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Simple Summary: Toll like receptors (TLRs) are a group of transmembrane receptors belonging to the
class of pattern recognition receptors (PRR), which are involved in recognition of pathogen associated
molecular patterns (PAMPs), inducing immune response. During the past decade, a number of
preclinical and clinical breakthroughs in the field of TLR agonists has immerged in cancer research
and some of these agents have performed exceptionally well in clinical trials. Based on evidence
from scientific studies, we draw attention to several microbial based TLR agonists and discuss their
relevance in various cancer and explore various microbial based TLR agonists for developing effective
immunotherapeutic strategies against cancer.

Abstract: Toll-like receptors (TLRs) are typical transmembrane proteins, which are essential pattern
recognition receptors in mediating the effects of innate immunity. TLRs recognize structurally
conserved molecules derived from microbes and damage-associated molecular pattern molecules
that play an important role in inflammation. Since the first discovery of the Toll receptor by the
team of J. Hoffmann in 1996, in Drosophila melanogaster, numerous TLRs have been identified across
a wide range of invertebrate and vertebrate species. TLR stimulation leads to NF-κB activation
and the subsequent production of pro-inflammatory cytokines and chemokines, growth factors and
anti-apoptotic proteins. The expression of TLRs has also been observed in many tumors, and their
stimulation results in tumor progression or regression, depending on the TLR and tumor type. The
anti-tumoral effects can result from the activation of anti-tumoral immune responses and/or the
direct induction of tumor cell death. The pro-tumoral effects may be due to inducing tumor cell
survival and proliferation or by acting on suppressive or inflammatory immune cells in the tumor
microenvironment. The aim of this review is to draw attention to the effects of TLR stimulation in
cancer, the activation of various TLRs by microbes in different types of tumors, and, finally, the role
of TLRs in anti-cancer immunity and tumor rejection.

Keywords: innate receptors; toll like receptors; cancer; immunotherapy; microbial based therapy

1. Introduction

The Toll receptor was identified in Drosophila melanogaster, a receptor essential for
establishing the dorsal–ventral axis during embryonic development [1,2]. Following the
discovery of the Toll receptor, several mammalian proteins were found to share structural
similarities to the D. melanogaster Toll receptor, and thus they were named Toll-like receptors
(TLRs) [3]. In 2011, the Nobel Prize in Physiology/Medicine was awarded to Dr. Jules A.
Hoffmann and Dr. Bruce A. Beutler who made significant contributions to the discoveries
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concerning TLRs and their role in innate immunity [4,5]. It was by this discovery that
scientists found innate immunity is essential and critical in immune responses to pathogen
infections in connection with the activation of adaptive immunity [6].

TLRs comprise a family of type I transmembrane receptors, which are characterized
by an extracellular leucine-rich repeat (LRR) domain and an intracellular Toll/IL-1 receptor
(TIR) domain [7–9]. TLRs trigger immune responses against various invading pathogens
by recognizing specific pathogen-associated molecular patterns (PAMPs), which are highly
conserved and derived from potential pathogenic microorganisms, such as bacteria, viruses,
fungi, and parasites [10,11].

Microbial sensing through TLRs initiates a signaling cascade that induces pro-inflammatory
responses [10]. TLRs recruit TIR-specific domain-containing adaptor proteins for the activation
of downstream signaling. The main domains recruited by TLRs are the myeloid differentia-
tion factor-88 (MyD88), the Toll/IL-1 receptor domain adaptor protein, and the TIR-domain-
containing adapter-inducing interferon-β (TRIF) [12,13]. Upon activation, various signaling
pathways are initiated, which results in a variety of inflammatory cytokines, thus undergoing
transcription by the phosphorylation of IkBa to activate NF-κB [14,15]. The multiple signaling
pathways contribute to the rapid response of the innate immune system to pathogens. TLRs
also regulate adaptive immunity by the activation and maturation of dendritic cells and the
production of pro-inflammatory cytokines and chemokines, which induce the proliferation and
differentiation of Th1 and Th2 cells [16].

TLR signaling has been well-studied in various diseases, including cancer. TLRs are
expressed not only on the surface of immune cells but also on tumor cells [17,18]. TLRs
are documented to have pro and anti-tumor responses, though to date, the role of TLR
signaling is still not completely understood in cancer progression. This review will describe
the usage of bacterial- and viral-derived TLR activation in cancer immunotherapy, TLR
expression profile on tumors, and the involvement of TLR signaling in tumor outcomes.
We will also discuss the status of research in utilizing TLR agonists as potential therapeutic
agents in cancer treatment.

2. TLR Localization and Recognition of Microbial Ligands

TLRs are involved in the recognition of microbial exogenously and endogenously
derived molecular patterns. This occurs at the plasma membrane and at intracellular
compartments, respectively, and thus TLR ligands can be either exogenous or host-derived.
TLRs 1, 2, 4, 5, and 6 are located primarily in the plasma membrane, where they interact
with components of microbial pathogens that exogenously encounter the cell. In contrast,
TLRs 3, 7, 8, and 9 are situated in the membranes of endosomes and lysosomes, where they
interact with components that are endogenous. Figure 1 depicts in detail the location of
specific TLRs and their respective, best-characterized ligands.
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Figure 1. Cellular localization of the Toll-like receptor (TLR) family. TLR1, TLR2, TLR4, TLR5, TLR6, 
and TLR10 are localized to the cell surface to recognize common microbial structural components 
and endogenous ligands. TLR3, TLR7, TLR8, TLR9, TLR12 and TLR13 are located on endosomes to 
sense microbial nucleic acids that have entered the cell. TLR11 and TLR12 are localized to endo-
somes to recognize Toxoplasma gondii derived profilin. Created with Biorender.com. 
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Breast Cancer 

TLR2 MDA-MB-231, SUM-149, 
SUM-159 
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Expression observed in pri-
mary tumors and metastatic 

tissue; high expression associ-
ated with shorter overall sur-

vival 

[18–20] 

TLR3 MDA-MB-231, MDA-MB-
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Poly(I:C) stimulation reduces 
breast cancer cell proliferation 
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Upregulated in recurring tu-
mors; associated with lower 

relapse-free survival 
[19,21,22] 

Figure 1. Cellular localization of the Toll-like receptor (TLR) family. TLR1, TLR2, TLR4, TLR5, TLR6,
and TLR10 are localized to the cell surface to recognize common microbial structural components
and endogenous ligands. TLR3, TLR7, TLR8, TLR9, TLR12 and TLR13 are located on endosomes to
sense microbial nucleic acids that have entered the cell. TLR11 and TLR12 are localized to endosomes
to recognize Toxoplasma gondii derived profilin. Created with Biorender.com.

3. Expression of TLRs on Tumor Cells and Its Clinical Relevance

TLRs are known to be expressed and activated in innate immune cells, such as
macrophages and dendritic cells (DCs); however, in recent years, several studies have
shown that TLRs are also highly expressed by various tumor cells. Therefore, the study
of TLR expression and function in cancer has become a focus for researchers in field of
cancer immunotherapy. Table 1 summarizes the TLRs expressed on various tumor cells in
different cancer types along with clinical outcomes.
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Table 1. TLR Expression and Tumor Outcomes.

Cancer Type TLR-Cell Line
Characterization Pre-Clinical Findings Tumor Profile and Patient

Outcomes References

Breast Cancer

TLR2
MDA-MB-231,

SUM-149,
SUM-159

-

Expression observed in
primary tumors and

metastatic tissue; high
expression associated with

shorter overall survival

[18–20]

TLR3

MDA-MB-231,
MDA-MB-468,

SUM-149,
SUM-159

Poly(I:C) stimulation
reduces breast cancer cell

proliferation and
induces apoptosis

Upregulated in recurring
tumors; associated with

lower relapse-free survival
[19,21,22]

TLR4
MDA-MB-231,

SUM-149,
SUM-159

LPS stimulation induces
IL-6 and IL-9 production;

activation promotes
chemoresistance and

apoptosis evasion;
downregulation enhances

paclitaxel sensitivity;
upregulation promotes

paclitaxel resistance

Expression observed in
primary tumors and

metastatic tissue;
upregulation associated

with tumor recurrence and
poor survival in TP53

mutant tumors

[18,19,21,23,24]

TLR5 4T1

Downregulation
upregulates VEGFR and cell
proliferation; upregulation

and downregulation of
receptor increases lung

metastases; flagellin
treatment reduces

tumor growth

Highly expressed in
metastatic cancer [18,25–27]

TLR7/8 - -

Low expression observed in
metastases; imiquimod
promotes immune cell

infiltration in
skin-residing metastases

[18,28,29]

TLR9

MCF-7, T47D,
CAMA,

MDA-MB-231,
MDA-MB-468,

SUM-149,
SUM-159

Receptor knockdown
promotes MDA-MB-231

tumor growth

Expression observed on
tumors; low expression in

metastases; downregulation
associated with poor

disease-specific survival

[18,19,21,30]

Lung Cancer

TLR2 -
Treatment with lipoprotein

reduces Lewis lung
carcinoma tumor growth

High tumoral TLR2
expression is positively

correlated with prolonged
overall survival and

progression-free survival

TLR3 Calu-3; H460

Lewis lung carcinoma
tumors in TLR3-deficient

mice had fewer metastases
compared to TLR3

competent mice; stimulation
with Poly(I:C)

induces apoptosis

TLR3 positive tumors have
greater overall survival and
slower disease progression

in early-stage NSCLC

[26,31–33]

TLR4 A549; H1299
Stimulation with LPS
induces production of

TGF-β, VEGF, and IL-8

High expression associated
with decreased overall

survival; expression
correlated with tumoral

PD-L1 expression

[28,34,35]
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Table 1. Cont.

Cancer Type TLR-Cell Line
Characterization Pre-Clinical Findings Tumor Profile and Patient

Outcomes References

TLR5 SPC-A1; A549;
H1975; H1299

Stimulation with flagellin
induces IL-6 and

CXCL5 production

High expression associated
with improved disease-

free survival
[36]

TLR7/8 A549, H1355,
SK-MES; LL/2

Stimulation promotes
survival and chemotherapy
resistance, CL264 treatment

enhances Lewis lung
carcinoma tumor growth;
resiquimod formulation

improves overall survival
and reduced 344SQ
tumor progression

High expression associated
with poor overall survival in
stage I-III NSCLC patients

[27,37,38]

TLR9 A549, NCI-H727

Expressed on human NSCLC
cell line A549; synthetic

oligonucleotide treatment
reduces tumor growth in
H520, H358, A549, and

H1299 xenografts

Higher expression in tumors
compared to non-
cancerous tissue

[39,40]

Melanoma

TLR2 ME5, ME9, ME16,
ME17, ME19

Stimulation promotes cell
migration; treatment with
Zymosan-A and bacteria

reduces B16-F10
tumor growth

Expression observed
on tumors [41–43]

TLR3

ME2, ME9, ME16,
ME17, ME19,

M288, M301, M305,
M299, M342

Stimulation promotes
cell migration

Expression observed
on tumors [42–44]

TLR4 ME2, ME9, ME16,
ME17, ME19

Stimulation promotes
cell migration

Highly expressed on
primary and metastatic

tumors; expression
associated with shortened

relapse-free survival

[42–45]

TLR7/8

M288, M301, M305,
M284, M379, M299,
M342, M383, M350,

M383, M387

Imiquimod stimulation
inhibits tumoral angiogenesis

in a melanoma-bearing
humanized mouse model

Upregulated expression in
stage III melanoma patients;
high expression associated

with longer overall survival
time; expression correlated

with CD8+ T-cell infiltration;
treatment with imiquimod

inhibits metastasis

[43,44,46,47]

TLR9 M288, M301, M305,
M350, M387

Treatment with
L-nucleotide-protected TLR

agonists reduce B16-F10
tumor growth

Expression observed
on tumors [43,44,48]

Colorectal
Cancer

TLR1/2 - -

Upregulated in cancerous
tissue; high expression

associated with improved
disease-specific survival

[49–51]

TLR3 HCT116, HT29,
SW620

Poly(I:C) stimulation induces
CCL2, CCL5, and IL-8

production; CXCL8
production, and invasiveness

in CRC cell lines

Low expression associated
with lymph node metastasis

and tumor recurrence
[52,53]
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Table 1. Cont.

Cancer Type TLR-Cell Line
Characterization Pre-Clinical Findings Tumor Profile and Patient

Outcomes References

TLR4 -
Upregulated in chemically

induced CRC in Tir8
−/− mice

Expression upregulated in
cancerous tissue; high

expression associated with
poor disease-free survival

[54]

TLR5 DLD-1

Knockdown promotes
DLD-1 tumor growth and

inhibits immune
cell infiltration

Low expression associated
with advanced cancer stage;
high expression associated

with improved
disease-specific survival

[50,55]

TLR7/8 -

R848 treatment of CT26
tumors reverses
chemoresistance

to oxaliplatin

Upregulation observed in
tumors, associated with
lower cancer stage; high

expression associated with
improved disease-
specific survival

[50,51,56]

TLR9 -

Stimulation reduces CT26
tumor growth, increases

CD8+ T-cell infiltration in
the tumor

High expression correlated
with invasiveness,

metastasis, and
advanced-stage CRC

[48,57]

Pancreatic
Cancer

TLR2

HPAC, MIA
PaCa-2, PANC-1,

BXPC-3,
PaCaDD135

Stimulation promotes cell
proliferation, VEGF

expression, and
colony formation

Highly expressed in all
stages of PDAC;

upregulation correlated
with poor patient survival

[58,59]

TLR3 PANC-1, BXPC-3 Activation promotes cell
proliferation - [60,61]

TLR4 MIA PaCa-2,
SW1990

LPS stimulation mediates
tumorigenesis in

p48Cre;KrasG12D mice, and
promotes cell proliferation

and VEGF expression

Upregulated in
cancerous tissue [59,62]

TLR7/8 PANC-2

Stimulation promotes cell
proliferation,

chemoresistance, and
tumorigenesis in

p48Cre;KrasG12D mice;
inhibition prevents
tumor progression

Expression upregulated in
early and advanced stages

of PDAC
[63,64]

TLR9
PANC-1, SW1990,

PaCaDD185,
PAN02

Stimulation promotes cell
proliferation, VEGF

expression, and
tumorigenesis in

p48Cre;LsL-KrasG12D mice;
inhibition improves survival

and prevents
tumor progression

Upregulated in
cancerous tissue [59,65]

Ovarian Cancer
TLR2 SKOV3, CAOV3

Expression upregulated
upon tumor injury in

xenografted mice; activation
promotes tumoral repair

and persistence

Upregulated in
cancerous tissue [66,67]

TLR3 ES2, OVCAR3,
SKOV3, CAOV3

Stimulation induces CCL2
and IL-6 production

Upregulated in
cancerous tissue [67]
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Table 1. Cont.

Cancer Type TLR-Cell Line
Characterization Pre-Clinical Findings Tumor Profile and Patient

Outcomes References

TLR4

R182, CP70, A2780,
R179, OVCAR3,
SKOV3, AD-10,

ES2

Stimulation promotes cancer
cell viability and cell

proliferation and induces
CCL2, IL-6, and CXCL1
production; knockdown

enhances sensitivity
to paclitaxel

High expression in
cancerous tissue; high

expression associated with
improved survival

[67–71]

TLR5 OVCAR3
TLR5-deficiency reduces

tumor growth; stimulation
promotes invasion

Polymorphism diminishing
TLR5 signaling improves

long-term survival
[72,73]

TLR7/8 CaOV3, OVCAR3,
OV90, SKOV3

Stimulation
promotes invasion - [72,74]

TLR9 - -
Increased expression
associated with rising

tumor grade
[75]

Prostate Cancer

TLR2/6 PC3

Stimulation promotes cell
proliferation and

invasiveness and induces
IL-6 and IL-8 production

- [76,77]

TLR3 LNCaP, DU145,
PC3

Stimulation inhibits cell
proliferation and promotes
apoptosis and induces IL-8,

CCL3, CCL5, and
CXCL10 production

Upregulated in cancerous
tissue; high expression
associated with poor

patient survival

[23,76–78]

TLR4 PC3, DU145

Stimulation promotes cell
proliferation and induces
IL-6 and IL-8 production;
knockdown diminishes

tumorigenesis, reduces cell
invasiveness and
proliferation, and
induces apoptosis

Upregulated in
cancerous tissue [23,76,77,79]

TLR5 DU145, PC3,
LNCaP

Stimulation induces IL-8
and CCL5 production - [76]

TLR9 - -

Upregulated in cancerous
tissue; high expression
associated with poor

patient survival

[79,80]

4. Microbial Derived TLR Agonists and Their Role in Cancer Immunotherapy

Harnessing the host response to infection has been utilized to target cancer for cen-
turies [81,82]. Microbial sensing through TLRs initiates a signaling cascade that induces
pro-inflammatory responses. The Toll-like receptor signaling pathway plays a crucial
role in host immune defenses against numerous diseases and has been identified as an
immunotherapeutic target against various types of cancer. New avenues to combat cancers
involves the regulation of the host’s innate immune system using agonists, which can bind
to a variety of TLRs. These agonists can be used in combination with other cancer therapies,
like chemotherapy and radiotherapy, to provide a broader spectrum of protection.

5. Bacterial-Derived TLR Agonists

Many of the pivotal studies in the field of bacterial-based cancer immunotherapy
(BBCT) were pioneered by 19th century clinician–scientist Dr. William Coley [81,82]. Dr.
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Coley utilized a combination of live Streptococcus pyogenes and Serratia marcescens to treat
patients with inoperable sarcomas [81]. In the patients with the most dramatic tumor
regression, Dr. Coley noted that an erysipelas infection and subsequent fever had been
induced in these patients. Dr. Coley’s observations were likely a result of robust immune
system activation from Coley’s bacterial-based toxins, thus implicating a link between
response to infection and tumor eradication that would serve as the basis for modern
cancer immunotherapies. Though unbeknownst to Dr. Coley, a likely mediator in his
patients’ responses was innate microbial recognition through Toll-like receptors [82,83].

Molecular triggers responsible for remissions from Coley’s toxins are TLR ligands
that target patter recognition receptors (PRRs) [84]. PRRs share the ability to recognize
relatively conserved microbial components, which are generally referred to as microbe- or
pathogen-associated molecular patterns (MAMPs or PAMPs), as well as endogenous danger
signals commonly known as damage-associated molecular patterns (DAMPs). Common
TLR-activating MAMPs include viral and bacterial nucleic acids (which can signal through
TLR3, TLR7, TLR8, or TLR9), flagellin (a TLR5 agonist), as well as lipopolysaccharide
(LPS), lipoteichoic acid, and mannans (which signal through TLR2 or TLR4). Endogenous
nucleic acids and the nuclear non-histone protein high mobility group box 1 (HGMB1) are
prototypic TLR-activating DAMPs.

Due to their role in self/nonself-differentiation [85] and their ability to induce anti-
gen presenting cell (APC) maturation, TLR agonists are considered promising adjuvant
candidates [86]. In fact, a number of TLR agonists, including Pam3CSK4, Pam2CSK4,
MPLA (a LPS derivative), CpG, PolyI:C, and flagellin, are currently being tested as cancer
agonists [87].

Roberts et al. recently showed that an attenuated strain of Clostridium novyi efficiently
decreased tumor size in rat and dog cancer models in addition to one sarcoma patient [88].
This treatment is well-targeted as spores of Clostridium novyi germinate selectively within
the hypoxic regions of cancerous tissue and induce immune responses likely via TLR
activation [89].

6. Viral-Derived TLR Agonists

Oncolytic viruses (OVs) preferentially target tumor cells and activate antitumor im-
munity while limiting pathogenicity, thus they have emerged as a promising tool for
viral-based cancer therapies [90]. Though additional studies must be conducted to further
characterize the TLR contribution to antitumor responses from oncolytic virotherapy, OVs
possess several TLR-stimulating moieties that can contribute to activation of host immune
response at the tumor site. Intratumoral treatment of murine glioma tumors with oncolytic
adenovirus Delta-24-RGD significantly reduced tumor growth compared to PBS-treated
tumors [91]. Delta-24-RGD treatment was demonstrated to remodel the tumor microen-
vironment, predominantly through enhanced CD8+ and CD4+ T cell infiltration in the
tumor [91]. Immune-mediated targeting of the tumor is likely a result of TLR9-medated
T cell proliferation as well as maturation of APCs, following the TLR9 recognition of
double-stranded adenoviral DNA [92–94].

Enhancing the intrinsic TLR stimulating properties of oncolytic adenoviruses has
been another strategy for targeting TLR-mediated immune responses. Ad5D24-CpG, an
oncolytic adenovirus genetically manipulated to express TLR9 stimulating CpG islands,
significantly controlled tumor growth compared to CpG unenhanced Ad5D24 treated
tumors [95]. Antitumor response from Ad5D24-CpG treatment was determined to be
highly reliant on TLR9-mediated NK cell activation, leading to the effective killing of
tumor cells [95]. Because stimulation of TLRs expressed on NK cells enhances release of
cytotoxic granules and cytokine production, in this context it is suggested that the CpG
insertion in Ad5D24 enhances these NK cell properties, facilitating more robust antitumor
responses [96,97].

TLRs have also been implicated in the usage of non-oncolytic viruses for viral-based
therapeutics. The intratumoral administration of heat-inactivated influenza but not active
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influenza virus was found to drastically inhibit tumor growth in a B16 melanoma model [98].
This response from heat-inactivated influenza treatment was determined to be dependent
on increased cross-presenting CD8+ dendritic cell infiltration in the tumor [98]. Paralleling
the in vivo findings, heat-inactivated influenza was observed to more potently stimulate
TLR7 compared to active influenza virus, determined by using TLR7 reporter cells [98].
Given that the recognition of TLR ligands can enhance antigen cross presentation in DCs, it
is likely that heat-inactivated influenza more potently engaged TLR7, leading to an increase
in cross-presenting DCs within the tumor and the activation of CD8+ T cells and thereby
reduced tumor progression [99–101].

7. TLR–TLR Cross-Talk and the Modulation of Immune Response

Targeting the ability of multiple TLRs to synergize with each other has been another
strategy in TLR-focused cancer therapies, as it emulates the multi-TLR activation encom-
passed by an invading pathogen [102–105]. Mimicking the TLR recognition profile of
influenza virus, the intratumoral administration of a TLR3 agonist and a TLR7 agonist
has been shown to dramatically reduce tumor progression through increased granzyme
B and perforin expression in CD8+ T cells, as well as an increased M1 to M2 macrophage
ratio within murine lung tumors [106]. TLR synergy in a cancer context has been demon-
strated in studies where the administration of either TLR agonist individually did not
elicit the same robust antitumor response as did the combination [107]. Targeting the same
microbial-like TLR activation profile has also been demonstrated to be effective in other
tumor models. Nanoparticle complexes comprising TLR3 and TLR7 agonists poly(I:C) and
imiquimod, respectively, were demonstrated to achieve complete tumor rejection in a B16
melanoma model. Immune memory from treatment with the TLR agonist complex was
further demonstrated through a lack of tumor development following rechallenge with
B16 melanoma [108].

Viral-like TLR activation for cancer therapeutic applications extends beyond an
influenza-mimicking TLR activation profile. DNA viruses, such as herpes simplex virus
and vaccinia virus, are also multi-TLR activators, through TLR2 [109] recognition of viral
envelope residing in glycoproteins as well as TLR9 [110] activation from unmethylated CpG
motifs found in the viral genome [111–114]. To utilize the synergistic interactions between
TLR2 and TLR9, the cervical cancer tumor antigen E7 was combined with TLR2/TLR9
agonists to reverse the immunosuppressive tumor microenvironment in TC-1 tumors. By
diminishing myeloid-derived suppressor cell (MDSC) and regulatory T cell populations, the
tumor became permissive to antitumor CD8+ T cell infiltration and the immune-mediated
suppression of tumor growth [114,115]. TLR2/TLR9 activation has also been shown to
enhance DC maturation, which is essential for the effective processing and presentation of
tumor antigens on MHC molecules [116–119]. Targeting DCs with lipoprotein and CpG
ODN TLR agonists combined with tumor antigen decreased the production of immunosup-
pressive cytokine IL-10 while increasing IL-12 production from DCs. The shift in cytokine
production has a dual effect on the tumor microenvironment with the decrease in IL-10
production relieving IL-10-mediated suppression of DC function, and the increase in IL-12
production driving cytotoxic T lymphocyte-activating Th1 responses [118,120].

Bacteria also possess multiple structural motifs recognized by TLRs that amplify host
inflammatory responses when activated simultaneously. Therapeutic synergy of bacterial
ligand sensing TLRs has been demonstrated in D2F2 tumors, following treatment with both
CpG ODN and TLR5 agonist flagellin [121]. Tumors treated with CpG ODN or flagellin
as a single therapy did not exhibit inhibition of tumor growth, suggesting that signaling
from multiple TLRs is needed to initiate robust antitumor responses. Other combinations
of TLR agonists mimicking bacterial recognition have been effective in the formation of
cancer vaccines when combined with tumor antigens. Mirroring a TLR activation profile of
Gram-negative bacteria [122,123], monophosphoryl6 lipid A and CpG ODN were bound to
silicified murine ovarian tumor cells as a source of tumor antigen. Mice vaccinated with
this combination of tumor cells and TLR agonists experienced significant tumor regression
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of established high-grade ovarian tumors [124]. Akin to the enhanced DC maturation
following bacterial recognition by TLRs, tumor vaccine-treated DCs also experienced
increased tumor antigen uptake and MHC expression, contributing to the induction of
tumor-specific T cell immunity [124–126].

The usage of the TLR4/TLR9 activation profile in cancer vaccines has been extended
to clinical trials [127–130]. AS15, an immunostimulant containing TLR4 and TLR9 agonists
combined with tumor antigen MAGE-A3 and high dose IL-2, was assessed for anticancer
responses in metastatic melanoma patients. The combination therapy had a disease control
rate of 63%, in which 19% of patients experienced a complete response to the combination
of therapy. Peripheral blood regulatory T cells from treatment responders had decreased
expression in immune checkpoint proteins, such as CTLA-4 and 4-1BB, while expression
was increased in non-responders [130].

8. TLR Signaling in Cancer
8.1. Effects of Tumor-Promoting TLR Signaling

TLRs have been associated with tumorigenesis, as they can activate multiple cancer-
associated signaling pathways. To date, TLRs have been recognized to transduce signals
through NF-κB, PI3k-Akt, and MAPK-ERK to advance cancer. NF-κB is recognized as the
canonical signaling target upon TLR activation. When activated, NF-κB plays a role in sev-
eral cellular functions, including cell proliferation, pro-inflammatory cytokine production,
and cell survival/apoptosis, as described in Figure 2 [131]. As a result of regulating many
cellular processes, the NF-κB pathway is an optimal target for aberrant, pro-tumorigenic
signaling [132]. Through the LPS stimulation of TLR4, NF-κB activation enhanced the
proliferation of gastric cancer cell lines BGC-823 and SGC-7901 [131,133]. In similar form,
NF-κB activation via TLR4 resulted in apoptosis evasion in lung and head and neck cancer,
with the addition of TNF-related apoptosis-inducing ligand (TRAIL) [134,135].
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TRIF-activating pathway. Upon activation of the MyD88-dependent pathway, adapter molecule
TIRAP transduces signals to MyD88. MyD88 activates IRAK1 and IRAK4. Activated IRAK1 and
IRAK4 lead to activation of TRAF6. TRAF6 activates the TAK1 complex. The TAK1 complex activates
the IKK complex comprised of NEMO, IKKα, and IKKβ. IKK complex activation leads to phosphory-
lation of IKβα, a protein responsible for sequestering NF-κB to the cytoplasm. Once activated, NF-κB
translocates to the nucleus to activate genes that can promote or inhibit tumorigenesis. NF-κB also
can be activated through TRIF, notably through TLR3. TRIF activation results in RIP1 and TRAF6
activation. Through RIP1 and TRAF6, the TAK1 complex is activated. Following TAK1 complex
activation, subsequent steps in NF-κB signaling are shared between the two pathways. Created with
Biorender.com.

Tumorigenic TLR signaling extends beyond the canonical NF-κB pathway. Adaptor
protein BCAP has been recognized as a link to TLR activation and downstream PI3k-Akt
signaling [136,137]. PI3K-Akt signaling regulates cell proliferation, cell growth, and sur-
vival, thus is frequently upregulated in many cancers [138] (Figure 3). TLR7 activation
was found to perpetuate pancreatic cancer progression through upregulated PI3K/Akt
signaling. Consequently, an upregulation of downstream signaling targets was also ob-
served, including antiapoptotic and pro-proliferative genes Bcl-xL and c-Myc [64,134].
Apoptosis resistance in PCI-30 cells has been shown to be mediated by TLR4-PI3K/Akt
signaling [135]. Enhanced angiogenesis has also been described as a product of PI3K-Akt
signaling, particularly in a cancer context. TLR4 stimulation in PANC-1 cells has increased
vasculature formation and proliferation through PI3K/Akt dependent signaling [138].
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through MyD88, MAL, and BCAP. Activated PI3k converts phosphatidylinositol 4,5-bisphosphate
(PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3). Akt activation occurs through PIP3-
facilitated recruitment to the plasma membrane and phosphorylation by PDK1. Activated Akt
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Aberrant MAPK/ERK signaling has been heavily implicated in approximately a third
of all human cancers [139]. Through activation of TAK1, TLR stimulation can activate the
MAPK/ERK pathway to regulate growth, cell survival, and metastasis [140] (Figure 4).
LPS-induced TLR4 stimulation in A549 and H1299 cells was found to promote secre-
tion of pro-angiogenic factors VEGF and IL-8 in a p38 MAPK dependent manner [141].
MAPK/ERK signaling utilizes transcription regulation to promote tumoral immune eva-
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sion [140]. Endogenous activation of TLR2 on glioma-associated microglia was observed
to downregulate MHC class II expression and impede antigen presentation in a TLR2-
ERK1/2-dependent manner [142,143]. As a result, proliferation and activation of glioma
targeting CD4+ T cells was hindered.
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MEKK1/2, MKK4/7, and MKK3/6 activation leads to the activation of ERK1/2, JNK, and p38 MAPK,
respectively. Signaling from ERK1/2, JNK, and p38 MAPK can promote tumor growth or inhibition,
APC modulation, angiogenesis, and metastasis. Created with Biorender.com.

8.2. Effects of Anti-Tumor TLR Signaling

The fate of pro- or anti-tumor TLR signaling seems to be largely context-dependent,
with considerations being the cancer type, the ligand activating the TLR, and the TLR
itself. Tumor-rejecting TLR signaling utilizes several of the same pathways that perpetuate
tumor growth, including NF-κB. TLR-mediated NF-κB signaling has been shown to induce
IL-1β, IL-6, and TNF-α production in breast and bladder cancer models [26,144]. Targeting
MAPK/ERK signaling has also been reported to promote anti-tumor responses. Dendritic
cells stimulated with TLR3 and TLR7 agonists were found to upregulate ERK signaling,
likely contributing to the enhanced dendritic cell activation and anti-tumor T-cell responses
observed in CT26 tumors [145].

Apoptosis-induction in cancer cells appears to be a primary target for anti-tumor TLR
signaling. Unsurprisingly, modulating NF-κB signaling has been of interest to promote
cancer cell apoptosis [131]. The poly(I:C) stimulation of TLR3 on PCI-15B cells was reported
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to enhance apoptosis through sustained NF-κB inactivation [146]. As a result, inactive
NF-κB is likely unable to activate downstream anti-apoptotic genes, such as BCL-2 [131].
In contrast, TLR3-mediated NF-κB activation was found to be required for apoptosis in
poly(I:C)-treated CAMA-1 cells [22]. It appears that the activation or inactivation of NF-κB
to promote apoptosis is dependent on the cancer type and additional factors that may be
driving the cancer.

Beyond NF-κB, the stimulation of TLRs can activate a type I interferon (IFN) signaling
pathway to promote anti-tumor responses (Figure 5). Because IFN signaling can occur to
induce apoptosis in infected cells, it has been recognized as a beneficial tool for initiating
apoptosis in malignant cells. Treating LNCaP cells with a TLR3 agonist was found to
promote apoptosis in an IRF-3 signaling-dependent manner. Through TLR–IFN signaling,
pro-apoptotic protein Noxa was subsequently upregulated downstream, a likely contributor
to the increased cancer cell death [147]. Apoptosis mediated by IFN signaling extends to
other cancer types. In a non-muscle invasive bladder cancer model, TLR4 activation with
P-MAPA was shown to enhance IFN signaling. TLR4-mediated IFN signaling resulted in
increased apoptosis and iNOS expression, an enzyme responsible for nitric oxide (NO)
synthesis [144]. Increased intracellular NO concentrations have been shown to induce
apoptosis [148], thus it is likely that the apoptosis of bladder cancer tumors occurs through
a TLR4–IFN–iNOS axis [149].
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Figure 5. TLR–IFN signaling in anti-tumor responses. TLRs use a MyD88-independent pathway for
IFN signaling. Upon TLR stimulation, membrane-localized TLRs (i.e., TLR4) activate TRIF through
adaptor protein TRAM. TRIF activates TRAF3, which activates the TBK1–IKKε complex. The TBK–
IKKε complex phosphorylates IRF3. Endosome-localized TLR3 activates TRIF directly. Following
TRIF activation, TRAF3 is activated and shares downstream IFN signaling steps with membrane-
localized TLRs. TLR–IFN signaling induces type I IFN production, apoptosis, and activation of
immune cells. Created with Biorender.com.

9. Conclusions and Future Directions

Significant advances are being made in cancer biology, which includes deciphering
some specifics on how TLRs play a key role in anti-cancer immunity and cancer rejection.
As exogenous and endogenous TLR ligands are crucial for anti-cancer immunity, there is
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an urgent need to develop novel TLR-stimulating therapies. Meaningful research is needed
to assuredly elucidate the roles of TLRs in modulating cancer immunotherapy and their
clinical outcomes. In this regard, the majority of the currently investigated TLR agonists
as anti-cancer targets are non-protein microbial components, such as lipopolysaccharides,
oligonucleotides, and lipopeptides. However, a growing number of studies reveal that
TLR signaling and subsequent immune responses can be activated by numerous microbial
proteins and antigens.

While we still need to understand the TLR–TLR ligand pairs to produce desired
oncological outcomes, there is growing evidence to suggest that TLR-modulating therapies
will prove to be a safe treatment for some types of cancers. Since cancers are heterogeneous
in nature, multi-treatment regimens may be useful, in some cases, in addition to known
immunotherapies. TLRs are known to play a complex functional role in tumor biology and,
at times, act as a double-edged sword in immunotherapy.

Recently it has become evident that TLRs do not differ from other immune receptors
in their compliment to launch both host defenses and cell death. Our understanding of the
signaling cascades starting from TLR activation down to cell activation has significantly
progressed during the last decade. However, the molecular pathways leading to TLR-
induced apoptosis are yet to be addressed.

Extensive research is required to determine the combinatorial use of TLR ligands that
will prove to be smarter therapies with less toxicity and improved potency. Further studies
on the roles of TLRs and their functions as anti-cancer immunity and cancer rejection
will nobly advance the development of therapeutic interventions and will benefit patients
undergoing immunotherapy.
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