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Abstract: The time-difference method is a common one for measuring wind speed ultrasonically, and
its core is the precise arrival-time determination of the ultrasonic echo signal. However, because of
background noise and different types of ultrasonic sensors, it is difficult to measure the arrival time
of the echo signal accurately in practice. In this paper, a method based on the wavelet transform
(WT) and Bayesian information criteria (BIC) is proposed for determining the arrival time of the echo
signal. First, the time-frequency distribution of the echo signal is obtained by using the determined
WT and rough arrival time. After setting up a time window around the rough arrival time point,
the BIC function is calculated in the time window, and the arrival time is determined by using the
BIC function. The proposed method is tested in a wind tunnel with an ultrasonic anemometer.
The experimental results show that, even in the low-signal-to-noise-ratio area, the deviation between
mostly measured values and preset standard values is mostly within 5 µs, and the standard deviation
of measured wind speed is within 0.2 m/s.
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1. Introduction

Accurate measurement of wind speed is of considerable significance in many fields [1].
In atmospheric science, accurate measurement of wind speed has a direct impact on accurate weather
forecasting [2]. In agriculture, accurate wind-speed measurements contribute to crop cultivation
and growth [3]. On an entire high-speed rail line, one anemometer is placed at every mile to
measure wind speed and direction for the safety of the trains using that line [4]. In the military, it
is necessary to measure wind speed accurately in a complex environment, as it is vitally essential
for the precise targeting of weapons [5]. In the manufacturing process of wind tunnels, accurate
wind-speed measurement is needed to calibrate wind speed in wind tunnels [6]. At present, prevailing
wind-measuring instruments include mechanical anemometers [7], thermal anemometers [8], pitot
tube anemometers [9], and ultrasonic wind-measuring instruments [10,11]. A mechanical anemometer
has a rotating part that is easily damaged in use. The measuring range of wind speed is limited
because of the design principle of the thermal anemometer. When utilizing a pitot-tube anemometer,
temperature must be measured, and its magnitude is greatly influenced by environmental factors,
while the application conditions are too harsh. In contrast, ultrasonic anemometers are widely utilized
because they have no mechanical structure, no start-up wind speed limitation, a wide measurement
range, and many other advantages [12].
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Recently, there have been many methods utilized in ultrasonic anemometers, such as the
phase-difference [13], Doppler [14], and time-difference [15] methods. The Doppler method must
measure the current temperature and requires that the air in the measured wind field contains
suspended particles, which requires more stringent testing conditions. The phase-difference method is
also difficult to implement due to its complex underlying principle. Li et al. proposed an array signal
processing method to design an ultrasonic anemometer [16], but only simulation experiments were
carried out. Its practicability must still be studied further.

The time-difference method is a mainstream approach adopted in ultrasonic anemometers
that includes a direct time-difference method and a cross-correlation time-difference method [17].
As mentioned above, the key to the time-difference method is determining the arrival time of the
ultrasonic echo signal accurately. The commonly used methods for measuring the arrival time of
an echo signal include the peak-value, information criteria [18], and Teager-Kaiser energy operator
(TKEO) [19] methods. The peak-value method is widely applied in anemometers. It utilizes the time
corresponding to the sampling point with the largest amplitude in the echo as the arrival time of the
echo signal, but this method is so subjective and open to being affected by noise. The information
criteria function method, which was utilized to determine the location of acoustic emissions (AEs)
from concrete by Kurz et al. [20], finds the envelope of the signal first, and then determines the arrival
time of the echo by calculating the Akaike information criterion (AIC) function of the envelope of
the signal. Furthermore, Liu et al. utilize the Hilbert-Huang Transform (HHT) and AIC function to
determine the arrival time of the impact signal [21]. They divide the signal into two local stationary
auto-regressive (AR) processes that correspond to the noise part before the signal arrives and the signal
itself. After determining the order of the AR model, the time corresponding to the minimum value of
the AIC function is the arrival time of the echo signal. However, in the case of long-time series, the
method needs a complex multi-independent variables fitting model to increase the fitting accuracy,
which aggravates the computational complexity. The TKEO method, which is adopted to determine
the arrival time of P and S waves in earthquakes by Ismail et al. [22], is based on a hybrid usage of
empirical mode decomposition and TKEO algorithms.

For feature recognition of non-stationary signals, many signal processing methods have been
advanced. The wavelet transform (WT) is a superior algorithm among them [23–25] which has
multi-resolution characteristics and enables a target signal to be observed from coarse to fine. In
this paper, according to the non-stationarity of an ultrasonic echo signal, we propose a method for
determining the arrival time of ultrasonic echo signals based on the WT and Bayesian information
criteria (BIC). First, the WT is utilized for the time-frequency analysis of noisy signals to obtain the
time-frequency distribution. Then, the BIC function is calculated, and its sampling point with the
minimum value of the function corresponds to the arrival time of the echo signal. To verify the accuracy
and stability of this method, a three-dimensional ultrasonic anemometer is designed to compare the
method with three other methods in a wind tunnel. The experimental results show the advantages of
the proposed method.

2. Method

2.1. Time-Frequency Location Analysis

The ultrasonic echo signal is considered to be non-stationary. Its characteristic is that it has two
parts: a non-signal part containing only noise before the signal arriving, and an effective part after the
signal arrives. Because the acoustic signal excited by the ultrasonic transducer has a single frequency,
the echo signal is also of single frequency. A typical echo signal is depicted in Figure 1. Noise, which is
considered to be random and uncorrelated to the echo signal, is sampled by sensors before the arrival
of the echo signal. The sensor is based on the mechanical principle, and it produces a tail vibration that
makes it impossible for the echo to correspond with the transmitted acoustic wave after receiving the
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ultrasonic signal, as shown in Figure 1. Therefore, the best way to recognize the ultrasonic echo signal
is to determine the arrival time of the first wave.
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Figure 1. A typical ultrasonic echo signal.

However, the frequency spectra of the noise and echo signal overlap significantly in frequency
range. In a complex environment, noise sources, such as strong electromagnetic fields and high
temperature, inevitably interfere with the instrument [26]. Figure 2 shows a group of typical echo
signals in a wind tunnel with electromagnetic interference. In Figure 2a, the amplitude of background
noise has exceeded the amplitude of the first wave, and because of the existence of electromagnetic
interference, the echo waveform exhibits some distortion. The spectrum of background noise is
uniformly distributed in the entire frequency domain, as is shown in Figure 2b, which demonstrates
that the arrival time of the first wave cannot be clearly identified, and the filter cannot effectively
eliminate the noise.

Sensors 2020, 20, 269 3 of 15 

after receiving the ultrasonic signal, as shown in Figure 1. Therefore, the best way to recognize the 

ultrasonic echo signal is to determine the arrival time of the first wave. 

However, the frequency spectra of the noise and echo signal overlap significantly in frequency 

range. In a complex environment, noise sources, such as strong electromagnetic fields and high 

temperature, inevitably interfere with the instrument [26]. Figure 2 shows a group of typical echo 

signals in a wind tunnel with electromagnetic interference. In Figure 2a, the amplitude of background 

noise has exceeded the amplitude of the first wave, and because of the existence of electromagnetic 

interference, the echo waveform exhibits some distortion. The spectrum of background noise is 

uniformly distributed in the entire frequency domain, as is shown in Figure 2b, which demonstrates 

that the arrival time of the first wave cannot be clearly identified, and the filter cannot effectively 

eliminate the noise. 

 

Figure 1. A typical ultrasonic echo signal. 

 
(a) 

Figure 2. Cont.



Sensors 2020, 20, 269 4 of 16
Sensors 2020, 20, 269 4 of 15 

 
(b) 

Figure 2. Influence of noise on an echo signal: (a) an echo signal with noise; (b) the signal frequency 

spectrum. 

To accurately determine the arrival time of the first wave in noise, we must utilize parameters 

with distinct characteristics when the first wave arrives. As mentioned above, it can be seen that the 

frequency of the signal changes significantly when the echo arrives, so the joint time-frequency 

analysis can be utilized to estimate the arrival time of the first wave. When the echo signal arrives, 

the frequency of the signal increases rapidly with time, which means that when the first wave arrives, 

the joint time-frequency analysis requires good time resolution to provide accurate time-frequency 

positioning. This can be achieved by pre-processing the signal using the WT. That involves using a 

signal scalogram to carry out time-frequency analysis and obtain the distribution relationship 

between time, frequency, and energy. 

The WT, proposed by Morlet [26], can provide a time-frequency window that changes with 

frequency. The definition of a continuous WT is expressed as 

𝑊𝑥(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)𝜓∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡

+∞

−∞
, (1) 

where 𝑎 is a scale factor associated with frequency and 𝑏 is a displacement factor that describes 

wavelet movement in the time domain. A mother wavelet generates a function family 𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓(

𝑡−𝑏

𝑎
) by changing 𝑎 and 𝑏. 𝑥(𝑡) is an echo signal that changes persistently and 𝜓(𝑡) is the 

mother wavelet that must satisfy the following conditions: 

∫ 𝜓(𝑡)𝑑𝑡 = 0
+∞

−∞
. (2) 

In addition, a Fourier transform (FT) 𝛹(𝜔) of wavelet function  𝜓(𝑡) must satisfy the following 

conditions: 

𝐶𝜓 = ∫
|𝛹(𝜔)|2

|𝜔|
𝑑𝜔

+∞

−∞

< ∞ (3) 

The selection of the wavelet function is essential in the WT, which is related to whether good 

resolution can be obtained in the time-frequency domain. The frequency of the echo signal received 

by the sensor is a single one, which means a high temporal resolution is required for time localization 

of this single frequency. The Morlet WT (MWT), which utilizes the Morlet wavelet function, is an 

ideal option [27], and its analytic formula is 

𝜓(𝑡) = 𝑒𝑗𝜔0𝑡𝑒−
𝑡2

2
 , 𝜔0 ≥ 5, (4) 

where 𝜔0 is the wavelet central frequency and 𝑗 an imaginary number unit. Therefore, Equation (1) can 

be rewritten as 
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frequency spectrum.

To accurately determine the arrival time of the first wave in noise, we must utilize parameters
with distinct characteristics when the first wave arrives. As mentioned above, it can be seen that
the frequency of the signal changes significantly when the echo arrives, so the joint time-frequency
analysis can be utilized to estimate the arrival time of the first wave. When the echo signal arrives, the
frequency of the signal increases rapidly with time, which means that when the first wave arrives,
the joint time-frequency analysis requires good time resolution to provide accurate time-frequency
positioning. This can be achieved by pre-processing the signal using the WT. That involves using a
signal scalogram to carry out time-frequency analysis and obtain the distribution relationship between
time, frequency, and energy.

The WT, proposed by Morlet [26], can provide a time-frequency window that changes with
frequency. The definition of a continuous WT is expressed as

Wx(a, b) =
1
√

a

∫ +∞

−∞

x(t)ψ∗
(

t− b
a

)
dt, (1)

where a is a scale factor associated with frequency and b is a displacement factor that describes wavelet
movement in the time domain. A mother wavelet generates a function family ψa,b(t) = 1

√
a
ψ
(

t−b
a

)
by

changing a and b. x(t) is an echo signal that changes persistently and ψ(t) is the mother wavelet that
must satisfy the following conditions: ∫ +∞

−∞

ψ(t)dt = 0. (2)

In addition, a Fourier transform (FT) Ψ(ω) of wavelet function ψ(t) must satisfy the following
conditions:

Cψ =

∫ +∞

−∞

∣∣∣Ψ(ω)
∣∣∣2

|ω|
dω < ∞ (3)

The selection of the wavelet function is essential in the WT, which is related to whether good
resolution can be obtained in the time-frequency domain. The frequency of the echo signal received by
the sensor is a single one, which means a high temporal resolution is required for time localization of
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this single frequency. The Morlet WT (MWT), which utilizes the Morlet wavelet function, is an ideal
option [27], and its analytic formula is

ψ(t) = e jω0te−
t2
2 , ω0 ≥ 5, (4)

where ω0 is the wavelet central frequency and j an imaginary number unit. Therefore, Equation (1) can
be rewritten as ∣∣∣Wx(a, b)

∣∣∣2 =

∣∣∣∣∣∣ 1
√

a

∫ +∞

−∞

x(t)e− jw0
t−b

a e−
(t−b)2

2a2 dt

∣∣∣∣∣∣2, (5)

where
∣∣∣Wx(a, b)

∣∣∣2 is a scalogram of the echo signal that denotes the energy distribution by displacement
factor b and scale factor a. The scale factor a is related to the frequency f as expressed by

f =
ω0 fS
2πa

, (6)

where fS is the sampling frequency. Thus, Equation (5) can be rewritten as

∣∣∣Wx( f , b)
∣∣∣2 =

∣∣∣∣∣∣∣∣
√

2π f
ω0 fS

∫ +∞

−∞

x(t)e
− j 2π f (t−b)

fS e
−

2[π f (t−b)]2

(ω0 fS)
2 dt

∣∣∣∣∣∣∣∣
2

, (7)

according to which the time-frequency relationship of the typical echo signal can be obtained and the
time-frequency distribution of the echo signal drawn as in Figure 3.
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Figure 3 shows the MWT of Figure 2a. In Figure 3, the time window clearly shows that the energy
changes significantly with signal frequency when the echo signal arrives. Tests on numerous amounts
of noise show the same regularity. Based on this characteristic, sampling points that change with
abrupt energy can be found on the echo signal, which can be utilized as a reference to find the precise
arrival time of the echo signal.

2.2. Accurate Arrival-Time Determination of Echo Signal Based on BIC

The sampling points obtained by the WT in the time window contain the precise arrival time
of the echo signal, and the real arrival time needs further precise positioning. As mentioned in the
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Introduction, the BIC function is applied to the pre-processed result using a certain method that is
defined as

BIC = −2 ln(L) + k ln n, (8)

where L is a likelihood function, k the order of the model, and n the number of sampling points [28].
To distinguish noise from the echo signal, one ideal method combines the AR model and BIC to obtain
accurate sampling points of first wave [28–30]. The mth-order AR model is expressed as [30]

ut =
m∑

i=1

aiut−i + εt , (9)

where: εt is Gaussian white noise with zero mean, and its variance is σ2; ai is the AR coefficient; and ut

denotes the discrete ultrasonic echo signal acquired by an analog-to-digital converter. εt also obeys the
normal distribution, which means that the probability density function of it is [31]

ρ(εt) =
1

√

2πσ2
e−

ε2
t

2σ2 . (10)

The rough sampling point P, which corresponds to the arrival time of the first wave and is
obtained by the MWT, is defined as S2. Before and after the point P, part of the echo signal is cut out as
the time window that contains sampling points, and its length is N. Thus, the starting point of the
acquisition window, which is defined as S1, is P− 0.5N, and the ending point of the window, which is
defined as S3, is P + 0.5N. M(1) and M(2) denote the orders of the AR model before and after the P
point, respectively.

Therefore, according to Equations (9) and (10) and the definition of the likelihood function [32,33],
the likelihood function of all sampling points in the entire time window is

L
(
ai, σ2

i

)
=

2∏
i=1

 1
2πσ2

i


∆Ni

2

exp(−
1

2σ2
i

si∑
t=hi

(xt −

M(i)∑
m=1

ai
mxt−m)

2

), (11)

where ∆Ni is defined as Si − Si−1, h1 is P− 0.5N, h2 is P + 1, xt is the discrete ultrasonic echo signal, and
σi is the variance of the noise corresponding to the AR model of order M(i). The maximum value of
Equation (11) is the maximum likelihood estimation of the echo signal [31,33], which is

L
(
σ2

i

)
= −

N
2
(1 + ln 2π) −

1
2

∑2

i=1
∆Niσ

2
i , (12)

where σ2
i equals 1

∆Ni

∑K
t=Si

(
xt −

∑M(i)
m=1 a(i)m xt−m

)2
when the derivative of Equation (11) is 0 [31].

Thus, according to Equations (8) and (12), the AR-BIC picker of the echo signal can be obtained as

BIC(K, M) = N(1 + ln 2π) + ∆N1 ln

 1
∆N1

K∑
t=S1

xt −
M(1)∑
m=1

a(1)m xt−m

2
+ ∆N2 ln

 1
∆N2

S3∑
t=k+1

xt −
M(2)∑
m=1

a(2)m xt−m

2+ (
2∑

i=1
M(i)

)
ln N

= N(1 + ln 2π) + ∆N1 ln σ2
1 + ∆N2 ln σ2

2 +

(
2∑

i=1
M(i)

)
ln N,

(13)

where K is the range through all sampling signal points in the time window. According to
references [21,28,31,34], the echo signal received by sensors can be considered as the pure echo
signal with added Gaussian white noise, and the noise is uncorrelated with the echo signal. Thus, the
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variance of the noise, σi, can be regarded as the variance of the echo signal received by sensors, and
Equation (13) can be rewritten as

BIC(K, M) = N(1 + ln 2π) + ∆N1 ln[var(x(S1, K))]

+∆N2 ln[var(x(K + 1, S2))] +

(
2∑

i=1
M(i)

)
ln N ,

(14)

where var(x(S1, K)) denotes the variance of the corresponding interval from S1 to K in the time series
x(t). When Equation (14) takes minimum values, it determines the arrival time of the echo signal
accurately, which is shown in Figure 4.

Figure 4a shows the time window containing the precise arrival time of the echo signal and
Figure 4b is the corresponding BIC function. The arrival time of the echo signal indicated by the dotted
line is 0.124 ms, which is measured by the proposed method, while the actual determined time of
the echo signal without noise is 0.125 ms, which is indicated by a vertical straight line. It can be seen
from Figure 4a that the noise has a major influence on the echo signal, so that the characteristics of the
signal cannot be identified directly. However, the BIC function can effectively identify the original
characteristics of the signal from the noise and accurately find the arrival time of the echo signal, as
shown in Figure 4b. The result indicates the satisfactory precision of our method. Figure 5 summarizes
the proposed method.
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3. Experiments and Results

3.1. Experimental Platform

To test the proposed method, a three-dimensional ultrasonic anemometer was designed, consisting
of a three-dimensional nonorthogonal ultrasonic sensor array, echo signal acquisition circuit, control
and computing core, ultrasonic sensor drive circuit, and host computer, which is shown in Figure 6c.
The ultrasonic sensor array is composed of three pairs of ultrasonic sensors that emit the ultrasound in
sequence and receive it from the corresponding sensors. All sensors are Airmar AT200 type sensors
with a working frequency of 200 kHz. As shown in Figure 6a, the experiment was carried out in the
Low-Speed Wind Tunnel at the China Aerodynamics Research and Development Center.

3.2. Performance under Different Signal-To-Noise Ratios

To test the stability of the proposed method, we designed several actual tests. We fixed the
distance of one pair of sensors and measured the standard arrival time of the echo signal in the
noiseless environment. Then, 500 tests were carried out under different signal-to-noise ratios (SNRs) to
obtain the measured arrival times using the proposed method. For comparison, the Kurz, TKEO, and
high-order statistics methods were carried out in the same test environment. Figures 7–9 show the
distribution of deviation between measured time Tmeasured and standard time Tstandard denoted by ∆t =

Tstandard − Tmeasured, which is obtained from the proposed, the Kurz, and the TKEO methods, as well as
the high-order statistics method under experimental conditions of 10, 5, and 0 dB, respectively. The
abscissa denotes t ∆t, and the ordinate denotes the number of each ∆t in Figures 7–9.
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As shown in Figures 7–9, most of the deviations distribute close to zero and are less than ±5 µs
using the proposed method, while the distribution is quite intensive. In addition, the distribution
shows great stability as the SNR decreases. In contrast, the distributions of ∆t are out of the range
of ±15 µs using the Kurz, TKEO, and high-order statistics methods, which means that the measured
results acquired from the three methods are more dispersive than those obtained utilizing the proposed
method, and are more likely to have a relatively larger error in determining the arrival time of the
echo signal.
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3.3. Stability and Accuracy Tests of Wind Speed in Wind Tunnel

To test the stability and accuracy of the proposed method in actual wind-speed measurements,
three pre-set wind speeds were measured with the above-described ultrasonic anemometer in a wind
tunnel. The wind speeds were preset to four separate levels in the wind tunnel: 0, 10, 15, and 20 m/s.
Eight tests were carried out at each wind speed, and 150 wind speed data continuously measured
in each test. The ambient temperature and relative humidity in the wind tunnel were 16.3 ◦C and
58%, respectively. The average and standard deviations of a series of wind speeds obtained from each
continuous test were calculated, as shown in Figure 10 and Table 1.
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Table 1. Mean measured values and standard deviations at different wind speeds.

Wind Speed in Wind Tunnel
(m/s)

Mean Measured Value
(m/s)

Standard Deviation
(m/s)

0 0.07 0.03
10 10.15 0.09
15 15.06 0.16
20 20.16 0.19

Figure 10a shows the experiment without opening the wind tunnel, in which the theoretical wind
speed was 0 m/s. According to reference [35], when the wind tunnel is not opened, the measured wind
speed within 0.1 m/s can be regarded as being 0 m/s. The results shown in Figure 10a indicate that this
method can accurately measure the arrival time of the echo signal and has a strong anti-noise ability for
background noise. Figure 10b–d show the results of testing the actual wind speed in the wind tunnel
when the pre-set wind speeds were 10, 15, and 20 m/s, respectively. In each wind-speed test, seen from
the viewpoints of the average and standard deviation of those experiments, the deviation between the
mean value and the wind speed produced by the wind tunnel is within 0.16 m/s, and the standard
deviation is within 0.2 m/s, which means that the proposed method has great accuracy and stability.

3.4. Discussion of Results of Wind-Speed Tests

It can be found from Figure 10 that the standard deviation of test results increases with increasing
wind speed in the wind tunnel. After carefully checking the anemometer, it is found that the bracket
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carrying the ultrasonic sensors has installation tolerance. With an increasing wind speed, the bracket
oscillates to a certain extent, which leads to waveform distortion when the sensor receives the ultrasonic
echo signal.

Since the anemometer is a prototype instrument utilized to verify the method, we plan to redesign
a new bracket with ultrasonic sensors installed to ensure that this phenomenon will not re-occur.

4. Conclusions

In this paper, a new method is proposed to determine the precise arrival time of an ultrasonic
echo signal. The method is based on the WT and BIC. The time-frequency distribution of echo signals
with strong background noise is obtained by the WT, and the time corresponding to the beginning
of frequency variation is determined as the rough position of arrival time. Then, based on the rough
position, a segment containing sampled points is cut out before and after the rough point as the time
window. Finally, the BIC function of the echo signal in the time window is calculated, and the time
corresponding to the minimum BIC-function value is determined as the precise arrival time of the
ultrasonic echo signal.

To verify the proposed method, we designed an ultrasonic anemometer and tested it in a wind
tunnel. To demonstrate the stability and anti-noise ability of the proposed method, the Kurz, TKEO,
and high-order statistics methods were compared. After 500 experiments, the distribution of the
deviation between the statistical measured value and pre-supposed standard value show that our
method is much more accurate in determining the arrival time. Moreover, the actual different wind
speeds in the wind tunnel were measured by the proposed method, and the results also verify that the
proposed method performs satisfactorily in terms of stability and accuracy.
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