
 

www.aging-us.com 21874 AGING 

INTRODUCTION 
 

Ovarian cancer is 9th common malignancies in women 

worldwide and 8th most common cause of cancer death. 

According to the GLOBOCAN 2018 database, there are 

approximately 295,414 new cases and 184,799 deaths 

of ovarian cancer [1]. There are multiple risk factors in 

the development of ovarian cancer, such as increased 

ovulation over their lifetime, hormone therapy after 

menopause, fertility medication, and obesity [2–4]. 

Epithelial ovarian carcinoma (EOC) is the most 

common type of ovarian cancer accounting for 90% of  

all ovarian cancer cases [5] and a major cause of death 

from gynecologic cancers [6]. Ovarian cancer is usually 

asymptomatic in the early stages and typically 

diagnosed in the advanced stage, which makes 

treatment more challenging. Furthermore, EOC is prone 

to recur and migrate, which often leads to poor 

prognosis. 

 

Currently, surgery and cytotoxic chemotherapy can 

effectively improve clinical outcomes and are indicated as 

primary therapies for patients with ovarian cancer; 

however, these treatment modalities often fail to cure the 
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ABSTRACT 
 

The aim of this study was to explore prognosis-related biomarkers and underlying mechanisms during ovarian 
carcinoma progression and development. mRNA expression profiles and GSE49997 dataset were downloaded. 
Survival analyses were performed for genes with high expression levels. Expression level of candidate genes 
was explored in four ovarian cancer cells lines. Pyruvate carboxylase (PC) was found to be one of significantly 
differentially expressed gene (DEG). The role of PC knockdown was analyzed in SKOV cells using cell 
proliferation, flow cytometric, and Transwell migration and invasion assays. DEGs and metabolites in PC-shRNA 
(shPC)-treated samples vs. control groups were identified. PC was a prognosis-related gene and related to 
metabolic pathway. Knockdown of PC regulated cell proliferation, cell cycle progression, and migration and 
invasion of SKOV-3 cells. Transcriptome sequencing analyses showed STAT1 and TP53 gained higher degrees in 
PPI network. A total of 44 metabolites were identified. These DEGs and metabolites in PC samples were related 
with neuroactive ligands receptor interaction, glycine, serine and threonine metabolism, and ABC transporter 
pathways. PC may affect the tumor biology of ovarian cancer through the dysregulation of glycine, serine, and 
threonine metabolism, and ABC transporter pathways, as well as STAT1 and TP53 expression. 
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disease at terminal stages [7]. The standard treatment for 

advanced ovarian cancer is aggressive cytoreductive 

surgery combined with platinum and taxane-based 

chemotherapy. Despite several advances in the treatment 

of ovarian cancer, the survival rate is discouragingly low in 

recurrent chemo-resistant ovarian cancers [8]. Therefore, it 

is important to discover new biomarkers for improving the 

diagnosis and prognosis of patients with ovarian cancer. 

Metabolomics has been widely used to discover key 

molecular changes underlying disease pathophysiology [9, 

10]. Using integrated analyses of metabolomic and 

transcriptomic data, researchers can greatly increase the 

understanding of metabolic networks and biological 

systems. Recently, a series of studies uncovered potential 

biomarkers and biological processes in several cancer 

types using an integrated analysis of metabolomic and 

transcriptomic data [11–13]. Susan et al. demonstrated that 

the metabolism of branched-chain amino acids (BCAAs) 

was altered in type 2 diabetes (T2D), caused by reduced 

catabolism, and proposed this alteration as a novel 

biomarker for T2D [14]. An additional study showed that 

dysregulation of the lipolytic pathway, involving lipases, 

contributes to the development of pancreatic cancer, and 

several saturated free fatty acids (FFAs) were closely 

related to the proliferation of pancreatic cancer cells [15]. 

However, integrated analyses of metabolomics and 

transcriptomics data in biomarker and pathway discovery 

for ovarian cancers are rare. In this study, we aimed to 

identify potential and reliable biomarkers with prognostic 

value using an integrated analysis of metabolomic and 

transcriptomics data in ovarian cancer. According to 

preliminary bioinformatic analyses, pyruvate carboxylase 

(PC) was found to be a prognosis-related gene 

significantly enriched in the metabolic pathway. The 

potential role of PC in ovarian cancer development was 

investigated by assaying cell proliferation, invasion, and 

metastasis in ovarian tumor cells. Related mechanisms 

were explored using an integrated analysis of 

transcriptomic and metabolomics data. Our study 

demonstrates a promising approach to investigate the 

metabolic mechanism of ovarian cancer with the aim of 

discovering more reliable biomarkers with prognostic 

value. 

 

RESULTS 
 

Identifying candidate genes significantly associated 

with survival of EOC 

 

To identify the candidate genes with prognostic value in 

ovarian cancer, we downloaded the gene expression 

profiles from the TCGA and GEO databases, which was 

followed by screening of DEGs and text mining. 

 

Overall, we screened 1153 and 1022 genes related with 

prognosis from TCGA and GSE49997 dataset, 

respectively. After Venn diagram analysis, 66 

overlapping genes were identified as candidate genes 

related to EOC progression (Figure 1). 

 

After text mining, a total of 16 genes were found to be 

associated with EOC (Table 1). KEGG pathway 

analyses showed that the metabolic pathway (hsa01100) 

was the most significant pathway involved with 

GGPS1, ME1, DSE, NTPCR (also known as C1orf57, 

MGC13186), PPOX, and PC (Table 2). Among the 

metabolic pathway-related genes, ME1 and DSE have 

been reported to be associated with ovarian cancer. The 

KM survival curve for the remaining four genes is 

shown in Figure 2. High expression levels of GGPS1 

and NTPCR correlated with a longer patient survival 

time, while high expression levels of PC and PPOX 

were closely related to a shorter patient-survival time. 

 

The dysregulation of metabolic pathway-related 

genes in ovarian cancer cells 
 

To evaluate the role of the metabolic pathway-related 

genes in ovarian cancer progression, we initially 

conducted real-time qPCR analyses to examine the 

expression levels of genes in different ovarian tumor 

cells. The results showed that PC was significantly 

upregulated in four cancer cell lines (SKOV3, CAOV-3, 

OV-1063, and OVCAR-3) compared to that in control 

IOSE80 cells (Figure 3A). Other genes were 

dysregulated in the different cell types. For example, 

GGPS1 was upregulated in the OV-1063 and OVCAR-

3 cells and downregulated in CAOV-3 cells; PPOX was 

only upregulated in OV-1063 and OVCAR-3 cells. 

 

 
 

Figure 1. Prognosis-related genes screened from TCGA 
and GSE49997 datasets. The gene expression profiles from 

TCGA and GEO databases were subjected to survival analyses. A 
total of 1153 and 1022 genes related with prognosis were 
obtained from TCGA and GSE49997 datasets, respectively. After 
Venn diagram analysis, 66 overlapping genes were identified as 
candidate genes related to EOC progression. 
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Table 1. Text mining analysis for 16 genes in PubMed dataset associated with ovarian cancer. 

Gene count PubMed ID 

FOXA2 8 pmid28965696|pmid28393191|pmid27538367|pmid27430660|pmid26512061|pmid25715123|pmid22

172062|pmid20066894|pmid 

KDM3A 5 pmid28925393|pmid28521455|pmid27694900|pmid26779649|pmid26498640| 

BCHE 5 pmid28350120|pmid27465871|pmid26886260|pmid17192624|pmid7896186| 

ME1 3 PMID: 8888953|PMID: 2305835 |PMID: 3276635 

CXCL14 3 pmid28087599|pmid26893359|pmid24700803| 

NUAK1 3 pmid27833898|pmid26151663|pmid24700803| 

WDR77 2 pmid28407786|pmid22022581| 

DSE 2 PMID: 11092984|PMID: 4028011 

ABCA3 2 pmid24814220|pmid14973057| 

BCL2L2 1 PMID: 14973057 

h2afy 1 pmid22589551| 

lpar6 1 pmid24994816| 

FREM2 1 pmid23707566| 

ASAP3 1 pmid26886260| 

OTUB2 1 pmid17961127| 

SSBP1 1 pmid20969748| 

 

Table 2. Functional enrichment analysis for candidate genes screened from TCGA-ovarian cancer and GSE49997 
datasets. 

Term Count Genes P values 

hsa01100:Metabolic pathways 6 GGPS1;ME1;DSE;NTPCR;PPOX;PC 0.00465229 

hsa04924:Renin secretion 3 ACE;CACNA1C;PPP3CA 0.022092 

hsa04310:Wnt signaling pathway 3 PRICKLE2;TCF7L1;PPP3CA 0.0088142 

hsa05200:Pathways in cancer 3 lpar6;TCF7L1;CSF3R 0.0420139 

hsa00620:Pyruvate metabolism 2 ME1;PC 0.0135316 

hsa02010:ABC transporters 2 ABCA3;ABCB9 0.0147837 

hsa05031:Amphetamine addiction 2 CACNA1C;PPP3CA 0.0213649 

hsa04720:Long-term potentiation 2 CACNA1C;PPP3CA 0.0213649 

hsa05412:Arrhythmogenic right ventricular 

cardiomyopathy (ARVC) 

2 TCF7L1;CACNA1C 
0.022791 

hsa05410:Hypertrophic cardiomyopathy (HCM) 2 ACE;CACNA1C 0.024746 

hsa01200:Carbon metabolism 2 ME1;PC 0.0338292 

hsa04724:Glutamatergic synapse 2 CACNA1C;PPP3CA 0.0340726 

hsa04142:Lysosome 2 ABCB9;dnase2 0.0357524 

hsa04728:Dopaminergic synapse 2 CACNA1C;PPP3CA 0.037391 

hsa04921:Oxytocin signaling pathway 2 CACNA1C;PPP3CA 0.0439704 

hsa04022:cGMP-PKG signaling pathway 2 CACNA1C;PPP3CA 0.0456096 

hsa05010:Alzheimer's disease 2 CACNA1C;PPP3CA 0.0460121 

hsa04020:Calcium signaling pathway 2 CACNA1C;PPP3CA 0.0481754 

hsa04060:Cytokine-cytokine receptor interaction 2 CSF3R;CXCL14 0.00571639 

hsa04010:MAPK signaling pathway 2 CACNA1C;PPP3CA 0.00610035 

hsa04151:PI3K-Akt signaling pathway 2 lpar6;CSF3R 0.00722717 

 

Considering these findings, the siRNA knockdown of 

PC was designed to explore its roles in ovarian cancer 

development. The knockdown of PC was confirmed 

using qRT-PCR analysis, which revealed that the 

expression of PC was significantly reduced in SKOV3 

cells-transfected with shPC-1 and shPC-3, and shPC-2 

presented off-target effects (Figure 3B). The degree of 

knockdown for shPC-1 and shPC-3 were 66.7% and 

58%, respectively. Thus, shPC-1 transfected SKOV3 

cells were used for subsequent experiments. 
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PC significantly inhibits proliferation, cell cycle 

progression, and cell migration and invasion in 

SKOV3 cells 

 

The CCK-8 assay was conducted to evaluate the 

changes in proliferation of SKOV3 cells after PC 

knockdown. Depletion of PC significantly decreased 

proliferation in the shPC group compared to that of 

the shNC group (Figure 3C). The effect of PC on cell 

cycle progression was also examined using flow 

cytometry. The percentage of cells in the G1 phase 

was increased from 49.56% in the control group to 

68.91% in shPC cells. In contrast, the percentage of 

cells in the S phase was decreased from 32.41% in the 

control group to 17.31% in the shPC group (Figure 

3D). These results indicate that PC-knockdown 

significantly inhibited cell cycle transition from the 

G1 to S stage. 

 

Invasion and metastasis are major events in the 

progression of cancers. Therefore, we further 

investigated the effect of PC on ovarian cell migration 

and invasion using the Transwell system. Results 

revealed that decreased expression of PC inhibited the 

invasive and metastatic abilities of ovarian tumor cells 

(Figure 3E). 

Transcriptome sequencing reveals genes and 

pathways regulated by PC 
 

After filtering out genes with low expression levels, a 

total of 22,838 gene expression matrices were 

obtained. The correlation between samples based on 

gene expression was measured using the Pearson’s 

correlation coefficient. A heat map of sample 

correlation is shown in Figure 4A. PCA analysis was 

performed for validation (Figure 4B) and the results 

showed that the samples in the different groups could 

be distinguished. Using thresholds of |log2FC| > 

1.585 and FDR < 0.05, 1404 DEGs were identified in 

the shPC group compared to the shNC group, 

including 586 up-regulated genes and 818 down-

regulated genes. Bidirectional clustering analysis 

illustrates that the expression profiles of DEGs are 

significantly different between the shPC and shNC 

groups (Figure 4C). We further analyzed the 

molecular functions of the genes and found that 

DEGs in shPC samples were mainly associated with 

steroid hormone biosynthesis and drug metabolism 

(Figure 4D). GSEA showed that the down-regulation 

of genes in the shPC group was more associated with 

pathogenesis of ovarian cancer compared to that in 

the shNC group (Figure 4E). 

 

 

 

Figure 2. Survival curve for four candidate genes closely related with the prognosis of epithelial ovarian cancer. Results show 

that GGPS1, NTPCR (also known as C1orf57 or MGC13186), PC, and PPOX are significantly associated with the prognosis of epithelial ovarian 
cancer. The survival curves based on TCGA and GSE49997 datasets are listed, separately. 
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A PPI network was constructed, which consisted of 

1495 edges connecting 431 nodes (Figure 5A). In the 

PPI network, STAT1 (degree = 54) and TP53 (degree 

= 46) had higher degree values than other genes, 

which indicated the significant role of STAT1 and 

TP53 in ovarian cancer progression. In the miRNA-

TF-gene network, several miRNAs and TFs were 

identified as hub factors associated with ovarian 

cancer. Hsa-miR-124-3p, EZH2, and EP300 were the 

significant nodes in the miRNA-TF-gene network 

(Figure 5B). 

 

Metabolomics sequencing reveals the dysregulated 

metabolic profile induced by PC knockdown 

 

After normalization, the data were subjected to PCA 

and PLS-DA discriminant analyses under ESI+ and 

ESI- modes, separately. PCA showed that the samples 

in the different groups could be clustered together, and 

there were small offsets for the QC samples, which 

suggested data stability (Figure 6A). PLS-DA score 

plots showed obvious group separation between 

samples, indicating that the data were stable and reliable 

(Figure 6B). The cumulative R2Y and Q2Y values were 

both close to 1.0 (Figure 6C), which indicated that the 

PLS-DA models were stable, credible, and supported 

the differences between groups. 

 

As for the shPC vs. shNC groups, a total of 44 

metabolites met the cutoff value of FDR < 0.01, 

|log2FC| > 1, and VIP > 1, including 22 up-regulated 

and 22 down-regulated metabolites. Bidirectional 

clustering heat maps and volcano plots were used to 

visualize the results (Figure 7A and 7B). The differential

 

 
 

Figure 3. Knockdown of PC can significantly inhibit cell proliferation, cell cycle progression, and cell migration and invasion. 
(A) The relative expression of GGPS1, NTPCR, PPOX, PC, PRICKLE2, TCF7L1, and PPP3CA in four cancer cell lines (SKOV3, CAOV-3, OV-1063, 
and OVCAR-3). Gene expression levels of candidate genes (GGPS1, NTPCR, PPOX, PC, PRICKLE2, TCF7L1, and PPP3CA) were examined in 
different ovarian cancer cells lines using real-time qPCR analysis. (B) The relative expression of PC in SKOV-3 cell after PC knockdown using 
shRNAs by real-time qPCR analysis. (C) Decreased expression of PC can significantly inhibit SKOV-3 cell proliferation. (D) Cell cycle analysis of 
SKOV-3 cells following PC knockdown. The effect of PC on cell cycle progression was examined using flow cytometry. PC knockdown 
significantly inhibited cell cycle transition from G1 to S phase. (E) Cell migration and invasion of ovarian cancer cells after PC knockdown. The 
effects of PC on migration and invasion of SKOV3 cells were evaluated using the Transwell system. PC knockdown significantly inhibited the 
invasive and metastatic abilities of ovarian tumor cells. 
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metabolites in the shPC samples were mainly enriched in 

the metabolic pathways, ABC transporters, and nicotinate 

and niacinamide metabolism (Figure 7C). 

 

Dysregulated pathways at both transcriptomics and 

metabolomics levels 

 

Using an integrated analysis of transcriptomic and 

metabolomics data, eight pathways were found to be 

dysregulated by DEGs and differential metabolites in 

SKOV3 cells induced by PC knockdown, such as 

neuroactive ligands receptor interaction; glycine, serine, 

and threonine metabolism; and ABC transporter 

pathways (Figure 7D). 

DISCUSSION 
 

Ovarian cancer is one of the most common cancers in 

women and is a major cause of cancer-related death 

worldwide [16]. Although patients with ovarian cancer 

benefit from first-line treatments during early stages of 

cancer, most cases are diagnosed with a high-stage 

carcinoma. Despite advances in treatment management 

for ovarian cancer patients, the prognosis remains poor. 

The screening of potential biomarkers and a better 

understanding of the pathogenesis of ovarian cancer 

could contribute to the development of novel target 

therapies [17]. Thus, in this study, we attempted to 

discover prognosis-related biomarkers and explore the 

 

 
 

Figure 4. Differentially expressed genes and pathways enrichment analysis after PC knockdown based on transcriptome 
sequencing. (A) Sample correlation based on differential gene expression. The correlation between samples was analyzed using 
Pearson’s correlation coefficient based on gene expression values. There were significant positive correlations between samples.  (B) 
Principal component analysis results. The different colored dots represent the sample group under the condition. (C) Heatmap of 
differentially expressed genes between shPC and shNC samples. Two-dimension clustering analysis results were visualized using 
heatmaps for differentially expressed genes from PC-knockdown samples compared to the normal control group. The gene expression 
profiles were significantly different between groups. Red represents high expression levels while blue represents low express ion levels. 
(D) KEGG pathway enrichment analysis for differentially expressed genes. The top ten pathway terms ranked by p-value were visualized 
using dot plot. The vertical axis represents KEGG pathways and the horizontal axis shows differentially expressed genes. A ca tegory with 
a smaller p-value represents a more significant difference. (E) Gene set enrichment analysis results. The red line refers to the highest 
enrichment score. 
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Figure 5. PPI analysis and miRNA regulatory networks. (A) PPI networks were constructed to visualize the relationships of 

differentially expressed genes screened from PC-knockdown samples compared to control samples. Red dots represent up-regulated genes 
and green dots refer to down-regulated genes. The points with a blue border refer to ovarian cancer-related genes. (B) miRNA regulatory 
network. A complex regulatory network was constructed to visualize connections of miRNAs, transcription factors, and genes related to 
ovarian cancer. The dots in red and green represent up- and down-regulated genes, respectively. Triangular nodes refer to miRNAs and v-
shaped nodes represent transcription factors. 

 

 
 

Figure 6. Data normalization and partial least squares discriminant analysis for metabolomics data. Two-dimensional principal 

component analysis (A) and three-dimensional partial least squares discriminant analysis (B) were conducted to ensure the detection stability 
of metabolomics data analysis. (C) Orthogonal partial least squares discriminant analysis by the X-Score model. 
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related mechanisms underlying the development and 

progression of ovarian cancer. 

 

In our study, 66 prognosis-related genes in ovarian 

cancer samples were identified by combining TCGA 

and GSE49997 datasets. A metabolic pathway was the 

most significant pathway enriched by GGPS1, ME1, 
DSE, NTPCR, PPOX, and PC. ME1 and DSE have been 

reported to be associated with the development of 

ovarian cancer in previous studies [18, 19]. Among the 

remaining metabolic pathway-related genes, the high 

expression of PC was closely related with poor survival 

of patients with ovarian cancer and PC was prominently 

overexpressed in the four ovarian cancer cell lines, 

making it a candidate gene for further analysis. To our 

knowledge, this is the first study exploring the clinical 

significance of PC in ovarian cancer. 

 

Pyruvate carboxylase is an anaplerotic enzyme that 

catalyzes the irreversible carboxylation of pyruvate to 

oxaloacetate. It plays an essential role in various 

metabolic processes in mammals, such as 

gluconeogenesis, lipogenesis, biosynthesis of 

neurotransmitters, and glucose-induced insulin secretion 

[20]. A previous study shows that PC is significantly 

increased in gastric adenocarcinomas and correlates 

with tumor stage and pathological grade [21]. The 

expression and activity of PC is significantly enhanced 

in non-small cell lung cancer tissues and required for 

tumor cell proliferation [22]. A recent study by 

Phannasil et al. shows that the up-regulation of PC 

could promote cell growth and invasion of breast cancer 

cells [23]. In addition, the increased expression of PC is 

found in isocitrate dehydrogenase (IDH)-mutant glioma 

tissues and PC has been determined to be the 

therapeutic target [24]. Previous reports are consistent 

with findings of our in vivo experiments. Results of the 

present study show that cell proliferation, cell cycle 

progression, and cell invasion and migration were 

significantly inhibited in PC-depleted SKOV3 cells, 

which indicate, like its roles in other cancer types, that 

PC might function as a major tumor gene to promote 

the progression of ovarian cancer. 

 

In order to further explore the changes in genes and 

metabolites in ovarian cancer cells induced by PC
 

 
 

Figure 7. Metabolomics data analysis for the identification of potential metabolic pathways regulated by PC. (A) Heatmap of 

differential metabolites in shPC vs. shNC groups in positive mode and negative mode. A bidirectional clustering analysis heat map was used to 
visualize metabolite levels in shPC vs. shNC samples under positive (left) and negative modes (right). The horizontal and vertical axes 
represent the samples and metabolites, respectively. Green represents down-regulated levels while red refers to up-regulated levels. (B) 
Volcano map of differential metabolites under positive (left) and negative (right) modes in shPC vs. shNC samples. The points in pink, blue, 
and grey refer to metabolites with up, down, and normal regulated levels, respectively. The dot size represents the VIP value. (C) Functional 
enrichment analysis for differential metabolites. The vertical and horizontal axes represent pathway categories and count number, 
respectively. The dot size represents the metabolite ratio of pathway enrichment. The color changes from blue to red refer to decreasing p-
values. A dot with a smaller p-value represents a more significant difference for the pathway category. (D) Integrated analysis of 
transcriptomic and metabolomics data to identify crucial pathways regulated by PC. 
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knockdown, transcriptome sequencing and metabolomics 

sequencing were performed. Our results showed that 

numerous genes and metabolites were differentially 

expressed in PC-knockdown SKOV3 cells. 

 

The PPI network of DEGs induced by PC knockdown 

suggested that STAT1 (degree = 54) and TP53 (degree 

= 46) were the hub genes with high degrees, which 

revealed the significant role of these two proteins in the 

alteration of gene expression. STAT1 is a member of 

the STAT family and functions as a signal messenger 

involved in many biological processes, including cell 

proliferation, differentiation, and apoptosis. The 

activation of STAT1 is triggered by JAK ligands and 

increased expression levels of STAT1 have been 

reported in patients with ovarian cancer [25]. 

Overexpression or knockdown of STAT1 can directly 

induce or suppress ovarian cancer cell proliferation, 

migration, and invasion. One of the potential 

mechanisms might be related to crosstalk with TGF-β 

signaling pathways, which is a major factor in EOC 

progression [26]. In addition, TP53, also known as p53, 

is well-established as an important tumor suppressor. 

Mutations in p53 have been frequently found in human 

tumors including ovarian cancer. Novel functions of 

p53 in metabolic regulation have also been reported in 

recent studies [27, 28]. p53 is involved in the regulation 

of many processes such as glycolysis, mitochondrial 

metabolism, and fatty acid synthesis [29]. The analysis 

of the PPI network in the present study also 

demonstrated that STAT1 and p53 are candidate genes 

in ovarian cancer development, which is consistent with 

results from previous studies. 

 

Additionally, metabolites are the final products in 

biological processes and can be influenced by genetic or 

environmental factors. Metabolomics analyses have 

demonstrated that pyruvate carboxylation acts as a key 

process, providing carbon backbones for downstream 

metabolites for the biosynthesis of cellular components 

such as membrane lipids, nucleotides, and amino acids 

[30]. By integrating the analysis of transcriptomic and 

metabolomics data, we demonstrated that these DEGs 

and differential metabolites in PC-knockdown tumor 

cells were closely associated with neuroactive ligands 

receptor interactions; glycine, serine, and threonine 

metabolism; and ABC transporter pathways. As 

described previously in the results, p53 plays an 

important role in the metabolic mechanisms of tumors. 

Mutations in p53 can enhance the glycolytic rate of 

fibroblasts and disturb biosynthetic processes of serine 

and glycine [27]. Furthermore, various ABC 

transporters were increased after EOC chemotherapy, 

which decreases the accumulation of chemotherapy 

drugs and finally induce a poor prognosis of ovarian 

cancer by enhancing chemo-resistance [31]. 

Considering this, we concluded that the disturbance of 

PC could significantly influence gene expression and 

metabolomics in ovarian cancer cells and lead to the 

dysregulation of serine, glycine biosynthesis, and ABC 

transporter pathways in ovarian cancer. 

 

There are some limitations in our study. First, because 

of heterogeneity in the samples and technology 

limitations, the metabolites analyzed may be incomplete 

and not available for all ovarian cancer cases. Second, 

the sample size for the survival analysis was relatively 

small, and more samples should be included. Lastly, the 

function of PC was explored at the cellular level and 

functional validation in clinical samples is urgently 

needed. 

 

CONCLUSIONS 
 

In conclusion, PC plays a significant role in the 

pathogenesis of ovarian cancer. The reduction of PC 

expression can significantly inhibit cell proliferation, 

cell cycle progression, and cell migration and invasion. 

Significantly decreased PC expression may impact 

ovarian tumor biology through the dysregulation of 

STAT1 and TP53 expression, serine and glycine 

biosynthesis, and ABC transporter pathways. The 

identified pathways in this study might provide new 

diagnostic and treatment options for patients with 

ovarian cancer. 

 

MATERIALS AND METHODS 
 

Data sources 
 

The mRNA expression profiles associated with ovarian 

cancer were downloaded from The Cancer Genome 

Atlas (TCGA) database (https://tcgadata.nci. 

nih.gov/tcga/), which were derived from 299 tissue 

samples. The microarray dataset GSE49997 was 

downloaded from the Gene Expression Omnibus (GEO) 

repository (https://www.ncbi.nlm.nih.gov/geo/) based 

on the platform of GPL2986 ABI Human Genome 

Survey Microarray Version 2. The GSE49997 dataset 

includes 204 EOC tissue samples, of which 194 samples 

contain corresponding clinical information. 

 

Identification of survival-related genes 

 

To identify crucial genes in ovarian cancer 

development, the gene expression profiles of samples 

with clinical information from TCGA and GSE49997 

datasets were further analyzed. The raw count data were 

downloaded and normalized using the count per million 

(CPM) method. Genes with low expression levels were 

removed, and the remaining 15,683 genes with high 

expression levels were subjected to survival analyses. 

https://tcgadata.nci.nih.gov/tcga/
https://tcgadata.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/
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Prognostic risk assessment was based on survival 

information and normalized gene expression profiles. 

Patients were divided into high-expression and low-

expression groups based on the median value of gene 

expression. Kaplan-Meier (KM) curves were generated 

using the Survival package in R and statistically tested 

using the log-rank test. Genes with a p-value of less 

than 0.05 were considered as potential genes associated 

with prognosis in EOC patients. Similarly, after 

normalization, the gene expression datasets from EOC 

tissues in the GEO dataset were subjected to survival 

analyses. The genes closely related with prognosis 

based on the two databases were analyzed using Venn 

diagrams. The overlapping genes were then selected for 

further analysis. 

 

Pathway enrichment analysis and literature search 
 

Text mining was performed for the overlapping genes 

using Perl code. The published genes that are closely 

related with ovarian cancer were searched in the 

PubMed database. In addition, the overlapping genes 

were subjected to the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analysis using the Database 

for Annotation, Visualization and Integrated Discovery 

(DAVID) online tool. Pathways with p < 0.05 and 

counts ≥ 2 were considered significant. 

 

Cell culture 

 

Four human ovarian cancer cell lines (SKOV3, Caov-3, 

OV-1063, OVCAR-3), normal epithelial ovarian cells 

(IOSE80), and human embryonic kidney (293T) cells 

were purchased from the cell bank of China Academic 

of Science. The SKOV3 cells were cultured in McCoy’s 

5A Media (modified with tricine) supplemented with 

10% fetal bovine serum (FBS). The Caov-3 and 293T 

cell lines were maintained in 90% DMEM with 10% 

FBS. The OV-1063 and IOSE80 cell lines were 

maintained in 90% RPMI 1640 with 10% FBS, and the 

OVCAR-3 cells were cultured in 80% RPMI 1640 with 

20% FBS, sodium pyruvate, and 0.01 mg/ml bovine 

insulin. All the cell lines were cultured in an atmosphere 

of 5% CO2 and 95% air at 37 °C. 

 

Real-time qPCR analysis 
 

Total RNA was extracted from cells using the RNAiso 

Plus (Trizol) reagent (TaKaRa, Japan) and cDNA was 

synthesized using the PrimeScript™RT Master Mix 

(Perfect Real Time) kit (TAKARA, Japan) according to 

the manufacturer’s instructions. Real-time PCR was 

performed to evaluate the expression levels of GGPS1, 

NTPCR, PPOX, PC, PRICKLE2, TCF7L1, and 

PPP3CA in tumor cells. A total of 8 μl of cDNA was 

used as template in a final 20 μl PCR volume containing 

1 μl forward primer, 1 μl reverse primer, and 10 μl 

SYBR Premix EX Taq (2x). PCRs were run as follows: 

50.0 °C for 3 min, 95.0 °C for 3 min, followed by 40 

cycles of 95.0 °C for 10 s and 60.0 °C for 30 s. 

Following PCR, a melting curve was obtained at 

temperatures from 60 °C to 95 °C, at increments of  

0.5 °C for 10 s. Primer sequences are listed in Table 3. 

 

Cell transfections 

 

Based on designing sigma software (https://www. 

sigmaaldrich.com/life-science/functional-genomics-

and-rnai/sirna/mission-predesigned-sirna.html), the 

shRNA sequence of PC was obtained. Three shRNAs  

sequences in CDS region for PC, GCCCAGTTTA 

TGGTGCAGAAT (shPC-1), GCCAAGGAGAAC 

AACGTAGAT (shPC-2), and ATGGGCATCCGCC 

TGGATAAT (shPC-3) were selected to knock down 

endogenous PC, and messy sequence (NC- GTTC 

TCCGAACGTGTCACGTC) was used as control 

sequence. Then, the primers were designed and 

synthesized by Suzhou Jinweizhi Biological 

Technology Co. LTD. (Table 3). Inducible shRNA 

construction was performed by ligating annealed 

oligonucleotides into the pLKO.1 Puro vector digested 

with EcoRI and AgeI. The ligated products were 

transformed into chemically competent Stbl3 E. coli 

using Lipofectamine 3000 reagent (Invitrogen) 

according to the manufacturer’s instructions and grown 

in LB supplemented with ampicillin. After validation of 

shRNA insertion using gene sequencing, the plasmids 

were packaged into lentiviral particles using the third-

generation lentiviral production system. SKOV3 cells 

were divided into three groups: black (without any 

treatment), shNC (transfected with negative control 

plasmid), shPC (transfected with shRNA-PC). Stable 

SKOV3 cells were selected with 0.5 μg/ml of 

puromycin over 3 days. Lastly, the efficiency of PC 
knockdown in SKOV3 cells was confirmed using real-

time qPCR analysis, and the degree of knockdown [(1- 

the relative mean expression of PC in shPC group/shNC 

group) × 100%] for three PC shRNAs were calculated. 

The sable shRNA-PC transfected SKOV3 cells with 

highest knockdown degree were used for following 

experiments. 

 

Cell viability and cell cycle analyses 

 

Cell viability assays were performed using the cell 

counting kit-8 (CCK-8; Beyotime Biotechnology, 

China). Briefly, the SKOV3 cells in three groups (3 × 

10
4
 cells/ml) were seeded in 96-well plates at a density 

of 3,000 cells/well, respectively. Cells were incubated at 

37 °C in 5% CO2 atmosphere conditions for 24, 48, 72, 

and 96 hours, and then 10 µl of CCK-8 solution was 

added into each well for 1.5 hours. The OD value of 

https://www.sigmaaldrich.com/life-science/functional-genomics-and-rnai/sirna/mission-predesigned-sirna.html
https://www.sigmaaldrich.com/life-science/functional-genomics-and-rnai/sirna/mission-predesigned-sirna.html
https://www.sigmaaldrich.com/life-science/functional-genomics-and-rnai/sirna/mission-predesigned-sirna.html
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Table 3. The primer sequences in PCR analysis. 

Symbol Sequences (5’-3) 

GGPS1-hF CTGCGTGGACCGATTAGCTTT 

GGPS1-hR TCTGTAGCTTGTCCTCTGGAAC 

NTPCR-hF ACCCGTCTTGAGGAATGTGA 

NTPCR-hR CTCTTGAACTGGGCACTCCT 

PPOX-hF GGACTGAAGGAGATGCCGAG 

PPOX-hR CAACCTGTGAGCAGTCAGGA 

PC-hF GACGGCGAGGAGATAGTGTC 

PC-hR TGGCAATCTCACCTCTGTTGG 

PRICKLE2-hF GTCTGTTGCCAGCTTCAGGA 

PRICKLE2-hR TCACTGTCACCATGTGCTCC 

TCF7L1-hF TCCAAAGACAGGAATCCCCCG 

TCF7L1-hR TGAGGAGAGAACCGACTGGA 

PPP3CA-hF CGGGGTGTGCAGTCGG 

PPP3CA-hR TTTGCTGTAAGCCGGTGACT 

shPC-1-F 
CCGGGCCCAGTTTATGGTGCAGAATTTCAAGAG 

AATTCTGCACCATAAACTGGGCTTTTTTGGTACC  

shPC-1-R 
AATTGGTACCAAAAAAGCCCAGTTTATGGTGCAGAA 

TTCTCTTGAAATTCTGCACCATAAACTGGGC 

shPC-2-F 
CCGGGCCAAGGAGAACAACGTAGATTTCAAGAGAATCT 

ACGTTGTTCTCCTTGGCTTTTTTGGTACC 

shPC-2-R 
AATTGGTACCAAAAAAGCCAAGGAGAACAACGTA 

GATTCTCTTGAAATCTACGTTGTTCTCCTTGGC 

shPC-3-F 
CCGGATGGGCATCCGCCTGGATAATTTCAAGAG 

AATTATCCAGGCGGATGCCCAT TTTTTTGGTACC 

shPC-3-R 
AATTGGTACCAAAAAAATGGGCATCCGCCTGGAT 

AATTCTCTTGAAATTATCCAGGCGGATGCCCAT 

shNC-F 
CCGGGTTCTCCGAACGTGTCACGTCAAGAGAT 

TACGTGACACGTTCGGAGAATCTTTTGGTACC 

shNC-R 
AATTGGTACCAAAAGATTCTCCGAACGTGTCAC 

GTAATCTCTTGACGTGACACGTTCGGAGAAC 

GAPDH-hF TGACAACTTTGGTATCGTGGAAGG 

GAPDH-hR AGGCAGGGATGATGTTCTGGAGAG 

 

each well sample was measured at 450 nm using the 

Multiscan Spectrum System (BD Biosciences, USA). 

All assays were repeated in triplicate.  

 

Flow cytometry was used for cell cycle analyses. shPC 

and control SKOV3 cells were digested with trypsin and 

collected using centrifugation at 300 × g, 4 °C for 5 

min. Then, cells were fixed in 70% ethanol overnight at 

4 °C. Subsequently, the samples were treated with 

RNase A for 30 min and stained with propidium iodide 

(BD Biosciences, USA) for 15 min. Flow cytometry 

was immediately conducted using a FACSCAN flow 

cytometer (BD Biosciences, USA) following the 

manufacturer’s instructions. All assays were repeated in 

triplicate. 

Transwell migration and invasion assays 

 

Invasion and migration assays were performed using 

BD Matrigel culture inserts. First, 8 μm pore 24-well 

Transwell inserts (Corning, USA) were coated with 20 

μl of Matrigel (BD Biosciences) and incubated for 30 

min at 37 °C in a 5% CO2 incubator to allow gel 

formation. Control shNC and shPC SKOV3 cells were 

suspended at equal cell densities in serum-free medium. 

A total of 100 μl of cells (2 × 10
5
 cells/ml) were seeded 

in the upper chamber of untreated Transwells for cell 

migration analyses and in the upper chamber of 

Transwells treated with Matrigel for cell invasion 

analyses. The lower chambers were supplemented with 

500 μl of 10% FBS-containing medium. Then, cells 
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were incubated at 37 °C in 5% CO2 atmosphere 

conditions for 12 and 24 h, respectively. The cells in 

Transwells were treated with 4% paraformaldehyde for 

30 min and stained with crystal violet for 10 min. 

Subsequently, the upper chambers were washed three 

times in PBS and non-invading cells on the inner 

surface were carefully removed using cotton swabs. 

Finally, the invading cells on the reverse side of the 

upper chamber were counted using a microscope at 

three different fields to assess cell migration and 

invasion abilities. All assays were repeated in triplicate. 

 

Metabolomics data acquisition and identification 

 

Metabolomics data acquisition was performed using an 

ultra-performance liquid chromatography-quadrupole-

time of flight liquid chromatography/mass spectrometry 

(UPLC-Q-TOF LC/MS) system [32]. The samples 

included 10 shPC-infected SKOV3 cell samples (1 × 

10
7
 cells for each sample), 10 shNC SKOV3 cell 

samples, and 5 quality control (QC) samples. Cells in 

each sample were mixed with 500 μl of methyl 

alcohol/acetonitrile/distilled water (2:2:1, v/v/v) 

solution and disrupted using ultrasonication for 30 min. 

After incubation at -20 °C for 1 h, the supernatant was 

collected using centrifugation at 13,000 rpm at 4 °C for 

15 min followed by freeze-drying. For metabolomic 

analyses, samples were re-dissolved in 100 μl of 

acetonitrile solution (1:1 ratio of acetonitrile and water, 

by volume) and centrifuged at 14,000 × g at 4 °C for 15 

min. The supernatant was collected for LC/MS analysis. 

 

The metabolic products acquisition and identification 

were both performed in positive-ion (ESI+) and 

negative-ion (ESI-) modes and analyzed using a Triple-

TOF 5600 mass spectrometer. Data normalizations were 

performed on LC/MS data based on internal standards 

using ESI+ and ESI- modes. 

 

Principal component analysis (PCA), extensively used 

in the statistical learning field, and the partial least 

squares discriminant analysis (PLS-DA) are commonly 

applied to evaluate differences between groups [33, 34]. 

In the present study, we used two-dimensional PCA to 

ensure detection stability and three-dimensional PLS-

DA for cross validation. In addition, univariate 

nonparametric analyses and multivariate PLS-DA were 

performed for metabolic profiling using the ropls 

software, version 1.6.2 (http://bioconductor. 

org/packages/release/bioc/html/ropls.html). The 

thresholds for potential biomarker selection were set as 

follows: a false discovery rate (FDR) of <0.01, |log2 

fold change (log2FC)| > 1 in univariate analysis, and 

Variable Importance in the Projection (VIP) > 1 in 

multivariate analysis. Bidirectional hierarchical 

clustering analyses were performed to assess data 

classification ability and concentration levels of the 

screened metabolites. For differential metabolites 

obtained from tumor cells, we transformed these data 

into the KEGG ID format using the MetaboAnalyst 

online tool [35] and performed KEGG pathway 

analyses using MBROLE 2.0 (http://csbg.cnb. 

csic.es/mbrole2/analysis.php) with a p-value < 0.05. 

 

Transcriptome sequencing 

 

Total mRNA extractions and cDNA library preparations 

were performed for shPC and control shNC cell 

samples. Then, two-paired end sequencing was 

performed using the Illumina platform (Illumina, San 

Diego, CA, USA). 

 

Clean reads data were obtained using the Trimmomatic 

tool (version 3.6) [36]. Then, the reads were mapped to 

the human reference genome (GRCH38, Gencode) [37] 

with the Hisat 2 software, version 2.05 [38]. Gene 

expression levels were evaluated by counting reads 

mapped to protein-coding regions using FeatureCounts 

tools (v1.6.0) [39], and expression values were 

normalized using Fragments Per Kilobase of Exon Per 

Million Fragments Mapped (FPKM) method. Genes 

with an FPKM value ≥ 0.1 in at least three samples 

were further analyzed. According to filtered gene 

abundance expression profiles, the correlation of gene 

expression levels between samples was analyzed using 

PCA with the ggord package (https://zenodo.org/ 

badge/latestdoi/35334615) [40]. 

 

DEGs between the shPC and shNC groups were 

identified using the quasi-likelihood F-tests method of 

the edgeR software [41]. Genes with |log2FC| > 1.585 

and FDR < 0.05 were considered to be significant, and 

two-dimensional clustering heatmaps were used to 

visualize the gene expression profiles of DEGs. 

Subsequently, gene ontology (GO) function and KEGG 

pathway enrichments were performed for genes of 

interest using the Clusterprofiler package [42]. A p-

value < 0.05 was considered as a significant difference. 

 

Ovarian carcinoma-related genes were retrieved from 

the DisGeNET database [43] (http://www.disgenet.org/ 

web/DisGeNET/menu/home). Differentially expressed 

genes were subjected to gene set enrichment analysis 

(GSEA) using the DOSE package [44]. 

 

The PPI pairs with required confidence (combined score 

> 0.7) were obtained with the STRING online tool [45] 

(https://string-db.org/). Cytoscape software [46] was 

utilized to construct a PPI network and the network 

topological properties were analyzed based on degree 

[47], betweenness [48], and closeness [49] using the 

cytoscape CytoNCA plugin [50]. 

http://bioconductor.org/packages/release/bioc/html/ropls.html
http://bioconductor.org/packages/release/bioc/html/ropls.html
http://csbg.cnb.csic.es/mbrole2/analysis.php
http://csbg.cnb.csic.es/mbrole2/analysis.php
https://zenodo.org/badge/latestdoi/35334615
https://zenodo.org/badge/latestdoi/35334615
http://www.disgenet.org/web/DisGeNET/menu/home
http://www.disgenet.org/web/DisGeNET/menu/home
https://string-db.org/
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Moreover, the significant modules in the PPI network 

were mined using the MCODE tool [51] with a screening 

score > 10. For the intriguing DEGs, we performed 

microRNA and transcription factor (TF) predictions by 

using Enrichr tools [52]. The corresponding miRNA-gene 

pairs and TF-gene pairs were also identified from the 

miRTarBase and ENCODE databases [53]. Finally, we 

integrated these miRNAs, TFs, and candidate genes to 

construct a systemic regulatory network. 

 

Integrated pathway analysis of transcriptomics and 

metabolomics data 
 

Integrated analyses are conducted in order to understand 

the biological function of post-genomic data at a higher 

level than individual biomolecules. The “IMPaLA” web 

tool has been used to integrate more than one type of 

omics data for pathway analysis [54]. In this study, the 

joint pathway analysis was performed for DEGs and 

differential metabolites based on the KEGG  

database. Lastly, pathways with number_of_ 

overlapping_metabolites/gene > 0 and metabolite with p 

< 0.05 were considered to be significant. 
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