM fails to capture the location
distribution with low SNR. However, when the SNR is about −20 dB or more, PAFIM has
still shown the lowest RMSE. In this paper, the source distance and SNR were changed
independently, but generally, the SNR increases if the drone gets nearer to the sound source.
Therefore, PAFIM can be improved if the drones can be maneuvered with proper action
planning that can get close enough to target sound sources and cover unobserved areas.
Based on this concept, assessment of how placement of microphone arrays will affect the
tracking and action planning for drones is one of the issues to be addressed in the future.
In addition, drone noise reduction methods were not applied in the simulations. Due to
the fact that PAFIM does not involve conventional source direction estimation, the benefit
of denoising methods to PAFIM is unclear. It is also a future task to evaluate how much the
PAFIM is improved by noise removal by comparing it with other methods.
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