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PURPOSE. Current melphalan-based regimens for intravitreal chemotherapy for retinoblas-
toma vitreous seeds are effective but toxic to the retina. Thus, alternative agents are
needed. Based on the known biology of histone deacetylases (HDACs) in the retinoblas-
toma pathway, we systematically studied whether the HDAC inhibitor belinostat is a
viable, molecularly targeted alternative agent for intravitreal delivery that might provide
comparable efficacy, without toxicity.

METHODS. In vivo pharmacokinetic experiments in rabbits and in vitro cytotoxicity exper-
iments were performed to determine the 90% inhibitory concentration (IC90). Functional
toxicity by electroretinography and structural toxicity by optical coherence tomography
(OCT), OCT angiography, and histopathology were evaluated in rabbits following three
injections of belinostat 350 μg (2× IC90) or 700 μg (4× IC90), compared with melpha-
lan 12.5 μg (rabbit equivalent of the human dose). The relative efficacy of intravitreal
belinostat versus melphalan to treat WERI-Rb1 human cell xenografts in rabbit eyes was
directly quantified. RNA sequencing was used to assess belinostat-induced changes in
RB cell gene expression.

RESULTS. The maximum nontoxic dose of belinostat was 350 μg, which caused no reduc-
tions in electroretinography parameters, retinal microvascular loss on OCT angiography,
or retinal degeneration. Melphalan caused severe retinal structural and functional toxicity.
Belinostat 350 μg (equivalent to 700 μg in the larger human eye) was equally effective
at eradicating vitreous seeds in the rabbit xenograft model compared with melphalan
(95.5% reduction for belinostat, P < 0.001; 89.4% reduction for melphalan, P < 0.001;
belinostat vs. melphalan, P = 0.10). Even 700 μg belinostat (equivalent to 1400 μg in
humans) caused only minimal toxicity. Widespread changes in gene expression resulted.

CONCLUSIONS. Molecularly targeted inhibition of HDACs with intravitreal belinostat was
equally effective as standard-of-care melphalan but without retinal toxicity. Belinostat
may therefore be an attractive agent to pursue clinically for intravitreal treatment of
retinoblastoma.

Keywords: retinoblastoma, histone deacetylase inhibitor, HDAC, HDAC inhibitors, beli-
nostat, chemotherapy, intravitreal chemotherapy, animal models, toxicity, efficacy, phar-
macokinetics, vitreous seeds, ocular tumors
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The introduction of intra-arterial chemotherapy (IAC)1

and direct intravitreal injections of chemotherapy2,3 has
revolutionized the management of children with advanced
intraocular retinoblastoma (RB), as vitreous seeds histori-
cally have been the most difficult feature of retinoblastoma
to eradicate.4,5 Previous studies have suggested that intra-
venous chemotherapy (IVC) salvages only ∼30% to 40% of
eyes with vitreous seeds,6–8 and IAC only cures about two-
thirds of eyes with vitreous seeds.9 In contrast, the addition
of adjuvant intravitreal injections has been shown to increase
efficacy and globe salvage following treatment with either
IVC or IAC.9–13

Currently, the backbone of current standard-of-care
chemotherapeutic regimens used for both IAC and intrav-
itreal chemotherapy is melphalan. However, there is exten-
sive evidence in both animals14–16 and patients16–19 that
melphalan is highly toxic to the retina. Thus, although effec-
tive, intravitreal melphalan regimens cause damage to retinal
function and affect residual vision, which can cause signifi-
cant morbidity in a disease that often presents bilaterally.

Alternative agents to melphalan have been explored for
both the intra-arterial and intravitreal routes. However, these
alternative drugs used intravitreally have generally either
repurposed already-used intravenous agents (e.g., carbo-
platin, etoposide)20,21 or simply repurposed already-used
intra-arterial agents (e.g., topotecan).22–24 These have gener-
ally first been tried clinically, without first being tested in
preclinical studies to demonstrate efficacy or lack of toxicity
or to inform dosing decisions.

Our recently described retinoblastoma tumor model25

and toxicity assessment platform14 allow both the efficacy
and toxicity of novel compounds to be studied, thus aiding
in preclinical assessment of novel intravitreal (and intra-
arterial) chemotherapeutic agents. Various histone deacety-
lases (HDACs) are known to complex with the retinoblas-
toma protein (pRB)26,27 or other similar retinoblastoma
family pocket proteins28,29 and to have an effect on
pRB pathway-regulated genes.29–31 However, it is unclear
whether this approach would be effective in tumor cells in
which RB protein function is already abrogated. Given that
RB loss is a hallmark of many different solid tumors,32 this
has implications for other cancer types, as well. We there-
fore explored the utility of HDAC inhibition as an alterna-
tive strategy to eradicate retinoblastoma vitreous seeds using
our RB xenograft model25 to assess efficacy in vivo, and
we assessed the ocular toxicity of this agent in vivo using
the toxicity assessment platform that we have developed.14

We demonstrate that the pan-HDAC inhibitor belinostat is
equally effective to standard-of-care melphalan, but it does
not cause the retinal functional loss seen with melphalan,
thus suggesting that it may be an attractive alternative agent.

METHODS

Statement of Research Ethics

All animal experiments were performed under the auspices
of the Vanderbilt Institutional Animal Care and Use Commit-
tee (approved protocol ID #M1800146) and adhered to the
ARVO Statement for the Use of Animals in Ophthalmic and
Vision Research.

Belinostat Intravitreal Pharmacokinetics

New Zealand White rabbits (2.8–3.0 kg) were used for all
studies. One microgram belinostat (Acrotech Biopharma,

East Windsor Township, NJ, USA) in 50 μL saline was injected
2 to 3 mm posterior to the limbus into the vitreous cavity
(n = 4 rabbits). Serial vitreous taps were then performed
through a 20-gauge valved vitrectomy cannula that had been
inserted 2 to 3 mm behind the limbus on the other side of
the eye. Samples were obtained at 15 minutes, 30 minutes, 1
hour, 2 hours, 4 hours, and 6 hours after injection. Preplace-
ment of a valved cannula maintained the stability of the eye
and prevented efflux of vitreous contents during manipula-
tions. Vitreous samples were immediately placed on dry ice
and then stored at –80°C.

Similar to previous studies,25,33 vitreous samples were
thawed and spiked with an internal carbamazepine stan-
dard, diluted with blank plasma, and deproteinized with
acetonitrile. Calibration samples were prepared in parallel
by spiking blank plasma with internal standard and known
concentrations of belinostat. Samples were analyzed on a
Thermo TSQ Quantum Ultra mass spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA) interfaced to a Waters
ACQUITY UPLC system (Waters, Milford, MA, USA).

Belinostat concentrations were averaged across rabbits at
each time point, and the resulting mean time–concentration
data from each matrix were analyzed via non-compartmental
analysis (Phoenix WinNonlin 6.4; Certara, Princeton, NJ,
USA) to determine pharmacokinetic parameters, including
half-life.

In Vitro Determination of Dosing

Human WERI-Rb1 retinoblastoma cells were grown in RPMI
with 10% fetal bovine serum under normal growth condi-
tions, as reported previously.24,33 Five thousand cells were
plated in 96-well plates and exposed to belinostat at vari-
ous concentrations for 4 hours (equivalent to 5 half-lives as
determined through the above-described pharmacokinetic
experiments). The belinostat-containing media were then
removed and replaced with fresh media. After 7 days, live
cells were counted using the CellTiter-Blue assay (Promega,
Madison,WI, USA). Survival curves were graphed with Prism
(GraphPad, San Diego, CA, USA), and the 50% inhibitory
concentration (IC50) and 90% inhibitory concentration (IC90)
were calculated. We then back-calculated, using the pharma-
cokinetic parameters determined above, the dose of belino-
stat that would have had to have been initially injected into
the eye to obtain a concentration above the theoretical IC90

concentration in the vitreous on the opposite side of the eye
for a duration of 5 half-lives.33

Assessment of Ocular Toxicity and Determination
of Maximum Tolerable Dose of Intravitreal
Belinostat In Vivo in Rabbits

Intravitreal injections of belinostat were given into non–
tumor-bearing rabbit eyes weekly for 3 weeks. We used
various doses of belinostat to determine the maximum
tolerable dose, including the injection dose that would
achieve 2× IC90 (350 μg) or 4× IC90 (700 μg; see Results
section for calculation of IC90). Additional cohorts of rabbits
received equivalent volumes of saline injections as a control,
or received melphalan 12.5 μg as a comparator of the
toxicity associated with current standard-of-care treatment.
Because the rabbit vitreous volume is half the size of a
human child’s vitreous volume, experiments with intravit-
real injections in rabbits generally have used a dose equal
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FIGURE 1. Experimental design of toxicity and efficacy experiments in the rabbit model. (A) Toxicity experiments. Drug (belinostat, melpha-
lan, or saline, depending on the cohort) was injected into the right eye of New Zealand White rabbits once per week for 3 consecutive
weeks. One day prior to each injection, functional and structural testing was obtained (see Methods section). One week following the final
(third) injection, testing was again performed, and then the rabbits were euthanized and globes harvested for histopathologic evaluation.
(B) Efficacy experiments. Following 3 days of cyclosporine (CsA) immunosuppression (which also continued throughout the course of the
experiment), WERI-Rb1 cells were injected into the vitreous of both eyes of New Zealand White rabbits. After 2 weeks of growth, once-
per-week injections of drug (belinostat 350 μg or melphalan 12.5 μg) were given into the right eye (OD) and saline into the left eye (OS).
Imaging was obtained and rabbits were sacrificed 2 weeks after completing the three (weekly) injections.

to half that used in patients,24,33–35 and we have maintained
that accepted conversion factor in these experiments. In
our study, 12.5 μg represents the rabbit vitreous volume-
adjustment of the clinical dose in humans (25 μg). Thus,
there were four total cohorts: belinostat 350 μg (2× IC90),
belinostat 700 μg (4× IC90), melphalan 12.5 μg, and saline.
Each cohort consisted of 7–11 rabbits. For each rabbit, only
one eye was treated and evaluated in the toxicity assessment
experiments.

Figure 1A shows a diagrammatic representation of the
experimental design. Testing was obtained at baseline and
prior to each week’s injection and then 1 week after
the final (third) injection (immediately prior to sacrific-
ing the rabbit and harvesting the eye). Retinal structure
and function were assessed with our previously described
toxicity assessment platform.14,33 Briefly, testing consisted
of electroretinography (ERG), clinical ophthalmic examina-
tion, fundus photography, optical coherence tomography
(OCT), and OCT angiography (OCTA). OCT and OCTA were
performed using a custom-built, 780-nm spectral-domain
engine and ophthalmic scanner.14,36 Intravitreal injections
were performed weekly and always within 1 day follow-
ing testing. In addition, after rabbits were sacrificed, the
eyes were harvested and fixed in Davidson’s solution (as
described above), and histologic sections were evaluated by
an experienced veterinary pathologist (KLB).

For ERG testing, following pupillary dilation, rabbits
were dark adapted for at least 1 hour, and then anesthe-
sia was induced with ketaset and xylazine. The ground
and reference stainless steel subdermal needle electrodes
(OcuScience, Henderson, NV, USA) were inserted subcuta-
neously on the top of the head and at the base of the
ear, respectively. The corneal Gold Mylar Film electrode
(OcuScience) was then centered on the cornea after placing
a small drop of Goniovisc (OcuScience) on the concave side
of the contact lens. ERG was performed using the Hand-
held Multi-species Electroretinography (HMsERG) Model
2000 (OcuScience) under a Faraday cage, according to the
modified International Standard for Clinical Electrophysiol-
ogy of Vision protocol for rabbits.37 Specific testing condi-
tions were as follows: scotopic 100-mcd.s/m2 flash inten-
sity, scotopic 3000-mcd.s/m2 flash intensity, scotopic 10,000-
mcd.s/m2 flash intensity, 10 minutes of light adaptation
followed by photopic 3000-mcd.s/m2 flash intensity (with
background of 30,000 mcd/m2), and 30-Hz flicker with 3000-
mcd.s/m2 flash intensity.

For assessment of retinal function by ERG, toxicity was
defined for each rabbit for each test and each parameter
(e.g., rabbit 1, scotopic 100 A-wave amplitude; rabbit 2,
photopic 3000 B-wave implicit time). Toxicity was defined
prospectively as described previously.14,24,33,35 Briefly, toxic-
ity was deemed significant for a given dose in a rabbit group
if there was a 25% reduction in average ERG amplitude or a
25% prolongation of average implicit time for a given param-
eter when comparing the post-treatment values with the pre-
treatment values, and the difference was statistically signifi-
cant. For assessment of toxicity in individual rabbits, toxicity
was defined as a 25% reduction in ERG amplitude or a 25%
prolongation of implicit time for a given parameter when
comparing the post-treatment values with the pre-treatment
values for that rabbit.

Assessment of Efficacy of Intravitreal Belinostat
for Vitreous Seeds In Vivo in Rabbits

A representation of the experimental design is shown
in Figure 1B. Retinoblastoma vitreous seeds were gener-
ated by injection of 1,000,000 WERI-Rb1 cells in 100 μL
saline into the vitreous of both eyes of cyclosporine-
immunosuppressed rabbits, as we have described previ-
ously.25,33 After 2 weeks of vitreous seed growth, rabbits
were treated with three injections, one injection per week, of
350 μg/100 μL belinostat (right eye) and 100 μL saline (left
eye). The 350-μg injection was selected because it repre-
sented the maximum tolerable dose as determined from the
toxicity experiments (see above and also Results section).
In order to compare the efficacy of intravitreal belinostat
against standard-of-care melphalan, an additional cohort of
rabbits was treated with 12.5 μg/100 μL melphalan (right
eye) and 100 μL saline (left eye). As explained above, 12.5
μg represents the rabbit vitreous volume-adjusted equivalent
of the clinically used dose in humans (25 μg).

Two weeks after the third and final intravitreal injection,
the rabbits were sacrificed and the eyes harvested. The vitre-
ous of each eye was then harvested in toto and dissolved,
and live cells were counted by direct microscopic counting
using trypan blue. In four additional rabbits per cohort, the
entire eye was harvested and submitted for histopathology,
either 2 weeks after the first injection (n = 2 rabbits per
cohort) or 2 weeks after the third injection (n = 2 rabbits
per cohort).
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Statistical Analyses of Rabbit Efficacy Data and
ERG Data

For the efficacy experiments, the paired t-test was used to
evaluate the mean difference in cell numbers on a square
root scale between the correlated samples (left saline-treated
eyes and right drug-treated eyes). The data were transformed
to better meet normality assumptions. To compare the effi-
cacy of belinostat to melphalan, the relative reduction of cell
counts was analyzed to determine differences between the
two independent groups using the Welch two-sample t-test.
To evaluate the toxicity at different dosages, a linear mixed-
effects model was fitted with the repeated measurement
(pre- or post-treatment) for each ERG parameter and each
test.33 Using model-based (least-square) means, the average
change from pre- versus post-treatment and the difference
in change among the different treatment groups (difference
of differences) were estimated and compared with the Wald
test. The definition of toxicity for a treatment was defined
as above. Bonferroni adjusted P values were reported to
account for multiple comparisons among groups. All tests
were two sided, with adjusted P values < 0.05 considered
statistically significant. The analyses were performed using
R 3.6.3 (R Foundation for Statistical Computing, Vienna,
Austria), including the packages “nlme” and “emmeans.”

Real-Time Glo Annexin V Apoptosis and Necrosis
Assay

It has been suggested that HDACs mediate cell death in
cancer cells via both apoptotic and non-apoptotic mecha-
nisms.38,39 To assess the relative amount of apoptosis as
a proportion of total cell death following belinostat treat-
ment, we performed the dual luminescence-fluorescence
Real-time Glo Annexin V Apoptosis and Necrosis Assay
(JA1011; Promega), according to the manufacturer’s proto-
col. Briefly, 10,000 WERI-Rb1 cells were plated in each well
of a 96-well plate and grown for 3 days. After 3 days, 16-μM
(2× IC90) belinostat (Selleck Chemical, Houston, TX, USA)
was added to wells designated as treated, and detection
reagents were added to all wells of the plate, including wells
containing only cells and wells containing only media. Plates
were read every 2 hours for a total of 72 hours with a
SpectraMax iD3 Multi-Mode Microplate Reader (Molecular
Devices, San Jose, CA, USA).

RNA Sequencing

WERI-Rb1 cells were grown in flasks for 3 days, and 16-μM
(two times the calculated IC90) belinostat (Selleck Chemical)
was added to each flask after the 3 days. Three million cells
were collected at each time point, spun down, and resus-
pended in 300 μL RNAProtect solution (QIAGEN, Hilden,
Germany), and kept at –20°C until RNA isolation. Cells were
removed from the RNAProtect solution by centrifugation
at 10,000 rpm and processed using the QIAGEN RNeasy
Mini Kit following the manufacturer’s protocol. DNAse treat-
ment was performed, and the RNA was eluted in 30 μL
water. RNA sequencing (RNA-seq) libraries were prepared
using 200 ng of total RNA and the NEBNext Ultra II Direc-
tional RNA Library Prep With Sample Purification Beads
from Illumina (E7765; New England BioLabs, Ipswich, MA,
USA) per the manufacturer’s instructions. This kit employs
strand-specific/directional methods for sequencing RNA to
provide information on the DNA strand from which the

RNA strand was transcribed. The libraries were sequenced
using the NovaSeq 6000 with 150-bp paired-end reads target-
ing 50 million reads per sample. RTA 2.4.11 (Illumina, San
Diego, CA, USA) was used for base calling and analysis used
MultiQC v1.7. Adapters were trimmed by Cutadapt (https:
//github.com/marcelm/cutadapt). After trimming, RNAseq
reads were mapped to the human reference genome GRCh38
using STAR and quantified by FeatureCounts. DESeq2 was
used to detect differential expression between treated and
untreated samples. Genes with a fold change of >2 and a
false discovery rate < 0.05 were considered to be signifi-
cantly differentially expressed. Functional enrichment anal-
ysis was performed against gene ontology and the KEGG
database using WebGestalt and gene set enrichment analy-
sis (GSEA).

RESULTS

Belinostat Pharmacokinetics and In Vitro
Determination of Expected Effective In Vivo Dose

After an injection of 1 μg belinostat, the peak concentration
at the opposite side of the eye was achieved at 30 minutes
post-injection (Fig. 2A). The vitreous half-life of belinostat
was 0.8 hours. The average Cmax at the opposite side of the
eye was 0.457 μg/mL at 30 minutes. Compared with the theo-
retical Cmax of 0.71 μg/mL (calculated as 1 μg/1.4 mL), which
would be achieved with instantaneous diffusion of 1 μg of
belinostat into a theoretical average rabbit vitreous volume
of 1.4 mL, this actual Cmax at the opposite side of the eye
achieved 30 minutes after injection was therefore ∼64% of
the expected Cmax. This represents the minimum amount of
peak drug concentration available to treat retinoblastoma
vitreous seeds located at the farthest point in the eye relative
to the injection site. This is presumably due to rapid efflux
of the drug during this time period of distribution of beli-
nostat across the vitreous. This is plausible, as the peak was
achieved at 30 minutes (approximately 63% of one 0.8-hours
half-life). Mathematically, one would expect 65% of the drug
to remain after 0.63 half-lives, which is exceptionally close
to the 64% that was actually measured empirically.

Given that retinoblastoma vitreous seeds would be
expected to experience exposure to a drug for only a limited
period of time, which is dictated by pharmacokinetics and
drug half-life in the vitreous, we next determined the in vitro
IC90 of belinostat based on this empiric exposure time. The
half-life of belinostat in the rabbit eye was calculated at 0.8
hours. Thus, we determined the minimum amount of WERI-
Rb1 human retinoblastoma cells that would be expected to
be killed following 5 half-lives of exposure (∼4 hours). The
fraction of WERI-Rb1 cells still alive 7 days after this brief
exposure was determined for different drug concentrations.
The IC90 of WERI-Rb1 cells following a brief 4-hour expo-
sure to belinostat was calculated at 8 μM belinostat (Fig. 2B).
We then back-calculated that this minimum IC90 concentra-
tion would be achieved for a full 5 half-lives at the oppo-
site side of the rabbit eye following intravitreal injection of
∼175 μg belinostat.

Retinal Functional Toxicity of Various Doses of
Intravitreal Belinostat Compared With Melphalan
in Rabbits

The toxicity associated with various concentrations of beli-
nostat was evaluated to determine the maximum tolerable

https://github.com/marcelm/cutadapt
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FIGURE 2. Pharmacokinetics of intravitreal belinostat in vivo in the rabbit eye and dose-dependent survival curves of retinoblastoma cells to
transient exposure to belinostat in vitro. (A) Pharmacokinetic curve in the rabbit vitreous following intravitreal injection of 1 μg of belinostat.
Sampling was performed through a valved vitrectomy cannula inserted on the contralateral side of the eye relative to the injection site, and
all sampling was performed on the far side of the vitreous relative to the injection site. The use of a valved vitrectomy cannula helped to
maintain eye stability and prevent leakage throughout the course of the experiment. (B) CellTiter-Blue survival curve in vitro of human
WERI-Rb1 cells exposed to various doses of belinostat for 4 hours (equal to 5 vitreous half-lives). Surviving cells were measured at the 7-day
time point. The IC90 can be found to correspond to 8 μM belinostat for this length of exposure.

dose. Doses studied included 2× IC90 (350 μg, equivalent
to 700 μg in the larger human vitreous) and 4× IC90 (700
μg, equivalent to 1400 μg in humans). These belinostat
doses were compared with a clinically used, effective dose
of melphalan (12.5 μg in the rabbit, equivalent to 25 μg in
humans), as well as to saline as a control for the repeated
injection procedures. The primary quantitative outcome was
ERG measurements over the course of treatment (see Meth-
ods section).

Although the saline control groups experienced no wors-
ening of ERG parameters, three weekly injections of melpha-
lan caused significant worsening of almost all ERG param-
eters, with reductions in ERG amplitudes between 48% and
84%. These reductions were highly statistically significant
(Fig. 3). When individual rabbits were examined, rather than
just the averages across the melphalan cohort, we found
that every melphalan-treated rabbit experienced worsening
of ERG parameters, affecting a median of nine (interquartile
range, 8–10) out of a total of 18 different measured param-
eters. Similar results were found when considering implicit
time prolongation. Representative ERG tracings are available
in the Supplementary Material.

In contrast, rabbits treated with belinostat 350 μg (twice
the dose calculated to achieve the IC90 on the opposite side
of the rabbit vitreous for 5 half-lives) did not experience
any statistically or clinically meaningful worsening of ERG
parameters (Fig. 3). Even at 4× IC90 (700 μg, equivalent to
1400 μg in patients), only a few parameters showed signs of
much milder retinal functional loss (Fig. 3). Because 350 μg
(2× IC90) did not cause any retinal functional toxicity, this
was determined to be the maximum tolerable dose and was
used in subsequent efficacy experiments.

Comparison of Retinal Structural Changes
Between Belinostat-Treated and
Melphalan-Treated Eyes

Eyes treated with three weekly injections of belinostat
showed no retinal damage and were histologically indistin-

guishable from saline-treated control eyes or untreated eyes
(Fig. 4). This was true even for those eyes treated with twice
the clinically effective dose (700 μg, equivalent to 1400 μg
in patients). In contrast, retinas from eyes treated with the
clinically effective dose of melphalan (12.5 μg, equivalent to
25 μg in patients) all demonstrated severe atrophy (Fig. 4).

OCT showed retinal thinning similar to what was ulti-
mately seen on histopathology, with normal-appearing reti-
nal layers and thickness in belinostat-treated eyes and severe
thinning and loss of normal layers in melphalan-treated eyes.
OCTA showed severe vascular pruning in melphalan-treated
eyes but not in contralateral untreated eyes or saline-treated
controls (Fig. 5). In contrast, almost all belinostat-treated
eyes, in both the 350-μg cohort and the 700-μg cohort,
showed normal and full retinal microvasculature. The excep-
tion was a single belinostat-treated eye in which there was
some vascular pruning noted only in the vessels on the
side nearest the injection site. With melphalan, a similar, but
much more profound, dose-related toxicity gradient has also
been seen, both in rabbits and human patients.35

Lens Findings in Belinostat-Treated Eyes

All eyes treated with belinostat developed a translucent, mid-
peripherally located “plaque”-like area on the posterior lens
capsule on the side near the injection site (Fig. 6). This was
seen in all belinostat-treated eyes, but in none of the saline-
treated or melphalan-treated eyes, and so does not represent
iatrogenic needle trauma to the lens. Careful histopathologic
investigation of the entire posterior capsule in these eyes
failed to demonstrate any microscopically or histologically
observable pathology.

Relative Efficacy of Intravitreal Belinostat and
Melphalan to Treat Retinoblastoma Vitreous
Seeds In Vivo in Rabbits

Rabbits harboring WERI-Rb1–derived vitreous seeds in both
eyes were treated with either belinostat or melphalan in
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FIGURE 3. Functional retinal toxicity of various doses of intravitreal belinostat versus melphalan. Electroretinography was performed weekly,
1 day prior to each of the three planned injections, as well as 1 week after the final injection (immediately prior to sacrificing the rabbit).
Retinal responses to scotopic 100-mcd.s/m2 flashes, scotopic 3000-mcd.s/m2 flashes, scotopic 10,000-mcd.s/m2 flashes, photopic 3000-
mcd.s/m2 flashes, and 30-Hz flicker flashes were recorded. A-wave and B-wave amplitudes and A-wave and B-wave implicit times were
recorded (except for with the 30-Hz flicker, where there is only a B wave). Shaded areas on the graphs represent 95% confidence intervals.
No toxicity (see Methods section for toxicity criteria) was observed for any parameter in the saline-treated control eyes or in the cohort
treated with 350 μg of belinostat. However, significant toxicity was seen for every parameter in the cohort of rabbits treated with 12.5 μg of
melphalan. With 700 μg belinostat (equal to twice the clinically effective dose), a few parameters showed mild toxicity. Graphs of amplitudes
are shown, but similar results were seen for implicit times, as well. For those particular tests where significant toxicity was seen, percent
change and P values for estimates of trend are shown along with the particular graph. P values of the differences among groups are shown
at the top of each graph. NS, not significant.
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FIGURE 4. Absence of structural retinal toxicity in belinostat-treated eyes compared with melphalan. Histopathology demonstrated normal
retinal architecture in untreated eyes (A) and in the saline-treated eyes (B). Eyes treated with intravitreal injections of 350 μg belinostat (C)
or 700 μg belinostat (D) were both histologically indistinguishable from saline-treated (or untreated) eyes. (E) In contrast, eyes treated with
12.5 μg melphalan showed significant retinal atrophy on histopathology.

the right eye and saline in the left eye. Following three
weekly injections of 350 μg belinostat (equivalent to 700 μg
in humans), 95.5% of cells were killed, compared with the
contralateral eye treated with intravitreal saline injections
(P < 0.001) (Fig. 7). Following three weekly injections of
melphalan at a dose known to be clinically effective (12.5 μg,
equivalent to 25 μg in humans), 89.4% of cells were killed,
compared with the contralateral eye treated with intravit-
real saline injections (P < 0.001). Therefore, belinostat was
just as effective as melphalan, with no statistically signifi-
cant difference between the 95.5% of cells killed by belino-
stat and the 89.4% of cells killed by melphalan (P = 0.10)
(Fig. 7).

For additional rabbits (n= 4 rabbits per treatment cohort)
treated as above with belinostat, melphalan, or saline, the
entire eyes were harvested and submitted for histopathology.
These demonstrated comparably few residual cells in both
the belinostat-treated eyes and the melphalan-treated eyes,
2 weeks after three injections (Figs. 7E–7G). TUNEL staining
was performed, and this confirmed that the few remaining
cells in the belinostat-treated eyes were in the process of
dying, with no viable cells remaining (Fig. 7H). This suggests
that the ∼5% of “live” cells counted in the tumor quantita-
tion assay following three injections of belinostat were likely
similarly not viable.

Mechanisms of Cell Death and Specific Genes
Regulated by Belinostat

To study the specific sets of genes regulated by belinostat
treatment, we performed a time-course experiment using
RNA-seq of belinostat-treated cells in vitro. Gene expression
data demonstrated that pan-HDAC inhibition with belinos-
tat lead to changes in gene expression of a large number
of genes, which increased over time from 1412 differentially
expressed genes at 2 hours post-treatment (970 upregulated,
442 downregulated) to 7345 differentially expressed genes
(4092 upregulated, 3253 downregulated) by 24 hours after
treatment. These changes were highly statistically signifi-
cant, as seen in the volcano plots (Fig. 8).

GSEA demonstrated that the genes that were regulated
by belinostat were highly consistent with previous reported
gene sets regulated by other pan-HDAC inhibitors in other
types of cancer cells.40–42 Gene ontology studies examin-
ing molecular function of the sets of genes differentially
expressed following belinostat treatment demonstrated that
at early time points (2 and 4 hours), the most commonly
regulated genes were those that functioned in transcrip-

tion itself and in regulation and specificity of gene expres-
sion, such as transcriptional activators and repressors and
sequence-specific DNA binding. At later time points (6 and
8 hours), the most commonly regulated genes were those
that functioned in cell membrane channels and transport
and cellular homeostasis. Real-time dual apoptosis/necrosis
experiments demonstrated that apoptosis accounts for only
part of the total cell death (necrosis) that is ultimately caused
by belinostat treatment.

DISCUSSION

Using a series of in vivo pharmacokinetic, efficacy, and toxi-
city experiments, we demonstrated that intravitreal injection
of the pan-HDAC inhibitor belinostat is equally effective at
eradicating human retinoblastoma vitreous seed xenografts
in vivo as compared with current standard-of-care melpha-
lan, but belinostat does not cause the same retinal toxicity
seen with melphalan. We likewise demonstrated that 350 μg
belinostat (equivalent to 700 μg in the human eye) appears
to be the ideal starting dose to use for intravitreal injection.

Because HDAC inhibitors have never previously been
used in clinical practice for the treatment of RB patients,
nor have they previously been used by intravitreal injec-
tion for any indication in clinical practice, we initially had
to determine the intravitreal IC90 of belinostat for retinoblas-
toma cells through a series of in vivo pharmacokinetic and in
vitro cytotoxicity experiments. First, the vitreous in rabbits
(and in young children) is quite solid, and so we posited
that there was a not-insignificant transit time for the drug to
cross the vitreous and that during that time of transit some
of the drug would be effluxed. Thus, there would be less
drug available to treat vitreous seeds located on the far side
of the vitreous cavity. We therefore injected into one side
of the vitreous, and we measured drug concentration from
the other side over time. As expected, there was a reduction
in drug concentration on the far side of the eye, with only
64% of the theoretical maximum reaching the other side,
and this diffusion across the vitreous took approximately 30
minutes on average to achieve. Second, our previous work
with other drugs had demonstrated that intravitreal and
intra-arterial injections of various other drugs leads to high
but transient vitreous concentrations, with relatively rapid
efflux.24,25 Thus, following intravitreal injection, the vitreous
seeds would only be exposed to the initial high concentra-
tion very briefly. We therefore determined the vitreous half-
life to ensure that the dose calculated for the initial injection
would allow a concentration (on the opposite side of the
vitreous) above the IC90 for a length of time equivalent to at
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FIGURE 5. Comparison of retinal microvascular toxicity of various
intravitreal agents. OCT and OCTA were performed over the course

of treatment with three weekly injections of saline, belinostat, or
melphalan. Shown are OCTA images of the treated right eyes and
the untreated left control eyes immediately prior to sacrifice 1 week
following the third and final injection. (A–D) Saline-treated cohort.
No retinal microvascular loss was seen in saline-treated right eyes
(B, D), compared with untreated left eyes (A, C). (E–K) Belinostat-
treated cohort. No retinal microvascular loss was seen in almost
all belinostat-treated right eyes (F, H), which appeared similar to
their contralateral untreated left eyes (E, G, I). In a single eye, some
microvascular pruning was noted near the injection site (J), where
the drug dose would have been greatest before diffusing across the
vitreous. The central retina and the retina on the opposite side of the
eye were normal (K). (L–R) Melphalan-treated cohort. Severe loss
of microvasculature was seen in all melphalan-treated right eyes (M,
O) compared with the contralateral untreated left eyes (L, N, P). In
a single eye, the microvascular loss was noted to be worse on the
side of the injection, with some relative sparing of the vessels on the
side of the retina farthest from the injection site, where the dose was
lower (Q, R). This is similar to what has been described clinically
with melphalan, where there is a gradient effect and greatest toxicity
nearest the injection site.

FIGURE 6. Posterior lens capsule finding in eyes treated with intrav-
itreal belinostat. Eyes treated with a series of three intravitreal
belinostat injections (350 μg and 700 μg) developed a translucent
plaque-like area in the mid-periphery of the posterior lens capsule
on the side nearest the injection site. This was thought to be due to
a transiently high local concentration of drug in the adjacent vitre-
ous at the time of injection and is attributed to the relatively large
size of the lens relative to the vitreous cavity in rabbits, necessitat-
ing injecting very close to the posterior lens capsule. Postmortem
pathologic evaluation showed no histopathologic abnormalities of
the lens or lens capsule in any of the treated eyes, despite the clin-
ically visible area seen here. This was seen in all belinostat-treated
eyes and none of the saline or melphalan-treated eyes, eliminating
the possibility that this was due to iatrogenic lens trauma from the
needle itself.
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FIGURE 7. The efficacy of intravitreal belinostat against retinoblastoma vitreous seeds in a rabbit xenograft model. One million WERI-Rb1
human retinoblastoma cells were injected into the vitreous of both eyes of cyclosporine-immunosuppressed rabbits. Following 2 weeks of
growth, the eyes were given three weekly injections of intravitreal drug (right eye) or intravitreal saline (left eye). (A, B) Residual vitreous
seeds 2 weeks following the final (third) injection, showing significant large seeds in a representative left (saline-treated) eye (A) and
complete clinical resolution of the vitreous seeds in a representative belinostat-treated right eye (B). (C) Quantification of residual live
vitreous seeds 2 weeks after the third injection of belinostat (right eyes) or saline (left eyes), showing massive reduction in live tumor cells
with belinostat 350 μg. Note that the scale is a square-root scale and is not linear. (D) Comparison of relative reduction with belinostat versus
melphalan (compared with their respective saline-treated contralateral eyes), demonstrating no statistically significant difference between
the two treatments. Note that the y-axis extends from 75% to 100%, and the top of the y-axis represents the greatest reduction. (E) Live
vitreous seeds in a control eye treated with three injections of saline (hematoxylin and eosin stain, 10× magnification). (F) Hematoxylin and
eosin stain of an eye treated with three injections of 12.5 μg melphalan, with very few residual cells remaining (arrows, 10× magnification).
(G) Hematoxylin and eosin stain of an eye treated with three injections of 350 μg belinostat, demonstrating very few residual cells remaining
(arrows), similar to melphalan (10× magnification). (H) TUNEL stain of the same belinostat-treated eye as in G, demonstrating that the few
residual cells are all undergoing apoptosis, with no viable cells remaining (40× magnification).

FIGURE 8. Gene expression changes following pan-HDAC inhibition. Volcano plot showing the increase in number of differentially expressed
genes as a function of time following belinostat treatment. Gene expression levels were determined by RNA-seq. Note the relatively large
fold-change in gene expression for many of these genes and the very high level of statistical significance.
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least 5 half-lives. Of course, for the first 4 of those half-lives,
the dose would actually be above the IC90 (by 16-fold, 8-
fold, 4-fold, and 2-fold, sequentially). However, because our
goal was not the eradication of 90% of tumor cells but rather
100%, we felt that these “excess” drug levels early following
injection would actually be helpful and obviously cannot be
avoided. We determined that 350 μg was the injection dose
that achieved 2× IC90 on the far side of the vitreous for 5
half-lives, and therefore used 350 μg, as well as twice this
value (700 μg) in subsequent in vivo experiments. The rabbit
vitreous volume is half the size of a human child’s vitre-
ous volume, so experiments with intravitreal injections in
rabbits generally have used a conversion factor of two when
comparing with patients.24,33–35 Thus, these calculated beli-
nostat doses correspond to 700 μg and 1400 μg, respectively.

We have previously demonstrated that our vitreous seed
and retinal tumor xenograft model,25 which we originally
based on prior work by Kang and Grossniklaus,43 recapitu-
lates the histopathologic findings of clinical disease seen in
patients with RB. By using a xenograft model derived from
human RB cells, we also increase the likelihood that the
HDAC inhibition and cytotoxic efficacy seen in our model
will translate to patients. In an effort to make our findings
as clinically relevant as possible, we used a weekly dosing
regimen, consistent with many clinical protocols.3,12,16,44

From a practical point of view, any frequency greater than
this would be impractical, as it would require unacceptably
frequent anesthesia events for these young children. Several
recent clinical treatment protocols for intravitreal injections
with melphalan have decreased the frequency even further,
to every 2 weeks or every 3 weeks, while maintaining good
efficacy.9,17,45 Less frequent belinostat dosing might likewise
maintain the same excellent efficacy-to-toxicity ratio and
therapeutic window seen here. Our protocol of three weekly
injections did not eliminate 100% of tumor cells quantified
in the vitreous. However, it should be noted that the effi-
cacy of belinostat (95.5%) was numerically greater than, but
statistically equivalent to (P= 0.10), current standard-of-care
melphalan, and we know that melphalan is extremely effec-
tive at eradicating all tumor cells in patients. In addition,
of the few live tumor cells still present 2 weeks after the
third injection of belinostat, all were found to be positive on
TUNEL staining, indicating that, although not quite dead yet,
all had irreversibly already entered the process of apoptosis
or necrosis, and none remained truly viable. This finding,
taken together with the equivalent efficacy compared with
melphalan in our experiments, suggests that all tumor cells
can ultimately be eradicated by intravitreal belinostat.

Over the past decade, HDAC inhibitors have revolu-
tionized the treatment of several different types of cancer,
many of which had few good options previously. This
has been especially true in the realm of liquid tumors,
with HDAC inhibitors now approved by the US Food
and Drug Administration (FDA) for the treatment of cuta-
neous T-cell lymphoma, peripheral T-cell lymphoma, and
myeloma.46,47 Belinostat itself is already approved for the
treatment of patients with relapsed or refractory periph-
eral T-cell lymphoma.48 However, the approach of using
HDAC inhibitors for solid tumors has not been as success-
ful,47 notably including a trial of valproic acid for metastatic
uveal melanoma that failed to demonstrate efficacy. HDAC
inhibitors gradually alter histone acetylation to change chro-
matin structure and impact gene expression.49,50 These
generally require chronic exposure over time to cause these
downstream changes in gene expression levels leading to

cell death. In contrast, the pharmacokinetics of intravitreal
injection,51–53 with single injections spaced out over weeks,
and the rapid decline in vitreous drug levels following each
injection, would not be thought to be conducive to this sort
of chronic sustained change in gene expression. It is possi-
ble that the efficacy seen in our in vivo experiments is due to
sustained pharmacodynamics, even if the pharmacokinetics
are brief. That is, the drug levels in the vitreous may rapidly
decrease, but the drug may persist in having its effect on
proteins inside the cell for a sustained period of time. Alter-
natively, the very high local concentrations achieved through
intravitreal injection may overcome the need for chronic
exposure, either by causing longer acting changes inside the
cells or by activating other secondary targets or pathways
(see below). In fact, some HDAC inhibitors known to have
short half-lives still are able to cause longer duration effects
on cells in vivo.47

Belinostat is a non-specific pan-HDAC inhibitor.54 In fact,
we found this same cytotoxicity against human RB cells to be
a class effect, rather than specific to belinostat itself (data not
shown). However, unlike most other FDA-approved HDAC
inhibitors, belinostat is currently formulated in solution
rather than as a pill taken orally. Thus, belinostat seemed
the optimal choice within the HDAC inhibitor class to study
via the intravitreal route, as it could be used in its current
formulation. However, it is unclear which specific HDACs are
being inhibited to mediate the cytotoxic effects seen in vivo.
Certain HDACs are known to interact with pRB itself,26,27

with other similar pocket proteins (e.g., p130)28,29 or their
binding partners,30 and/or with other proteins important in
RB pathways (e.g., E2F).55 For example, both HDAC1 and
HDAC3 have been reported to complex with pRB,26,28,29

and both have been implicated in RB-dependent chromatin
remodeling facilitating transcription at RB/E2F-responsive
gene promoters.29–31 In addition, HDACs are known to affect
acetylation of histones (as their name implies) but also to
have “off target” effects and cause acetylation changes in
other (non-histone) proteins.56–58 Effects on various critical
cancer pathways, including those mediating apoptosis59–61

and cell-cycle control,62,63 have been shown to be caused in
several ways: through direct complexing with pRB and other
similar pocket proteins,28 by impacting pRB complexes with
other binding partners,64 by regulating chromatin structure
of RB-responsive downstream promoters,29,31,55 by regu-
lating transcription of other pRB binding partners them-
selves,60 or by posttranslationally affecting acetylation and
activation of RB pathway (and non-RB pathway) proteins.
These conflicting data regarding the mechanisms of the vari-
ous effects of HDAC on RB pathways goes back decades, and
the complex interplay among these factors has never quite
been teased out definitively.

Not surprisingly, the RNAseq gene expression exper-
iments demonstrated that inhibition of HDACs 1 to 11
with the pan-HDAC inhibitor belinostat leads to widespread
changes in gene expression, ultimately affecting thousands
of genes. Our findings were consistent with previous find-
ings regarding the effect of other pan-HDAC inhibitors in
other cancer types,40–42 both in terms of the specific gene
sets being regulated and also in that both apoptotic and
non-apoptotic pathways appear to be involved. Future stud-
ies should be directed to understanding the impact of inhibi-
tion of each of the specific HDACs and to determining which
specific HDACs are required to be inhibited to mediate cell
death in RB. These mechanistic experiments are currently
ongoing, with the goal of maximizing specificity and mini-
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mizing toxicity. Thus, although we demonstrated, for the
first time to the best of our knowledge, that belinostat is
an attractive clinical therapy for treating recalcitrant vitreous
seeds by intravitreal injection in vivo in our animal model,
the physiological underpinnings of this emerging therapy
for RB remain to be fully elucidated. Future clinical trials
could directly evaluate the benefit of this therapy in patients
with RB and vitreous seeds.

CONCLUSIONS

Our in vivo experiments demonstrate that the HDAC
inhibitor belinostat is equally effective as current standard-
of-care melphalan in eradicating retinoblastoma vitreous
seeds, but without the retinal toxicity seen with melphalan.
This suggests that belinostat may be an attractive agent to
pursue in future clinical trials.
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