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ABSTRACT
Ovarian cancer is frequently diagnosed as peritoneal carcinomatosis. Unlike other tumor locations, the
peritoneal cavity is commonly exposed to gut-breaching and ascending genital microorganisms and has
a unique immune environment. IL-33 is a local cytokine that can activate innate and adaptive immunity.
We studied the effectiveness of local IL-33 delivery in the treatment of cancer that has metastasized to
the peritoneal cavity. Direct peritoneal administration of IL-33 delayed the progression of metastatic
peritoneal cancer. Prolongation in survival was not associated with a direct effect of IL-33 on tumor cells,
but with major changes in the immune microenvironment of the tumor. IL-33 promoted a significant
increase in the leukocyte compartment of the tumor immunoenvironment and an allergic cytokine
profile. We observed a substantial increase in the number of activated CD4+ T-cells accompanied by
peritoneal eosinophil infiltration, B-cell activation and activation of peritoneal macrophages which
displayed tumoricidal capacity. Depletion of CD4+ cells, eosinophils or macrophages reduced the anti-
tumor effects of IL-33 but none of these alone were sufficient to completely abrogate its positive benefit.
In conclusion, local administration of IL-33 generates an allergic tumor environment resulting in a novel
approach for treatment of metastatic peritoneal malignancies, such as advanced ovarian cancer.
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Introduction

Ovarian cancer is the deadliest gynecological cancer which has
an incidence of approximately 22,200 women/year, 60% of the
patients being diagnosed after the disease has spread outside of
the ovaries, which is associated with a dismal 5-year survival rate
of 28.9%.1,2 Because of this frequently metastatic stage at diag-
nosis, surgery and chemotherapy have barely improved survival
over the past 40 years. However, metastatic spreading of ovarian
cancer is typically limited to the peritoneal cavity. Therefore,
local administration of therapeutic agents is a preferred
approach for this cancer. Local injection can achieve higher in-
tumor drug concentrations with less systemic adverse effects.
Intraperitoneal (local) chemotherapy has shown improved over-
all survival and progression-free survival for ovarian cancer
when compared with intravenous administration.3,4 Due to its
benefits, local cytokine therapy has also been studied in perito-
neal tumors using IL-2, IFNγ and IFNα.5-7

Interleukin-33 (IL-33) is a cytokine of the IL-1 superfamily
that exerts its functions through the ST2 receptor (IL-1R-like1).8

Depending on its context, IL-33 has been reported to promote
either Th1 9,10 or Th2 like immunity.8 We have previously
reported that IL-33 can be used as an immunoadjuvant to
enhance DNA vaccine induced anti-tumor immunity by

enhancing a Th1 response as an adjuvant in the periphery,
particularly when expressed in muscle.9 However, as ovarian
cancer is often restricted to the peritoneal cavity, which is subject
to heightened immunosurveilance, we hypothesized that IL-33
alone may promote a local immune response that could impact
the prognosis of advanced ovarian cancer.

In this paper we study the effects of direct intraperitoneal
therapy with IL-33. We report that intraperitoneal treatment
with IL-33 delays tumor progression in peritoneal carcinoma-
tosis, including a murine model of metastatic ovarian cancer.
Furthermore, we show that this protection depends on the
promotion of an allergic like environment, through the action
of peritoneal CD4+ T-cells, eosinophils and macrophages.

Results

IL-33 delays ovarian cancer progression

Advanced ovarian cancer is considered a peritoneal disease, and
local treatment is recommended due to advantages in drug deliv-
ery into the local tumor environment.11 IL-33 is a short-lived,
locally active cytokine. We hypothesized that peritoneal immu-
notherapy using IL-33 could impact peritoneally-metastasized
ovarian cancer by activating tumor-associated inflammation.
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Therefore, we challenged mice with ID8-Defb29/Vegf-a tumor
cells, an aggressive ovarian cancer model engineered to accelerate
peritoneal carcinomatosis and ascites accumulation in vivo.
Following tumor challenge, we treated the mice with weekly

administration of either IL-33 or PBS starting on day 7
(Figure 1a). Only 5 administrations were needed to reproducibly
improve median survival by approximately 140% from 50 to
68 days (Figure 1b). To better understand the mechanism by
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Figure 1. IL-33 delays ovarian cancer tumor progression.
(A) Schematic of IL-33 survival experiments (B) Survival plot of mice bearing intraperitoneal ID8-Defb29/Vegf-a syngeneic tumors treated intraperitoneally with IL-33 or PBS
at days 7, 14, 21, 28 and 35 after tumor challenge (n = 9 per group, pooled from 2 independent experiments). (C) Expression flow cytometry of ST2 receptor by ID8-Defb29/
Vegf-a (2 independent experiments) (D) ID8-Defb29/Vegf-a in vitro proliferation in the presence of IL-33 (n = 3 per group; 2 independent experiments) (E) Survival plot of
mice bearing intraperitoneal Lewis lung carcinoma treated intraperitoneally with IL-33 or PBS at days 7, 8, 9, 10 and 11 after tumor challenge (n = 5 per group). (F) Peritoneal
wash of mice bearing intraperitoneal ID8-Defb29/Vegf-a syngeneic tumors treated intraperitoneally with IL-33 or PBS at days 21 and 28, harvested at day 30 (n = 3mice per
group; 3 independent experiments). (G) Cell count from peritoneal wash of mice bearing intraperitoneal ID8-Defb29/Vegf-a syngeneic tumors treated intraperitoneally with
IL-33 or PBS at days 21 and 28, harvested at day 30 (> 3 independent experiments). (H) Representative flow cytometry plots of the ascites fluid (tumor microenvironment) of
mice bearing intraperitoneal ID8-Defb29/Vegf-a syngeneic tumors treated intraperitoneally with mature IL-33 or PBS at days 21 and 28, harvested at day 30. (> 3
independent experiments). Log-Rank test, ANOVA, t-test. AU: arbitrary units, ns: not significant, **p < 0.01, ***p < 0.001.
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which IL-33 delays tumor progression, we analyzed and ruled out
that ID8-Defb29/Vegf-a tumor cells expressed the ST2 receptor
(Figure 1c) thus eliminating that IL-33 plays a direct effect on the
tumor. In addition, we found no difference in in vitro proliferation
of ID8-Defb29/Vegf-a in the presence or absence of IL-33
(Figure 1d), supporting that this antitumor effect was highly
unlikely to be a direct effect of IL-33 on the tumor cells.
Furthermore, the effectiveness of local administration of IL-33
was not limited to ovarian tumors, as in a second study, intraper-
itoneal LLC tumor progression was similarly delayed by IL-33
treatment (Figure 1e).

To gain a better understanding of the effect of IL-33 on the
peritoneal microenvironment we again challengedmice with ID8-
Defb29/Vegf-a tumor and euthanized the mice after the third IL-
33 administration to perform peritoneal lavage. Surprisingly, we
found no accumulation of bloody ascites in the peritoneal cavity
of the IL-33 treated mice (Figure 1f) suggesting decreased tumor
burden. Correspondingly, in the IL-33 peritoneal lavage there is a
substantial increase in the total number of CD45+ leukocytes
(Figure 1g), especially intermediate and highly granular CD45+

cells and a decrease CD45- SSC hi tumor cells (Figure 1h).
These data support that local IL-33 administration delays

peritoneal cancer progression through a tumor independent
mechanism, and this survival is associated with decreased intra-
peritoneal tumor cells, as well as increased peritoneal leukocytes.

IL-33 promotes an allergic like infiltration of the
peritoneal cavity

IL-33 is associated with the pathogenesis of allergy and asthma.-
12,13 We were curious if an allergic phenotype could be playing a
role in the antitumor response observed. Accordingly, we ana-
lyzed the cytokine expression patterns from the peritoneal cells
derived from IL-33 treated vs control mice. IL-33 treated mice
exhibited higher levels of expression of IL-5 and IL-13, two

classical cytokines of allergic and Th2 responses,14 when com-
pared to controls (Figure 2a&b). However, in contrast to classi-
cal Th2 responses, there were no differences in IL-10 expression
(Figure 2c). In accordance with an allergic response, we also
found an increase in the IL-33 receptor, ST2 (Figure 2d)15 and a
dramatic increase in the levels of Ym1(Figure 2e).16

IL-33 promotes peritoneal CD4 t-cell and b cell activation
and eosinophil recruitment

The IL-33 receptor ST2 is preferentially expressed on the sur-
face of Th2 CD4 T-cells, which can induce their proliferation
with unique cytokine production upon activation.17 Following
IL-33 treatment the total peritoneal T-cell numbers were not
different compared to control treated animals (Figure 3a).
However, in the IL-33 treated mice, CD4 T-cells were over-
represented as the animals exhibited a significant decrease of
CD8 T-cells locally (Figure 3b&c). In contrast there was an
enhancement of the CD4 T cell effector function as these cells
exhibited an activated phenotype as illustrated by increased
levels of expression of CD44 and CD69 (Figure 3d) as well as
an increased expression of the CD40L activation maker
(Figure 3e). This activation was predominantly observed for
the peritoneal IL-33 treated CD4+ T-cell group. CD4 activation
likely results from a convergence of multiple factors elicited by
IL-33, since IL-33 alone was able to only modestly enhance Th2
skewed CD4 T cell activation (but not naïve CD4)
(Supplemental Figure 1a). Furthermore, IL-33 did not directly
induce CD4 T cell proliferation (Supplemental Figure 1b).

We next analyzed the cytokine expression pattern of
CD4 T-cells in the peritoneal cavity of IL-33 treated mice.
We observed an allergic like response with higher expression
of IL-5 and IL-13 than controls (Figure 4a-c).18,19 Consistent
with a productive allergic response we found significantly
higher activation of B-cells (Figure 4d) and increased levels

A

ED

 ***

IL-33PBS

C

IL-33PBS

ns

IL-33PBS

IL
-5

 
(r

el
at

iv
e 

qu
an

tif
ic

at
io

n)  *
B

Y
m

1
(r

el
at

iv
e 

qu
an

tif
ic

at
io

n)

IL-33PBS

0

20

40

60

80

0.0

0.5

1.0

1.5

2.0

IL
-1

0
(r

el
at

iv
e 

qu
an

tif
ic

at
io

n)

IL-33PBS

IL-13

GAPDH

0

4

8

12

S
T

2
(r

el
at

iv
e 

qu
an

tif
ic

at
io

n)

0

1000

2000

3000

4000

5000
 ***

Figure 2. IL-33 promotes an allergic like infiltration of the peritoneal cavity.
Mice were challenged with intraperitoneal ID8-Defb29/Vegf-a tumors and treated at days 7,14 and 21 with intraperitoneal IL-33 or PBS. Two days later we performed
a peritoneal wash and analyzed the peritoneal cellular compartment. (A) Quantitative real time PCR showing relative quantification of IL-5, (B) IL-13 (product of IL-13
and GAPDH of each mouse shown in agarose gel), (C) IL-10, (D)ST2 and (E)Ym1 from IL-33 treated mice relative to PBS treated mice (n = 5 mice per group). t-test. ns:
not significant, *p < 0.05, ***p < 0.001.
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of IgE (Figure 4e). B cell numbers were not different in IL-33
vs PBS treated mice (Suppl Figure 2a). In contrast to tumor-
associated regulatory responses, B cells showed a dramatic
decrease in IL-10 production compared to controls
(Figure 4f).20 As in allergic responses we also found an intense
eosinophil infiltration in the tumor microenvironment of IL-
33 treated mice (Figure 4g).21 Taken together, these data
suggest that direct peritoneal delivery of IL-33 can mediate
an allergic-like CD4 T-cell activation and expansion, which
mediates eosinophil recruitment and promotes uniquely
B-cell activation with predominant class switching into IgE
and decrease in production of IL-10.

IL-33 promotes activation of peritoneal macrophages

Unlike other tumor locations, the peritoneal cavity is com-
monly exposed to gut breaching and ascending genital micro-
organisms, which makes it particularly sensitive to changes in
innate immunity. Therefore, the peritoneal cavity has a resi-
dent population of ontogenically differentiated resident
macrophages that serve as first line of defense.22 Allergic

reactions are characterized by the presence of an activated
macrophages, also described as wound-healing or M2a
macrophages.23-25 Accordingly, we found that peritoneal
macrophages presented this allergic like activated phenotype
shown by an increased production of Ym-1 and IL-13
(Figure 5a&b). These macrophages also expressed the IL-33
receptor ST2 (Figure 5c), thus allowing for their direct IL-33
stimulation. These differed from the M2c regulatory macro-
phages or tumor-associated macrophages by a lack of expres-
sion of the regulatory cytokine IL-10 (Figure 5d).
Interestingly, this phenotype was associated with decreased
expression of CD40 (Figure 5e & Suppl. Figure 1c) and CD80
(Figure 5f & Suppl. Figure 1d) but an increase in CD86
(Figure 5g) compared to PBS treated mice. The differential
regulation of CD80 and CD86 has been previously reported in
asthmatic patients, suggesting an important role for CD86
after allergen challenge.26

In summary the data support that the local inflammatory
milieu mediated by IL-33 induces the activation of tumor-
associated peritoneal macrophages similar to that occurring in
allergic disease.
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Figure 3. IL-33 promotes recruitment and activation of peritoneal CD4 T cells.
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In these studies, maintenance of the allergic response
appears important for the IL-33 mediated delay of
ovarian tumor progression

To study the etiology of peritoneal tumor delay after treatment
with IL-33, we investigated the tumoricidal activity of the cells
derived from peritoneal washes of mice that had received IL-33
or PBS. Cells derived from the peritoneal cavity of IL-33 treated
mice were able to kill ID8-Defb29/Vegf-a tumor cells upon
coincubation (Figure 6a). To determine whether the activated
macrophages or the newly recruited eosinophils were the
responsible for this tumor cell lysis, we repeated the cytotoxi-
city assay with macrophages or eosinophils isolated from IL-33
treated mice or macrophages from PBS treated mice. To our
surprise, eosinophils sorted from the peritoneal cavity of IL-33
treated mice were not able to lyse tumor cells (Figure 6b).
However, IL-33 activated macrophages were able to lyse
tumor cells directly in vitro (Figure 6b).

To determine the relative contribution of peritoneal macro-
phages, eosinophils or CD4 T-cells in mediating in vivo anti-

tumor effects of IL-33, we treated ID8-Defb29/Vegf-a tumor bear-
ing mice with IL-33 while depleting macrophages, eosinophils or
CD4+ T-cells. Depletion of any of these cell types resulted in a
negative impact on the IL-33 anti-tumor effects, but none of these
individually fully abrogated the overall effect (Figure 6c).
Depletion of CD4+ T-cells was associated with a marked increase
in activated CD8 T-cells in the tumor microenvironment
(Figure 6d). This increase in activated CD8+ T-cells was unable
to exert the anti-tumor effect that occurs with the predominant
presence of CD4+ T-cells in the presence of IL-33. The relevance
of activated CD4 T-cells was further supported by the results of
eosinophil depletion. Eosinophil depletion showed a lack in acti-
vation of CD4 T-cells comparable to the mice receiving only PBS
(Figure 6e), with them also harboring lower levels of CD40L
(Figure 6f) and a restoration of the CD4:CD8 ratio to that of
PBS treated mice (Supplemental Figure 3a), which suggests that
eosinophils are required for optimal activation of intratumoral
CD4T-cells. As in CD4 depletion, eosinophil depletion resulted in
decreased survival advantage of IL-33 therapy (Figure 6c).
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Figure 4. IL-33 promotes peritoneal CD4 T-cell and B cell activation and eosinophil recruitment.
(A) Real-time quantitative-PCR of IL-5 expression in CD4+ T-cells sorted from the peritoneal cavity of mice bearing intraperitoneal ID8-Defb29/Vegf-a syngeneic tumors treated
intraperitoneally with IL-33 or PBS (triplicates, pooled from 5mice per group, 2 independent experiments). (B) Percentage of CD4+ T-cells expressing IL-5 in the peritoneal cavity
ofmice bearing intraperitoneal ID8-Defb29/Vegf-a tumors treated intraperitoneally with IL-33 or PBS (n = 5 per group). (C) Real-time quantitative-PCR of IL-13 expression in CD4+

T-cells sorted from the peritoneal cavity ofmice bearing intraperitoneal ID8-Defb29/Vegf-a (triplicates, pooled from 5mice per group (D) Levels of MHCII expressed in B-cells from
the peritoneal cavity of mice bearing intraperitoneal ID8-Defb29/Vegf-a tumors treated intraperitoneally with IL-33 or PBS (n = 5 per group, 2 independent experiments).
(E) Histogram showing levels of IgE in peritoneal fluid obtained by paracentesis frommice bearing intraperitoneal ID8-Defb29/Vegf-a syngeneic tumors treated intraperitoneally
with IL-33 or PBS (pooled of 3 independent experimentswith n=3–5mice per group each). (F) Real-timequantitative-PCR of IL-13 expression in B-cells sorted from the peritoneal
cavity ofmice bearing intraperitoneal ID8-Defb29/Vegf-a (n = 5 per group). (G) Histogramand flow cytometry plots showing the percentage of eosinophils the peritoneal cavity of
mice bearing intraperitoneal ID8-Defb29/Vegf-a tumors treated intraperitoneally with IL-33 or PBS (n = 5 per group, 2 independent experiments). T-test. *p < 0.05 ***p < 0.001.
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On the other hand, macrophage depletion did not show
any difference in proportions of T cells when compared with
IL-33 treatment alone, suggesting that the absence of direct
anti-tumor activity elicited by the macrophages is impairing
the IL-33 effectiveness in the case of their depletion
(Figure 6d-f and Supplemental Figure 3a). Additionally,
depletion of both CD4 T cells and eosinophils did not alter
the upregulation of CD86 and ST2 or the cytotoxic ability of
peritoneal macrophages upon IL-33 treatment (Supplemental
Figure 3b-d).

Together the data support that IL-33-induced increase in
survival requires the presence of activated CD4 T-cells, the
recruitment of eosinophils in the tumor microenvironment
with the activation of local peritoneal macrophages in order to
obtain the full survival benefit.

B cell depletion increases IL-33 anti-tumor efficacy

To further study the effect of activated peritoneal B cells in the
IL-33 treated mice, we treated ID8-Defb29/Vegf-a tumor bear-
ing mice with IL-33 while depleting B-cells or in B cell
deficient mice (muMt-). Interestingly, lack of B cells during
IL-33 treatment resulted in an increased survival when com-
pared to the IL-33 treatment alone (Figure 6g). This suggests
that allergic phenotype B cells induced by IL-33 results detri-
mental for the in vivo anti-tumor effect of IL-33.

Discusion

Here we describe that the cytokine IL-33 is able to extend
survival in metastatic ovarian cancer by driving an allergic like
local immune microenvironment. Local IP administration of
IL-33 into ovarian tumor-bearing mice drove the recruitment
and activation of allergic like CD4+ T-cells in the peritoneal
cavity, recruitment of eosinophils and secretion of IgE. This
inflammatory milieu resulted in driving a phenotypically
novel population of peritoneal macrophages capable of direct
tumor cell killing. These changes in the ovarian tumor micro-
environment were able to promote a long increase in survival
in ovarian-cancer bearing mice.

IL-33 has been described as a key initiator of acute local
inflammation and tissue-repair.27 IL-33 is present in the cell
nucleus under normal conditions and only released from cells
after injury or necrosis. After its release, IL-33 is inactivated
by proteolytic cleavage28 or oxidation.29 IL-33 is predomi-
nantly expressed in epithelial and endothelial cells. High con-
stitutive release generates an allergic inflammation with
eosinophilia.30 Increased secretion of IL-33 is a characteristic
finding in the pathogenesis of allergy12,31 and asthma.13,32,33

In our ovarian cancer tumor model the local increase in IL-33
resulted in a IL5+IL-13+ skewing of CD4+ T-cells and recruit-
ment and activation of eosinophils, similar to allergic disease.
This allergic response differed from a classical regulatory Th2
response in that there was a general downregulation of IL-10.
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Figure 5. IL-33 promotes activation of peritoneal macrophages.
Mice were challenged with intraperitoneal ID8-Defb29/Vegf-a tumors and treated at days 7,14 and 21 with intraperitoneal IL-33 or PBS. Two days later we performed
a peritoneal wash and performed peritoneal cell staining for flow cytometry and flow cytometry associated cell sorting of CD11b+F4/80+ peritoneal macrophages. (A)
Quantitative real time PCR showing relative quantification of Ym1, (B) IL-13, (C) ST2 and (D) IL-10 from IL-33 treated mice relative to macrophages from PBS treated
mice. Mean fluorescence intensity of macrophages stained for (E) CD40, (F) CD80 and (G) CD86 from IL-33 or PBS treated mice. (triplicates, pooled from 5 mice per
group, 2 independent experiments, 2 independent experiments). t-test. *p < 0.05 ***p < 0.001
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As determined by our depletion experiments, this induced
allergic reaction was able to delay tumor progression more
effectively than the infiltration by activated CD8+ T-cells
which we observed interestingly following CD4+ T-cell deple-
tion. Although ovarian cancer can be immunogenic, it is
generally protected by a suppressive tumor microenvironment
that prevents priming of tumor-specific T-cells and suppresses
the direct effect of anti-tumor CTLs.34-36 This environment
renders difficult tumor effective resolution by a Th1 response
based on CD8+ T-cells through mechanisms of T cell anergy
and exhaustion.37,38 An allergic-like antitumor response has
the advantage of having its effectors in the innate immune
compartment, not requiring specific priming or generation of
CTL immunity, suggesting a unique way to exploit IL-33 in
the treatment of peritoneal tumors.

The peritoneal cavity is a privileged site for IL-33 treatment
as it is contained and it possesses an ontogenically differen-
tiated lineage of tissue-resident macrophages.39,40 This

macrophage population represents the first line of defense
against microbes breaching the intestine and ascendant gyne-
cological infections.22 As has been reported for other sites,41-43

we observed that the peritoneal administration of IL-33 was
able to promote an allergic like macrophage activation in the
peritoneal tumor-associated macrophages. As reported pre-
viously for CD40 activated CD86+ activated macrophages in
the microenvironment of pancreatic cancer,44 or activated peri-
toneal macrophages were able to promote tumor cytotoxicity in
vitro and delay tumor progression in vivo. Additionally, IL-33
activated macrophages significantly decreased the expression of
IL-10, an immunosuppressive cytokine that is normally high in
tumor-associated ascites and associated with unfavorable
prognoses.45-47 Another peculiarity of the peritoneal immune
environment is the presence of B-1 cells, which have been
shown to be activated directly by IL-33 resulting in an
increased attraction of monocytes-macrophages.48,49 The role
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Figure 6. Maintenance of the Th2 response is necessary for the IL-33 mediated delay tumor progression in ovarian cancer.
(A) Cytotoxicity of peritoneal cells from IL-33 or PBS treated ID8-Defb29/Vegf-a bearing mice measured by luciferase absorbance after co-culture of 18 hours with ID8-
Defb29/Vegf-a-luciferase tumor cells (triplicates, 2 independent experiments). (B) Cytotoxicity of macrophages or eosinophils sorted from the peritoneal cavity of IL-33
or PBS treated ID8-Defb29/Vegf-a bearing mice measured by luciferase absorbance after co-culture of 18 hours with ID8-Defb29/Vegf-a-luciferase tumor cells in the
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Rank. *p < 0.05, **p < 0.01, ***p < 0.001.
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of B cells in tumor progression and anti-tumor immunity is not
fully elucidated. Previous studies have found that B cell deple-
tion results in an increased tumor growth,50 although it has
also been shown, as in our case, to enhance survival in combi-
nation with checkpoint inhibitors.51

In conclusion, we show that intraperitoneal administration
of IL-33 represents a promising location for treatment against
peritoneally confined metastatic cancers. The survival advan-
tage conferred by this therapy does not depend on classic
anti-tumor Th1 response but on an allergic like-tissue remo-
deling response elicited by CD4+ T-cells, eosinophils and
macrophages, with less reliant on effector CD8 T cell immu-
nity. Further study of this unique cytokine in local delivery for
tumor therapy appears important.

Methods

Animals and cell lines

C57BL/6 and B6.129S2-Ighmtm1Cgn/J (muMt-) mice were
purchased from The Jackson or Charles River Laboratory.
Animal experiments were approved by the Institutional
Animal Care and Use Committee at the Wistar Institute.

Parental ID8 cells were provided by Katherine Roby
(Department of Anatomy and Cell Biology, University of
Kansas Medical Center, Kansas City, KS) and retrovirally
transduced to express Defb29 and Vegf-a.52 We generated
ID8-Defb29/Vegf-a intraperitoneal tumors as described
previously.53 We generated ID8-Defb29/Vegf-a-luciferase by
lentivirally transducing them to express firefly luciferase
with a puromycin resistance selection gene.

Mice were treated with 1 μg of murine IL-33 (Peprotech and
eBioscience) dissolved in PBS or PBS alone once per week.

Flow cytometry

We used a BD LSRII flow cytometer or BD FACSAria cell
sorter (BD Biosciences).

Anti-mouse antibodies used were directly fluorochrome
conjugated. We used: anti-ST2 (DIH9), CD3e (17A2), CD4
(RM4-5), CD8b (YTS156.7.7), CD45 (30-F11), CD44 (IM7),
CD69 (H1.2F3), IL-5 (TRFK5), CD40L (MR1), B220
(RA36B2), CD11b (M1/70), MHCII (M5/114), F4/80 (BM8),
Cd80 (16-10A1), CD86 (GL-1) (all from BioLegend) and
Siglec-F (1RNM44N, ThermoFisher). Live/dead exclusion
was done with Zombie Yellow (BioLegend).

Cell proliferation assays

We plated 1,000 ID8-Defb29/Vegf-a cells on a 96 well plate
and added 10 or 100ng/ml of IL-33 diluted in PBS or PBS
alone. Three days later we performed MTS assays according to
the manufacturer’s instructions (Cell Titer96 AQueous One
Solution Cell Proliferation Assay, Promega).

For T cell proliferation we stained Th2 skewed CD4 T cells
with Cell Trace CFSE (Invitrogen) and cocultured them with
IL-33 (250ng/ml) or ConA (Invitrogen) and measured prolif-
eration by flow cytometry after 72h.

Ige quantification

We obtained peritoneal fluid from the mice by paracentesis,
removed the cellular component by centrifugation and used
the liquid component to perform an IgE quantification ELISA
following manufacturer’s instructions (Biolegend).

Quantitative real-time PCR

Sorted cell RNA was isolated by mechanical disruption and
extracted using RNeasy kits (QIAGEN) according to manufac-
turer’s instruction. RNA was reverse transcribed using High
Capacity Reverse Transcription kits (Applied-Biosystems).
Quantification of the following genes was performed on the 7900
Fast Real Time PCR system (Applied Biosystem) using SYBR
green reagents and the following primers ST2 (Forward: 5ʹ-
GACATCAGCCAAGAAGTGAGAG-3ʹ; and Reverse: 5ʹ-AA
TCCTCCATACAACCACACAA-3ʹ), IL-5 (Forward: 5ʹ-CTC
CAATGCATAGCTGGTGAT-3ʹ; and Reverse: 5ʹ-GAGAT
TCCCATGAGCACAGT-3ʹ), Ym1 (Forward: 5ʹ-TCACAGGT
CTGGCAATTCTTCTG-3ʹ; and Reverse: 5ʹ-ACTCCCTTC
TATTGGCCTGTCC-3ʹ), CD40 (Forward: 5ʹ- GACCTCCAAGT
TCTTATCCTCAC-3ʹ; and Reverse: 5ʹ- CACTGATACCGTCT
GTCATCC-3ʹ), CD80 (Forward: 5ʹ- TTGCCAGTAGATT
CGGTCTTC-3ʹ; and Reverse: 5ʹ- TTGTGCTGCTGATTCGTC
TT-3ʹ), IL-13 (Forward: 5ʹ- GTCCACACTCCATACCATGC-3ʹ;
and Reverse: 5ʹ- GATCTGTGTCTCTCCCTCTGA-3ʹ) IL-10
(Forward: 5ʹ- ATGGCCTTGTAGACACCTTG-3ʹ; and Reverse:
5ʹ- GTCATCGATTTCTCCCCTGTG-3ʹ). mRNA expression was
normalized by GAPDH levels (primers Forward: 5ʹ-
CCTGCACCACCAACTGCTTA-3ʹ; and Reverse: 5ʹ-
AGTGATGGCATGGACTGTGGT-3ʹ). The average of three
independent analyses for gene and sample was calculated using
the ΔΔ threshold cycle (Ct) method and was normalized to the
endogenous reference control gene GAPDH.

Th2 skewing

We harvested splenocytes from C57Bl6 mice and performed
CD4 T cell isolation using EasySep™ Mouse CD4 + T Cell
Isolation Kit (Stemcell). We plate 1 million CD4 T-cells per
well in 1ml of RPMI 10% FBS with 5ug/ml ConA, 20U/ml IL-
2 and 50ng/ml IL-4. Cytokines were refreshed on day 3. We
harvested the cells on day 6 to perform the experiments.

Cytotoxicity assay

We plated 10,000 target tumor cells in flat bottom 96 well
plate. Before plating the effector cells, we washed away the
tumor conditioned media and added fresh media and the
appropriate number of effector cells per well (50,000 of sorted
macrophages or eosinophils or 150,000 of total peritoneal cells
in 200 μL) and 100ug/ml of IL-33. Following 18 hours we
washed the wells with PBS and determined cytotoxicity using
the Luciferase Assay (Promega) according to the manufac-
turer’s instructions. Cytotoxicity was calculated as (maximum
viability control – individual well)/(maximum viability con-
trol – maximum death control)*100 as a percentage.
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Macrophage, eosinophil, CD4 and b cell depletion

We depleted macrophages by intraperitoneally injecting 400μg of
anti-mouseCSF1R antibody (AFS98, BioXcell) three times aweek.
Eosinophils were depleted by intraperitoneally injecting 15μg of
anti-mouse Siglec-F (clone 238047; R&D Systems) three times a
week.We depleted CD4+ cells by intraperitoneally injecting 400μg
of anti-mouse CD4 (GK1.4, BioXcell) three times a week.
Depletion was initiated 3 days prior to and continued throughout
IL-33 treatment. As isotype control we used 400μg of rat IgG2a
anti-trinitrophenol (2A3, BioXcell). We depleted B cells by intra-
peritoneally injecting 300μg of anti-mouse CD19 (1D3, BioXcell)
and 300μg of anti-mouse B220 (RA3.3A1/6.1, BioXcell).54

Statistics

Differences between the means of experimental groups were
calculated using a two-tailed unpaired Student’s t test or one-
way ANOVA where more than two quantitative variables
were measured. Error bars represent standard error of the
mean. Survival rates were compared using the log-rank test.
All statistical analyses were done using Graph Pad Prism 7.0.
A p-value < 0.05 was considered statistically significant.
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