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Training calibration‑based 
counterfactual explainers for deep 
learning models in medical image 
analysis
Jayaraman J. Thiagarajan1*, Kowshik Thopalli2, Deepta Rajan3 & Pavan Turaga2

The rapid adoption of artificial intelligence methods in healthcare is coupled with the critical need 
for techniques to rigorously introspect models and thereby ensure that they behave reliably. This 
has led to the design of explainable AI techniques that uncover the relationships between discernible 
data signatures and model predictions. In this context, counterfactual explanations that synthesize 
small, interpretable changes to a given query while producing desired changes in model predictions 
have become popular. This under‑constrained, inverse problem is vulnerable to introducing irrelevant 
feature manipulations, particularly when the model’s predictions are not well‑calibrated. Hence, in 
this paper, we propose the TraCE (training calibration‑based explainers) technique, which utilizes a 
novel uncertainty‑based interval calibration strategy for reliably synthesizing counterfactuals. Given 
the wide‑spread adoption of machine‑learned solutions in radiology, our study focuses on deep 
models used for identifying anomalies in chest X‑ray images. Using rigorous empirical studies, we 
demonstrate the superiority of TraCE explanations over several state‑of‑the‑art baseline approaches, 
in terms of several widely adopted evaluation metrics. Our findings show that TraCE can be used 
to obtain a holistic understanding of deep models by enabling progressive exploration of decision 
boundaries, to detect shortcuts, and to infer relationships between patient attributes and disease 
severity.

There is a growing interest in adopting artificial intelligence (AI) methods for critical decision-making, from 
diagnosing diseases to prescribing treatments and allocating resources, in  healthcare1–3. However, in order to 
trust AI systems and to prioritize patient safety, it is imperative to ensure those methods are both accurate and 
 reliable4. Examples of unreliable AI systems include a model that can produce highly confident predictions for 
patients presenting anomalies not seen in the training data, or a model accumulating evidence for a certain 
diagnosis based on uninformative regions in an  image5,6. This has strongly motivated the need to both reliably 
assess a model’s confidence in its  predictions7–9, and to enable rigorous introspection of its  behavior4,10–12. To 
this end, uncertainty estimation methods are being adopted to determine the deficiencies of a model and/or the 
training  data13. Meaningful uncertainties can play a crucial role in supporting practical objectives that range 
from assessing regimes of over (or under)-confidence and active data collection, to ultimately improving the 
predictive models  themselves14. However, in practice, uncertainties are known to be challenging to communi-
cate to decision-makers15, and the robustness of decisions with respect to uncertainties can vary considerably 
between use-cases16. Consequently, it could sometimes be more beneficial to implicitly leverage uncertainties 
when performing introspective analysis of machine-learned models.

Model introspection approaches that attempt to explain the input-output relationships inferred by models are 
routinely used to understand and promote trust in AI solutions. While there has been a large body of work on 
building inherently explainable models (e.g., rule based systems), post-hoc explanation methods have become the 
modus operandi with modern deep learning  systems17. In particular, local explanation methods are very popular 
as they provide a convenient way for users to introspect by generating local explanations specific to a given input 
(e.g., health record of a patient)—elucidate what features in the input data maximally support the prediction. 
Broadly, local explanation methods can be categorized into approximation and example-based approaches. The 
former class of methods begin by sampling in the vicinity of a query example and fit an explainer to the chosen 
set of samples (e.g., fit a linear model in  LIME18 or extract rules in  ANCHORS19). In contrast, example-based 
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methods synthesize data samples in the vicinity of a query, such that the predictions for those samples align 
with a user-specified hypothesis. The data samples from the latter approach are referred to as counterfactual 
 explanations20,21. While counterfactual explanations provide more flexibility over feature importance estimation 
methods, user-studies have also demonstrated that counterfactuals can elicit meaningful insights into the  data22.

While it is common to utilize counterfactuals for causal reasoning, in the recent years, they have been found to 
be effective for scenario exploration even with predictive  models23,24. In its most generic form, for a given query 
x , one can pose counterfactual generation based on a predictive model F : X → Y  as an optimization problem:

where x̄ is a counterfactual explanation for the query x (e.g., a medical image of a patient) and ȳ is the user-
specified hypothesis about x̄ (e.g., a certain diagnosis). Minimizing a suitable discrepancy d(., .) between x and 
x̄ ensures that the underlying semantic content of x is preserved in the counterfactual (i.e., vicinity). Another 
important requirement to produce meaningful counterfactuals is that the generated x̄ should lie close to the 
original data manifold M(X). When no tractable priors exist for M(X), it is common to perform this optimiza-
tion in the latent space of a pre-trained generative model (e.g., variational autoencoders (VAE)25 or generative 
adversarial networks (GAN)26). Despite the effectiveness of such priors, when the model’s predictions F(x̄) are 
poorly calibrated, i.e., prediction confidences are not indicative of the actual likelihood of  correctness9,27, the 
optimization in Eq. (1) can still lead to bad quality explanations. Though different variants of the formulation 
in Eq. (1) have been considered in the  literature20, the fundamental challenge with uncalibrated predictions still 
persists. We propose to circumvent this challenge by integrating prediction uncertainties into the counterfactual 
generation process.

Proposed work. In this work, we propose TraCE (Training Calibration-based Explainers), an introspec-
tion method for deep medical imaging models, that effectively leverages uncertainties to generate meaningful 
counterfactual explanations for clinical image predictors. As illustrated in Fig. 1, our framework is comprised 
of three key components: (1) an auto-encoding convolutional neural network to construct a low-dimensional, 
continuous latent space for the training data; (2) a predictive model that takes as input the latent representations 
and outputs the desired target attribute (e.g., diagnosis state, age etc.) along with its prediction uncertainty; and 
(3) a counterfactual optimization strategy that uses an uncertainty-based calibration objective to reliably eluci-
date the intricate relationships between image signatures and the target attribute. While our approach is flexible 
to support the use of any uncertainty estimator or prediction models that use explicit regularization to produce 
well-calibrated predictions, TraCE builds upon the recent Learn-by-Calibrating (LbC)  technique28 to obtain 
prediction intervals for both classification and regression settings. LbC jointly trains an auxiliary interval esti-
mator alongside the predictor model using an interval calibration objective, and has been shown to be effective 
at recovering complex function mappings in scientific datasets. We first adapt LbC for multi-class classification 
problems and subsequently propose a counterfactual generation approach based on the estimated prediction 
intervals. When compared to interpretability techniques that provide saliency maps or feature importance scores 
to explain a specific  decision29, TraCE enables progressive transition between different output states (e.g., normal 
→ abnormal) through appropriate image manipulations and more importantly, allows optimization with both 
categorical- and continuous-valued target variables.

Our key contributions can be summarized as follows: (1) a new calibration-based optimization approach 
that takes into account prediction uncertainties; (2) a generalized version of the recent Learn-by-Calibrating 
technique for classification settings; (3) novel analysis based on TraCE for progressive exploration of decision 

(1)argmin
x̄

d(x, x̄) s.t. F(x̄) = ȳ; x̄ ∈ M(X)

Figure 1.  An overview of TraCE applied for introspective analysis of chest X-ray (CXR)-based predictive 
models. In this example, we consider a binary classifier that has been trained to distinguish between normal and 
abnormal subjects (i.e., containing pneumonia-related anomalies). Since TraCE carries out the optimization 
in the latent space of a pre-trained auto-encoder model, we first transform a query image x (from the normal 
class) into its latent representation Z using the Encoder. Subsequently, we invoke the proposed calibration-driven 
optimization to obtain the counterfactual x̄ in the latent space, such that the semantic discrepancy between 
z and z̄ is minimized and the classifier’s prediction changes to abnormal. Note that, the classifier is trained 
to output the probabilities for each of the classes along with the prediction intervals. Finally, the synthesized 
counterfactual z̄ is transformed into the image-space ( ̄x ) using the Decoder network.
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boundaries, detecting shortcuts and inferring attribute relationships; and (4) empirical studies with a CXR-based 
modeling use-case and rigorous evaluation with respect to existing baselines.

Results. While recent advances in ML such as deep learning have produced disruptive innovations in many 
fields, radiology is a prominent example. Conventionally, trained physicians visually assess medical images for 
characterization and monitoring of diseases. However, AI methods have been showed to be effective at auto-
matically identifying complex signatures in imaging data and providing quantitative assessments of radiographic 
 characteristics30. Motivated by this wide-spread adoption of AI tools in  radiology31–33, our study focuses on 
detecting anomalies in chest X-ray (CXR) images. More specifically, we use images from the publicly available 
RSNA pneumonia detection challenge database (https:// www. kaggle. com/c/ rsna- pneum onia- detec tion- chall 
enge) in order to demonstrate the effectiveness of TraCE in performing introspective analysis. Given the diag-
nosis task of categorizing Chest X-ray (CXR) images into normal and abnormal groups (i.e., pneumonia-related 
anomalies), one can adopt a variety of ML solutions including deep neural networks to build classifiers. How-
ever, in practice, purely data-driven AI solutions can learn unintended shortcuts34 (e.g., superficial correlations) 
instead of meaningful decision rules. Such models typically perform well on the observed data, including pass-
ing standard cross-validation tests, yet fail when deployed in the real-world5,6. Hence, the foremost utility of 
TraCE is in validating that a predictive model has learned generalizable decision rules.

To this end, we use TraCE to progressively generate counterfactuals with different levels of likelihood in 
assigning a patient to the abnormal group. From our results, we find that using TraCE consistently produces 
highly meaningful counterfactual evidences, wherein severity of abnormality (e.g., pneumonia) is characterized 
primarily by changes in the lung opacity. More importantly, the image manipulations are highly concentrated 
in the chest region of the subject, thus showing that the models did not pick shortcut inductive biases (e.g., 
scanner-specific features or background image pixels). Using rigorous empirical studies, we also show that TraCE 
outperforms existing baseline methods, in terms of several widely adopted evaluation metrics in counterfactual 
reasoning. Furthermore, we find that TraCE can effectively detect shortcuts (or unintended biases) in trained 
models and infer relationships between different attributes (for example, age and diagnosis state), thus enabling 
a holistic understanding of deep clinical models.

Background and related work
Uncertainty estimation. The growing interest in employing machine learning (ML) based solutions to 
design diagnostic tools and to gain new insights into a host of medical conditions strongly emphasizes the need 
for a rigorous characterization of ML algorithms. In conventional statistics, uncertainty quantification (UQ) 
provides this characterization by studying the impact of different error sources on the  prediction35–37. Conse-
quently, several recent efforts have proposed to utilize prediction uncertainties in deep models to shed light onto 
when and how much to trust the  predictions38–40. Some of the most popular uncertainty estimation methods 
today include: (1) Bayesian neural  networks37,41: (2) methods that use the discrepancy between different models 
as a proxy for uncertainty, such as deep  ensembles42 and Monte–Carlo dropout that approximates Bayesian 
posteriors on the weight-space of a  model38; and (3) approaches that use a single model to estimate uncertain-
ties, such as orthonormal  certificates43, deterministic uncertainty  quantification44, distance  awareness45, depth 
 uncertainty46, direct epistemic uncertainty  prediction47 and accuracy versus uncertainty  calibration48.

Prediction calibration. It has been reported in several studies that deep predictive models need not be 
inherently well-calibrated27, i.e., the confidences of a model in its predictions are not correlated to its accuracy. 
While uncertainties can be directly leveraged for a variety of downstream tasks including out-of-distribution 
detection and sequential sample selection, they have also been utilized for guiding models to produce well-cali-
brated predictions. In practice, these requirements are incorporated as regularization strategies to systematically 
adjust the predictions during training, most often leading to better performing models. For example, uncertain-
ties from Monte–Carlo  dropout49 and direct error  prediction50 have been used to perform confidence calibra-
tion in deep classifiers. Similarly, the recently proposed Learn-by-Calibrating (LbC)  approach28 introduced an 
interval calibration objective based on uncertainty estimates for training deep regression models.

Counterfactual generation in predictive models. Counterfactual (CF)  explanations20 that synthesize 
small, interpretable changes to a given image while producing desired changes in model predictions to support 
user-specified hypotheses (e.g., progressive change in predictions) have recently become popular. An impor-
tant requirement to produce meaningful counterfactuals is to produce discernible local perturbations (for easy 
interpretability) while being realistic (close to the underlying data manifold). Consequently, existing approaches 
rely extensively on pre-trained generative models to synthesize plausible  counterfactuals20,21,51–53. While the pro-
posed TraCE framework also utilizes a pre-trained generative model, it fundamentally differs from existing 
approaches by employing uncertainty-based calibration for counterfactual optimization.

Results
Data. Our analysis uses CXR images available as public benchmark data for the tasks of predicting the diag-
nostic state and other patient attributes. In particular, our study uses the RSNA pneumonia detection challenge 
database, which is a collection of 30,000 CXR exams belonging to the NIH CXR14 benchmark  dataset54, of 
which 15,000 exams show evidence for lung opacities related to pneumonia, consolidation and infiltration, and 
7500 exams contain no findings (referred as normal). The CXR images in the dataset were annotated by six 
board-certified radiologists and additional information on the data curation process can be found in Ref.55. In 
addition to the diagnostic labels, this dataset contains age and gender information of the subjects. Note that, for 

https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
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this analysis, we used healthy control subjects from the RSNA pneumonia dataset to define the normal group 
and designed predictive models to discriminate them from patients presenting pneumonia-related anomalies in 
their CXR scans. We refer to the latter as the abnormal group.

Evaluation metrics. We used the following metrics for a holistic evaluation of the counterfactual explana-
tions obtained using TraCE and other baseline methods.

(1) Validity For categorical attributes (as in classification problems), this metric measures the ratio of the coun-
terfactuals that actually have the desired target attribute to the total number of counterfactuals generated 
(higher the better). In the case of continuous-valued attributes we measure the mean absolute percentage 
error (MAPE) between the desired and achieved target values (lower the better).

where I denotes the identity function that returns 1 when the arguments match, and N is the total number 
of query samples used for evaluation.

(2) Confidence In cases of categorical-valued targets (class labels), we compute the confidence P(ȳi|x̄i; F) (from 
softmax probabilities) of assigning the desired class ȳi for a counterfactual x̄i (higher the better).

(3) Sparsity Since we perform optimization directly in the latent space, measuring the amount of change in 
the images is a popular metric in the literature. We compute the sparsity metric as the ratio of the number 
of pixels altered to the total number of pixels.

and T denotes the total number of pixels in the query x . In general, sparser changes to an image are more 
likely to preserve the inherent characteristics of the query image.

(4) Proximity Recent works have considered the actionability of modified features by grounding them in the 
training data distribution.  Following56, we measure the average ℓ2 distance of each counterfactual to the 
K-nearest training samples in the latent space (lower the better)

where NK (x̄;X) denotes the set of K nearest neighbors of the counterfactual x from the training data X, and 
E denotes the encoder network (see “Methods” section for details) to compute the latent representation.

(5) Realism score We also employ this metric from the generative modeling  literature57 to evaluate the quality 
of images obtained using TraCE. While standard metrics such as the FID (Frechét Inception Distance) 
score or the precision/recall metrics are used to evaluate the overall quality of a population of generated 
images, they are not sufficient to assess individual images. Hence, we utilize the realism score introduced 
in Ref.58, which is high when the generated image is close to the true data manifold and decreases as the 
image moves further from the manifold. Denoting the feature vectors for the set of real images (used for 
training), obtained using a pre-trained classifier such as VGG-16, by the matrix �r = [ψ1

r , . . . ,ψ
N
r ] and a 

generated image by ψg , the realism score can be computed as follows:

where ψK
r  refers to the feature vector corresponding to the Kth nearest neighbor (w.r.t to �r ) from the set 

NK (ψ
j
r;�r).

TraCE enables progressive exploration of decision boundaries. Given the rapid adoption of AI 
solutions in diagnosis and prognosis, it is critical to gain insights into black-box predictive models. In this study, 
we analyzed a predictive model that classifies CXR images into normal and abnormal groups, and used TraCE to 
synthesize counterfactuals for a given query image from the normal class to visualize the progression of disease 
severity. Such an analysis can reveal what image signatures are introduced by a predictive model to provide evi-
dence for the abnormal class, and can be used by practitioners to verify if the model relies on meaningful deci-
sion rules or shortcuts (e.g., changes to the background) that cannot generalize. In our implementation of TraCE, 
we first constructed a low-dimensional latent space (100 dimensions) for the dataset of CXR images using a 
Wasserstein auto-encoder59. We subsequently learned the predictive model FD along with the interval estimator 
GD , using a modified version of the LbC algorithm (details in the “Methods” section). The hyper-parameters η1 
and η2 in Eq. (11) are critical to trade-off between preserving the inherent semantics from query x and achieving 
the desired prediction. Hence, one can progressively transition from the normal to the abnormal class by fixing 
η2 and gradually relaxing η1.

Figure 2 illustrates the counterfactuals obtained using TraCE for multiple different examples from our bench-
mark dataset. More specifically, the query samples x correspond to CXR images from the normal class and we 
varied η1 between 0.5 and 0.05, while setting η2 = 0.5 and η3 = 0.2 . These values were obtained using a standard 
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Figure 2.  (a–g) Diagnosis-based counterfactual explanations generated using TraCE by progressively 
introducing relevant patterns into different query images (first image in each row) of healthy subjects to 
increase the likelihood of being assigned to the abnormal group ( P(state = abnormal) ). (h–n) Diagnosis-based 
counterfactual explanations generated using TraCE by progressively introducing relevant patterns into different 
query images (first image in each row) of healthy subjects to increase the likelihood of being assigned to the 
abnormal group ( P(state = abnormal)).
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hyper-parameter search based on 500 randomly chosen images. For each case from Fig. 2, the different coun-
terfactuals along with their estimated P(state = abnormal) from the predictive model FD are shown. It can be 
clearly observed from the results that the counterfactuals show increased opacity in the lung regions (appearing 
as denser white clouds) as we progress towards the abnormal class, which strongly corroborates with existing 
studies on CXR-based image analysis. Furthermore, TraCE does not arbitrarily introduce irrelevant features into 
the image or make anatomical changes, thereby reliably preserving the inherent characteristics of the subject. 

Figure 2.  (continued)
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By producing physically plausible evidences for crucial hypotheses, TraCE enables practitioners to effectively 
explore complex decision boundaries learned by deep predictive models.

Comparing TraCE to baseline methods. In order to perform a quantitative evaluation of TraCE, we 
obtained counterfactuals for 500 randomly chosen images from a held-out test set (not used for training) and 
Table 1 presents a detailed comparison of different baseline methods (see “Methods” section for details). Note 
that, we chose the hyper-parameters η1, η2, η3 such that the average discrepancy in the latent space is similar 
across all methods. The first striking observation is that, despite using the same pre-trained latent space for 
counterfactual optimization, all methods that incorporate explicit calibration strategies or uncertainty estima-
tion consistently outperform the Vanilla model. More specifically, for similar levels of discrepancy in the latent 
space, TraCE achieves a significantly higher validity score of 0.88 as opposed to 0.69 of the Vanilla model, while 
inducing similar or lower amount of changes to the query (indicated by the sparsity and proximity metrics). Fur-
thermore, our approach outperforms the results obtained with state-of-the-art uncertainty estimators and cali-
bration strategies (in all the metrics), thus demonstrating its efficacy in generating counterfactual explanations.

As discussed earlier, TraCE is applicable for predictive models outputting both categorical- and continuous-
valued target variables. To demonstrate this, we considered only healthy control subjects from the RSNA dataset 
and designed a regressor to estimate their age attribute using their CXR images. Though the age prediction task 
is not necessarily relevant on its own in clinical diagnosis, as we will show next, such attribute estimators can be 
utilized for inferring relationships to the diagnosis state. For our evaluation, we used 500 randomly chosen test 
subjects whose age attribute was between 40 and 70 and set the desired value ȳ = 20 . From Table 2, we notice 
that the proposed approach achieves lower validity (MAPE) scores, without compromising on the proximity 
metric, when compared to the other baselines. Interestingly, we find that changing the age attribute required 
the manipulation of much lesser number of pixels (low sparsity values) when compared to the diagnosis state.

TraCE detects shortcuts in deep models. An important challenge with purely data-driven methods is 
that they have the risk of inferring decision rules based on shortcuts, thereby limiting their utility in practice. 
Detecting such shortcuts is essential to both validate model behavior and to detect unintended biases (hospital-
specific or device-specific information) in the training data. In order to demonstrate the use of TraCE in detect-
ing such shortcuts, we synthetically introduced a nuisance feature into images from the abnormal class—overlaid 
the text PNEUMONIA in the top-left corner of each image, and used TraCE to check if the model’s decision was 
based on this nuisance feature. After training the Wasserstein autoencoder and the LbC model using the altered 
images, we selected query images from the normal group and generated the corresponding counterfactual evi-
dences for the abnormal group. As illustrated in Fig. 3a–d, TraCE exclusively manipulates the top-left corner to 
accumulate evidence for abnormality, thus revealing that the predictive model relies on the nuisance feature. 
Similarly, in Fig. 3e–h, one can transition from the abnormal (examples containing the nuisance feature) to the 
normal group by simply removing the synthetic text PNEUMONIA. This experiment clearly emphasizes the 
utility of TraCE in detecting model and data biases.

TraCE reveals attribute relationships. Motivated by the effectiveness of TraCE in producing counter-
factuals for different types of target attributes, we next explored how counterfactual optimization can be used to 
study relationships between patient attributes, such as age and gender, and the diagnosis state. Note, this analysis 
is based on the assumption that the patient attribute can be directly estimated from the CXR images, and the 
inferred relationship does not necessarily imply causality.

First, we study if the image signatures pertinent to the patient age attribute provides additional evidence for 
diagnosis state prediction. Given the age predictor, along with its interval estimator, (FA, GA) and the diagnosis 
predictor (FD , GD) , we constructed counterfactuals based on two independent hypotheses. Note, both predic-
tors were constructed based on the same low-dimensional latent representations. More specifically, we provided 
the hypotheses ȳA = 70 and ȳD = abnormal for the two cases, and used TraCE to generate counterfactuals x̄A 
and x̄D that adhere to our hypotheses. We then estimated the age-specific and diagnosis-specific signatures 
introduced by TraCE:

In order to check if there exists an apparent relationship between age and diagnosis state, we generated the 
hybrid counterfactual,

Finally, we compared FD(x̄)− FD(x̄D) to quantify if incorporating age-specific features into x̄D increased 
the disease severity (i.e., likelihood of being assigned to the abnormal class). An overview of this strategy is 
illustrated in Fig. 4.

Figure 5 shows the results for eight different normal subjects, wherein we find that there is an apparent 
increase in P(state = abnormal) when age-specific signatures are incorporated. Using 500 randomly chosen 
normal subjects, we estimated an average change of 0.09± 0.08 in FD(x̄)− FD(x̄D) , thus indicating that the 
diagnosis predictor is sensitive to age-specific patterns. In practice, if such a relationship is expected, it is a strong 
validation for the model’s behavior. On the other hand, if the attribute is a confounding variable, it becomes 
critical to retrain the model wherein this sensitivity is explicitly discouraged. Interestingly, when we repeated 
this analysis with the gender attribute, such a relationship was not apparent (see results in Fig. 6).

(6)�A(x) = x− x̄A; �D(x) = x− x̄D .

(7)x̄ = x+�A(x)+�D(x).
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Methods
In this section, we discuss in detail the methodology for performing calibration-driven counterfactual genera-
tion. All the methods presented were performed in accordance with the relevant guidelines and regulations.

Constructing low‑dimensional latent spaces. Given a set of samples from an unknown data distribu-
tion, our goal is to build a low-dimensional, continuous latent space that respects the true distribution, so that 
one can generate counterfactual representations in that space. A large class of generative modeling methods 
exist to construct such a latent space. In this work, we focus on Wasserstein  autoencoders59 since they have been 
found to outperform other variational autoencoder formulations, particularly in image datasets with low hetero-
geneity, e.g., scientific images from physics  simulations60. This network is a composition of an encoder network 
E that transforms the input x into its latent code z , and a decoder network D that reconstructs the image. Addi-
tionally the encoder has the objective of matching the latent distribution of the training samples EPX [E(z | x)] 
to a pre-specified prior PZ . This helps us to sample from the prior as well as generate new unseen samples from 
the original data manifold M(X) after training such auto-encoding models. Wasserstein autoencoders thus have 
to minimize: (1) discrepancy cost Dx between the original data distribution and the generated; (2) discrepancy 
cost Dz between the latent distribution of the encoded training samples to that of a prior. Following standard 
WAE consturction, we employ the mean squared error (MSE) for Dx and use the maximum mean discrepancy 
(MMD) to define Dz . As shown in Fig. 7a, we also find that including another loss term to maximize the struc-
tural similarity (SSIM)61 between the original and reconstructed images led to higher quality reconstructions.

Training. All images were resized to 224× 224 pixels, and treated as single channel images. With the latent 
space dimensionality fixed at 100, the encoder model was comprised of 4 convolutional layers, with the number 
of filters set to [16, 32, 64, 32], followed by two fully connected layers with hidden units as 512 and 100. All con-
volutional layers used the kernel size (3, 3) and stride 2. The decoder consisted of two fully connected layers with 
512 and 6272 hidden units followed by 4 transposed convolutional layers with channels [64, 32, 16, 1] respec-
tively. ReLU non-linear activation was applied after every layer except for the last layer. We trained the models 
using the  Adam63 optimizer for 150 epochs with an initial learning rate of 1e − 3 and decreased it by factors 2, 5, 
10 after 30, 50 and 100 epochs respectively. The three loss functions were assigned the weights [1, 0.5, 0] for the 
first 20 epochs and subsequently changed to [1, 0.1, 1] respectively until convergence.

Predictive model design using LbC. While conventional metrics such as cross entropy (for categori-
cal-valued outputs) and mean squared error (for continuous-valued outputs) are commonly used, it has been 
recently found that interval calibration is effective for obtaining accurate and well-calibrated predictive  models28. 
Hence, in TraCE, we adapt the Learn-by-Calibrating approach to train classifier (or regression) models that map 
from the CXR latent space to a desired target variable. By design, LbC provides prediction intervals in lieu of 
point estimates for the response y , i.e., [ŷ− δ, ŷ+ δ] . Here, δ is used to define the interval. Suppose that the likeli-
hood for the true response y to be contained in the prediction interval is p(ŷ− δ ≤ y ≤ ŷ+ δ) , the intervals are 

Table 1.  Performance evaluation of diagnosis-based counterfactual explanations obtained using different 
approaches. In each case, we report results averaged across 500 test samples. Significant values are in [bold].

Method Validity ↑ Confidence ↑ Sparsity ↓ Proximity ↓ Realism ↑

Vanilla 0.68 0.63±0.11 0.3±0.17 4.59±0.68 1.16 ± 0.09

Mixup 0.78 0.69±0.17 0.27±0.16 4.09±0.52 1.19 ± 0.13

UWCC 0.79 0.75±0.13 0.25±0.17 4.26±0.63 1.16 ± 0.2

MC dropout 0.73 0.66±0.16 0.34±0.19 4.57±0.53 1.18 ± 0.16

Deep ensembles (5 models) 0.8 0.72±0.09 0.29±0.11 3.68±0.57 1.21 ± 0.12

TraCE 0.87 0.81±0.12 0.23±0.14 3.73±0.51 1.33 ± 0.13

Table 2.  Performance evaluation of age-based counterfactual explanations obtained using different 
approaches. In each case, we report results averaged across 500 test samples. Significant values are in [bold].

Method Validity ↓ Sparsity ↓ Proximity ↓ Realism ↑

Vanilla 2.49 0.06±0.08 4.08±0.48 1.26±0.1

Mixup 0.83 0.05±0.07 3.79±0.52 1.28±0.07

UWCC 0.74 0.09±0.03 3.81±0.42 1.33±0.05

MC dropout 1.44 0.07±0.08 4.13±0.29 1.26±0.06

Deep ensembles (5 models) 0.45 0.05±0.09 3.89±0.32 1.32±0.06

TraCE 0.16 0.05±0.03 3.66±0.35 1.38 ± 0.06
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considered to be well-calibrated if the likelihood matches the expected confidence level. For a confidence level α , 
we expect the interval to contain the true response for 100× α% of realizations from p(x).

Algorithm. The model is comprised of two modules F and G , implemented as neural networks, to produce esti-
mates ŷ = F(z) and δ = G(z) respectively. For example, in the case of multi-class classification settings, ŷ ∈ R

K is 
a vector of predicted logits for the K different classes. Since interval calibration is defined for continuous-valued 
targets, we adapt the loss function for training on the logits directly. To this end, we first transform the ground 
truth labels into logits. Note, for each sample, we allow a small non-zero probability (say 0.01) to all negative 
classes. As discussed earlier, suppose that the likelihood for the true y[k], k ∈ (1, . . . ,K) to be contained in the 
interval is p(ŷ[k] − δ[k] ≤ y[k] ≤ ŷ[k] + δ[k]) , the intervals are considered to be well-calibrated if the likeli-
hood matches the confidence level. Denoting the parameters of the models F and G by θ and φ respectively, we 
use an alternating optimization strategy similar  to28. In order to update φ , we use the empirical interval calibra-
tion error as the objective:

where δi = G(zi;φ) , and the desired confidence level α (set to 0.9 in our experiments) is an input to the algo-
rithm. When updating the parameters φ , we assume that the estimator F(.; θ) is known and fixed. Now, given 
the updated φ , we learn the parameters θ using the following hinge-loss objective:

(8)φ∗ = argmin
φ

K
∑

k=1

∣

∣

∣

∣

∣

α −
1

N

N
∑

i=1

1
[

(ŷi[k] − δi[k]) ≤ yi[k] ≤ (ŷi[k] + δi[k])
]

∣

∣

∣

∣

∣

,

Figure 3.  Using TraCE to detect shortcuts in deep predictive models. In this experiment, we synthetically 
introduced a nuisance feature (overlaid the text PNEUMONIA in the top-left corner) into all images from 
the abnormal group, and used this data to train the predictive model. Given the entirely data-driven nature of 
machine-learned solutions, there is risk of inferring a decision rule based on this irrelevant feature in order to 
discriminate between normal and abnormal groups. (a–d) Here, we used randomly chosen query images from 
the normal class and generated counterfactuals for the abnormal class. In each case, we show the query image, 
the counterfactual explanation from TraCE and the absolute difference image between the two; (e, f) Here, we 
introduced the nuisance feature into CXR images from the abnormal group and synthesized counterfactuals for 
the normal class. We observe that TraCE can effectively detect such shortcuts—counterfactuals for changing the 
diagnosis state are predominantly based on manipulating the text on the top-left corner of the query images.
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Figure 4.  Using TraCE to infer relationships between a patient attribute (e.g., age) and disease states. For 
this analysis, we construct two independent predictive models, i.e., age and diagnosis state, and synthesize 
counterfactuals based on hypothesis on each of the predictions (e.g., patient age should be predicted as 70 while 
the diagnosis state should be abnormal. Finally, we combine the changes induced in the two counterfactuals, 
�A(x) and �D(x) respectively, and check if incorporating age-specific patterns strengthens the evidence for the 
abnormal class.

Figure 5.  (a–h) Explanations generated using TraCE by introducing age-specific attributes into the 
counterfactuals synthesized for changing the diagnosis state of a normal subject to be abnormal. Interestingly, 
we find that there exists a correlation between the two attributes, as evidenced by the consistent increase in 
the likelihood P(state = abnormal) when compared to counterfactuals that rely only on patterns from the 
diagnosis state predictor. In each case, we highlight the changes �A(x),�D(x), (�A(x)+�D(x)) and display 
the likelihood P(state = abnormal).
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where ŷi = F(zi; θ) and τ is the margin parameter (set to 0.05 in our experiments). Intuitively, for a fixed φ , 
obtaining improved estimates for ŷ can increase the empirical calibration error in (8) by achieving higher likeli-
hoods even for lower confidence levels. However, in the subsequent step of updating φ , we expect δ ’s to become 
sharper in order to reduce the calibration error. We repeat the two steps (Eqs. 8 and 9) until convergence.

Architecture. As showed in Fig. 7b, the predictor was designed as a 7-layer fully connected network with 
hidden sizes [512, 1024, 256, 128, 64, 16, K] and ELU activations, while the interval estimator was a 6-layer net-
work with sizes [512, 1024, 256, 128, 64, K] and ReLU activations.

Uncertainty‑aware counterfactual generation. CE modifies the counterfactual generation process in 
Eq. (1) using the pre-trained predictor and interval estimator models from LbC. Our goal is to generate explana-
tions to support a given hypothesis on the target variable—for example emulating high-confidence disease states 
given the CXR of a healthy subject. To this end, we first obtain the latent representation for the given query image 
x using the encoder, z = E(x) . We then use the pre-trained predictor ( F ) and interval estimator ( G ) models to 

(9)
θ∗ = argmin

θ

K
∑

k=1

1

N

N
∑

i=1

[

max
(

0, (ŷi[k] − δi[k])− yi[k] + τ
)

+max
(

0, yi[k] − (ŷi[k] + δi[k])+ τ
)]

,

Figure 6.  (a–d) Explanations generated using TraCE by introducing gender-specific attributes into the 
counterfactuals synthesized for changing the diagnosis state of a normal subject to be abnormal. In contrast 
to the age attribute, image manipulations associated with change in gender (female → male) do not cause 
any apparent change to the likelihood of being assigned to the abnormal group. In each case, we highlight the 
changes �A(x),�D(x),�A(x)+�D(x) and show the likelihood P(state = abnormal).

Figure 7.  Framework design for TraCE. (a) First, we train an auto-encoding neural  network59, and construct 
a low-dimensional, continuous latent space for CXR images. Note, we used a combination of maximum mean 
discrepancy (MMD), mean squared error (MSE) and structural similarity (SSIM) losses to train the network 
parameters; (b) next, we adapt the Learn-by-Calibrating62 approach to train a classifier that takes as input the 
latent representation from the encoder and outputs a patient-specific attribute along with prediction intervals.



12

Vol:.(1234567890)

Scientific Reports |          (2022) 12:597  | https://doi.org/10.1038/s41598-021-04529-5

www.nature.com/scientificreports/

generate the counterfactual z̄ . Finally, the generated counterfactuals in the latent space are passed to the decoder 
to obtain a reconstruction in the image space, x̄ = D(z̄) . We propose the following optimization to generate the 
counterfactual explanations:

here, ȳ is the desired value for the target attribute (hypothesis), η1, η2, η3 are hyper-parameters for weighting 
the different terms, and ‖.‖2 denotes the ℓ2 norm. The first term ensures that the generated counterfactual is in 
the vicinity of the query sample x (in the latent space). The second term ensures that the expected target value 
is contained in the prediction interval (calibration), while the final term penalizes arbitrarily large intervals to 
avoid trivial solutions. The calibration objective L is implemented as a hinge-loss term:

where the margin was fixed at τ = 0.05 . Choosing η1, η2, η3 is essential to controlling the discrepancy between 
z and z̄ , and ensuring that the prediction for the counterfactual is ȳ.

Baselines.  We considered a suite of baseline approaches for our empirical study and they differ by the strate-
gies used for training the classifier, and counterfactual optimization. In particular, we investigate approaches that 
produce explicit uncertainty estimators as well as those that directly build well-calibrated predictors. However, 
note that, all methods perform their optimization in the same latent space.

(1) Vanilla In this approach, we train the classifier with no explicit calibration or uncertainty estimation, and 
use the following formulation to generate the counterfactuals:

where Lce denotes the cross entropy loss.
(2) Mixup This is a popular augmentation  strategy64 that convexly combines random pairs of images and 

their labels, in order to temper overconfidence in predictions. Recently, in Ref.65, it was found that mixup 
regularization led to improved calibration in the resulting model. In mixup, the model is trained not only 
on the training data, but also using samples in the vicinity of each training sample:

where xi and xj are randomly chosen samples with labels yi and yj . The parameter � , drawn from a symmet-
ric Beta distribution, determines the mixing ratio. Since this approach does not produce any uncertainty 
estimation, the counterfactual optimization is same as that of the Vanilla approach in Eq. (12).

(3) MC dropout In this baseline, we train the classifier with dropout regularization and estimate the (epistemic) 
prediction uncertainty for any test sample by running multiple forward passes. Finally, we use the follow-
ing heteroscedastic regression objective to implement uncertainty-based calibration during counterfactual 
optimization:

  Note, similar to the proposed approach, here we operate directly on the logits and the mean/variance 
estimates ( µẑ, σ

2
ẑ  ) are obtained using T (set to 5) forward passes with dropout.

(4) Deep ensembles Deep ensembles form an important class of uncertainty estimation methods, wherein the 
model variance is used as a proxy for uncertainties. In this approach, we independently train M different 
models (with bootstrapping and different model initializations) with the same architecture. Subsequently, 
for any input sample x , we obtain the mean/variance estimates ( µẑ, σ

2
ẑ  ) by aggregating predictions from the 

M models. Finally, we employ the calibration objective in Eq. (14) to perform counterfactual optimization. 
While highly accurate and currently one of the best uncertainty estimation techniques, deep ensembles 
require training multiple models, which can become a computational bottleneck when training deep net-
works.

(5) Uncertainty-Weighted confidence calibration (UWCC) The authors in Ref.49 proposed to build calibrated 
classification models by augmenting a confidence-calibration term to the standard cross-entropy loss and 
weighting the two terms using the uncertainty measured via multiple stochastic inferences. Mathematically,

here the first term denotes the cross-entropy loss, and the predictions P(ŷi|zi) are inferred using stochastic 
inferences for zi , while the variance ( αi ) in the predictions is used to balance the loss terms. More specifi-
cally, we perform T forward passes with dropout in the network and promote the softmax probabilities 
to be closer to an uniform distribution, i.e. high uncertainty, when the variance is large. The normalized 
variance αi is given by the mean of the Bhattacharyya coefficients between each of the T predictions and 
the mean prediction. Since the model is inherently calibrated during training, we do not measure the 

(10)z̄ = argmin
ẑ

η1�z− ẑ�22 + η2L(ŷ, δ, ȳ)+ η3δ, where ŷ = F(ẑ), δ = G(ẑ)

(11)L(ŷ, δ, ȳ) =
[

max
(

0, (ŷ− δ)− ȳ+ τ
)

+max
(

0, ȳ− (ŷ+ δ)+ τ
)]

,

(12)z̄ = argmin
ẑ

η1�z− ẑ�22 + η2Lce

[

F(ẑ), ȳ
]

,

(13)x = �xi + (1− �)xj; y = �yi + (1− �)yj ,

(14)z̄ = argmin
ẑ

η1�z− ẑ�22 + η2

[

(ȳ− µẑ)
2

2σ 2
ẑ

+
1

2
log(σ 2

ẑ )

]

.

(15)
1

N
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−(1− αi) log(P(ŷi|zi))+ αiDKL(U(y)||P(ŷi|zi))
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uncertainties at test time and hence use the optimization in Eq. (12) for generating counterfactuals. For 
the case of continuous-valued targets (i.e., regression tasks), we utilize the extension in Ref.66 that performs 
heteroscedastic calibration of the MC dropout estimator during training.

Data availability
All datasets used in this were obtained from publicly released databases and pre-processed using open-source 
tool chains. We have added appropriate links to obtain the data as well as access the scripts for pre-processing, 
wherever applicable.

Code availability
The software associated with this paper will be hosted through a public code repository (github).
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