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Primary immunodeficiency (PID) is characterised by recurrent and often life-threatening 

infections, autoimmunity and cancer, and it presents major diagnostic and therapeutic challenges. 

Although the most severe forms present in early childhood, the majority of patients present in 

adulthood, typically with no apparent family history and a variable clinical phenotype of 

widespread immune dysregulation: about 25% of patients have autoimmune disease, allergy is 

prevalent, and up to 10% develop lymphoid malignancies1–3. Consequently, in sporadic PID 

genetic diagnosis is difficult and the role of genetics is not well defined. We addressed these 

challenges by performing whole genome sequencing (WGS) of a large PID cohort of 1,318 

participants. Analysis of coding regions of 886 index cases found disease-causing mutations in 

known monogenic PID genes in 10.3%, while a Bayesian approach (BeviMed4) identified multiple 

potential new candidate genes, including IVNS1ABP. Exploration of the non-coding genome 

revealed deletions in regulatory regions which contribute to disease causation. Finally, a genome-

wide association study (GWAS) identified PID-associated loci and uncovered evidence for co-

localisation of, and interplay between, novel high penetrance monogenic variants and common 

variants (at the PTPN2 and SOCS1 loci). This begins to explain the contribution of common 

variants to variable penetrance and phenotypic complexity in PID. Thus, a cohort-based WGS 

approach to PID diagnosis can increase diagnostic yield while deepening our understanding of the 

key pathways influencing human immune responsiveness.

The phenotypic heterogeneity of PID leads to diagnostic difficulty, and almost certainly to 

an underestimation of its true incidence. Our cohort reflects this heterogeneity, though it is 

dominated by adult onset, sporadic antibody deficiency-associated PID (AD-PID: 

comprising Common Variable Immunodeficiency (CVID), Combined Immunodeficiency 

(CID) and isolated antibody deficiency). Identifying a specific genetic cause of PID can 

facilitate definitive treatment including haematopoietic stem cell transplantation, genetic 

counselling, and the possibility of gene-specific therapy2 while contributing to our 

understanding of the human immune system5. Unfortunately, only 29% of patients with PID 

have a genetic cause of their disease identified6, with the lowest rate in patients who present 

as adults and have no apparent family history. While variants in over 300 genes have been 

described as monogenic causes of PID3, it is often difficult to match the clinical phenotype 

to a known genetic cause, because phenotypes are heterogeneous and disease penetrance is 

often low2,7. Furthermore, a common variant analysis of CVID identified new disease-

associated loci, and raised the possibility that common variants may impact upon clinical 

presentation8. We therefore investigated whether applying WGS across a “real world” PID 

cohort might illuminate the complex genetics of the range of conditions collectively termed 

PID: the approach is summarised in Extended Data Fig. 1.

Patient cohort

We sequenced 1,318 individuals recruited as part of the PID domain of the United Kingdom 

NIHR BioResource - Rare Diseases program (NBR-RD; Extended Data Fig.2; 

Supplementary Methods). The cohort comprised of both sporadic and familial PID patients 

(N=974) and family members. Of the patients, 886 were index cases who fell into one of the 

diagnostic categories of the European Society for Immunodeficiencies (ESID) registry 

diagnostic criteria (Fig. 1a; Extended Data Table 1). This cohort represents a third of CVID 
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and half of CID patients registered in the UK9. Clinical phenotypes were dominated by 

adult-onset sporadic AD-PID: all had recurrent infections, 28% had autoimmunity, and 8% 

had malignancy (Fig. 1a-b, Extended Data Table 2), mirroring the UK national PID 

registry6.

Identification of Pathogenic Variants in Known Genes

We analysed coding regions of genes with previously reported disease-causing variants in 

PID10 (Methods). Based on filtering criteria for diagnostic reporting according to the 

American College of Medical Genetics (ACMG) guidelines11 and described in the Methods, 

we identified and reported to the referring clinicians 104 known or likely pathogenic variants 

in 91 index cases (10.3%) across 41 genes implicated in monogenic disease (Fig. 1c; 

Supplementary Table 1). 60 patients (6.8%) had a previously reported pathogenic variant in 

the disease modifier TNFRSF13B (TACI), increasing the proportion of cases with a 

reportable variant to 17.0% (151 patients). Interestingly, 5 patients with a monogenic 

diagnosis (in BTK, LRBA, MAGT1, RAG2, SMARCAL1) also had a pathogenic 

TNFRSF13B variant. Of the 103 monogenic variants we report here, 69 (67.0%) had not 

been previously described (Supplementary Table 1) and 8 were structural variants, including 

single exon and non-coding promoter deletions unlikely to have been detected by whole 

exome sequencing12.

In 22 patients with variants in 14 genes (34% of 41 identified genes) reported as pathogenic, 

the clinical presentation deviated from the phenotypes typically associated with those genes. 

One example was chronic mucocutaneous candidiasis (CMC), which is the trigger for 

clinical genetic testing for STAT1 GOF variants, as CMC was reported in 98% of such 

patients13,14. Now this series, along with single case reports15,16, indicate STAT1 GOF may 

present with phenotypes as diverse as CVID or primary antibody deficiency. Since many 

PID-associated genes were initially discovered in a small number of familial cases, it is not 

surprising that the phenotypes described in the literature do not reflect the true clinical 

diversity. Thus, a cohort-based WGS approach to PID provides a diagnostic yield even in a 

predominantly sporadic cohort, allows diagnoses which are not constrained by pre-existing 

assumptions about genotype-phenotype relationships, and suggests caution in the use of 

clinical phenotype in targeted gene screening and interpreting PID genetic data.

An approach to prioritising candidate PID-associated genes in a WGS 

cohort

We next determined whether the cohort-based WGS approach could identify new genetic 

associations with PID. We included all 886 index cases in a single cohort in order to 

optimise statistical power, and because genotype-phenotype correlation in PID is 

incompletely understood. We applied a Bayesian inference procedure, named BeviMed4, 

and used it to determine posterior probabilities of association (PPA) between each gene and 

case/control status of the 886 index cases and 9,283 unrelated controls (Methods). We 

obtained a BeviMed PPA for 31,350 genes in the human genome; the 25 highest ranked 

genes are shown in Fig. 2a (see also Supplementary Table 2 and Supplementary Note 2). 

Overall, genes with BeviMed PPA>0.1 were strongly enriched for known PID genes (odds 

Thaventhiran et al. Page 3

Nature. Author manuscript; available in PMC 2020 November 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



ratio = 15.1, P = 3.1x10-8 Fisher’s Exact test), demonstrating that a statistical genetic 

association approach can identify genes causal for PID.

This method produces a posterior probability of association, therefore it is inevitable that, 

where this is <1, some genes identified will not end up being found to be causal. Such false 

positives are an integral feature of a method which does not provide statistical proof of 

causality, but rather ranks/prioritises genes for subsequent functional assessment. They can 

be minimised by ensuring reasonable assumptions in the Bayesian algorithm4, and by taking 

care to detect and minimise relatedness and population stratification (detailed in Methods, 

Supplementary Note 2 and Supplementary Table 2).

NFKB1 and ARPC1B were first associated with PID in the literature as a result of familial 

co-segregation studies17,18, and were highly ranked in the BeviMed analysis, validating it as 

a gene-discovery tool in PID. NFKB1 had the strongest probability of association 

(PPA=1-(1.25x10-8)), driven by truncating heterozygous variants in 13 patients – leading to 

our report of NFKB1 haploinsufficiency as the commonest monogenic cause of CVID19. 

Association of ARPC1B with PID (PPA=0.18) was identified by BeviMed based on two 

recessive cases; one the first reported to link this gene to PID18 and the other described 

below.

To further demonstrate the effectiveness of BeviMed at prioritizing PID-related genetic 

variants in the cohort, we selected IVNS1ABP for validation. BeviMed enrichment 

(PPA=0.33) of IVNS1ABP was driven by three independent heterozygous protein-truncating 

variants, suggesting haploinsufficiency, while no such variants were observed in controls 

(Fig. 2b). A pathogenic role for IVNS1ABP was supported by its intolerance to loss-of-

function (pLI=0.994) and a distinctive clinical similarity between the patients – all had 

severe warts (Supplementary Note 1). IVNS1ABP protein expression was around 50% of 

control, consistent with haploinsufficiency (Fig. 2c). The patients also shared a previously 

undescribed peripheral leukocyte phenotype – with low/normal CD4+ T cells and B cells 

and aberrant increased expression of CD127 and PD-1 on naïve T cells (Fig. 2d,e). Taken 

together, these data implicate IVNS1ABP haploinsufficiency as a novel monogenic cause of 

PID (Supplementary Note 1).

The identification of both known and new PID genes using BeviMed underlines its 

effectiveness in cohorts of unrelated patients with sporadic disease. As the PID cohort 

grows, even very rare causes of PID should be detectable with a high positive predictive 

value (Extended Data Fig. 3).

Identification of regulatory elements contributing to PID

Sequence variation within non-coding regions of the genome can have profound effects on 

gene expression and would be expected to contribute to susceptibility to PID. We combined 

rare variant and large deletion (>50bp) events with a tissue-specific catalogue of cis-

regulatory elements (CREs)20, generated using promoter capture Hi-C (pcHi-C)21, to 

prioritise putative causal PID genes (Methods). We limited our initial analysis to rare large 

deletions overlapping exon, promoter or ‘super-enhancer’ CREs of known PID genes. No 
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homozygous deletions affecting CREs were identified, so we sought individuals with two or 

more heterozygous variants comprising a CRE deletion with either a rare coding variant or 

another large deletion in a pcHi-C linked gene. Such candidate compound heterozygote 

(cHET) variants had the potential to cause recessive disease. Out of 22,296 candidate cHET 

deletion events, after filtering by MAF, functional score and known PID gene status, we 

obtained 10 events (Supplementary Table 3, Extended Data Fig. 4); the confirmation of three 

is described.

The LRBA and DOCK8 cHET variants were functionally validated (Extended Data Figs. 4 

and 5). In these two cases SV deletions encompassed both non-coding CREs and coding 

exons, but the use of WGS PID cohorts to detect a contribution of CREs confined to the non-

coding genome would represent a major advance in PID pathogenesis and diagnosis. 

ARPC1B fulfilled this criterion, with its BeviMed association partially driven by a patient 

cHET for a novel p.Leu247Glyfs*25 variant resulting in a premature stop, and a 9Kb 

deletion spanning the promoter region including an untranslated first exon (Fig. 3a) that has 

no coverage in the ExAC database (http://exac.broadinstitute.org). Two unaffected first-

degree relatives were heterozygous for the frameshift variant, and two for the promoter 

deletion (Fig. 3b), confirming compound heterozygosity in the patient. Western blotting 

demonstrated complete absence of ARPC1B and raised ARPC1A in platelets22(Fig. 3c). 

ARPC1B mRNA was almost absent from mononuclear cells in the patient and was reduced 

in a clinically unaffected sister carrying the frameshift mutation (Supplementary Note 1). An 

allele specific expression assay demonstrated that the promoter deletion essentially 

abolished mRNA expression (Supplementary Note 1). ARPC1B is part of the Arp2/3 

complex necessary for normal actin assembly in immune cells23, and monocyte-derived 

macrophages from the patient had an absence of podosomes, phenocopying deficiency of the 

Arp2/3 regulator WASp (Fig. 3d).

While examples of bi-allelic coding variants have been described as causing PID (e.g.24,25), 

here we demonstrate the utility of WGS for detecting compound heterozygosity for a coding 

variant and a non-coding CRE deletion - a further advantage of a WGS approach to PID 

diagnosis. Improvements in analysis methodology, cohort size and better annotation of 

regulatory regions will be required to explore the non-coding genome more fully and 

discover further disease-causing genetic variants.

GWAS of the WGS cohort reveals PID-associated loci

The diverse clinical phenotype and variable within-family disease penetrance of PID may be 

in part due to stochastic events (e.g. unpredictable pathogen transmission) but may also have 

a genetic basis. We therefore performed a GWAS of common SNPs (minor allele frequency 

(MAF)>0.05), restricted to 733 AD-PID cases (Fig. 1a) to reduce phenotypic heterogeneity 

(see Methods), and 9,225 unrelated NBR-RD controls, and performed a fixed effect meta-

analysis of this AD-PID GWAS with a previous CVID study ImmunoChip study (778 cases, 

10,999 controls)8. This strengthened known MHC and 16p13.13 associations8, and found 

suggestive associations including at 3p24.1 within the promoter region of EOMES and at 

18p11.21 proximal to PTPN2. We also examined SNPs of intermediate frequency 

(0.005<MAF<0.05) in AD-PID, identifying TNFRSF13B p.Cys104Arg variant26 (OR=4.04, 
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P = 1.37x10-12) (Fig. 4a, Extended Data Table 3, Extended Data Fig. 6, Supplementary Note 

3). Conditional analysis of the MHC locus revealed independent signals at the Class I and 

Class II regions, driven by amino-acid changes in the HLA-B and HLA-DRB1 genes known 

to impact upon peptide binding (Extended Data Fig. 7). We next examined the enrichment of 

non-MHC AD-PID associations in 9 other diseases, finding enrichment for allergic and 

immune-mediated diseases (IMD), suggesting that dysregulation of common pathways 

contributes to susceptibility to both (Supplementary Note 4).

GWAS data allows identification of candidate monogenic PID genes and 

disease-modifying variants

To investigate whether loci identified by GWAS of AD-PID and other IMD might be used to 

prioritize novel candidate monogenic PID genes, we used the data-driven pcHiC omnibus 

gene score (COGS) approach21 (Methods, Supplementary Table 4). We selected six protein-

coding genes with above average prioritisation scores in one or more diseases (Fig. 4b), and 

identified a single protein truncating variant in each of ETS1, SOCS1 and PTPN2 genes, all 

occurring exclusively in PID patients. SOCS1 and PTPN2 variants were analysed further.

SOCS1 limits phosphorylation of targets including STAT1, and is a key regulator of IFN-γ 
signalling27. The patient with a heterozygous de-novo protein-truncating SOCS1 variant 

(p.Met161Alafs*46) presented with CVID complicated by lung and liver inflammation. 

GeneMatcher28 identified an independent pedigree with a protein truncating variant 

p.Tyr64* in SOCS1. All patients showed low/normal numbers of B cells, a Th1-skewed 

memory CD4+ population and reduced T regulatory (Treg) cells (Supplementary Note 1). 

Socs1 haploinsufficient mice also demonstrate B lymphopenia27,29, a Th1 skew, decreased 

Tregs30 and immune-mediated liver inflammation31. In patients’ T cell blasts, SOCS1 was 

reduced and IFN-γ induced STAT1 phosphorylation was increased (Fig. 4c). Taken together 

this is consistent with SOCS1 haploinsufficiency causing PID. The initial patient also carried 

the SOCS1 pcHiC-linked 16p13.13 risk-allele identified in the AD-PID GWAS 

(Supplementary Note 3) in trans with the novel SOCS1-truncating variant (Supplementary 

Note 1); such compound heterozygosity suggests common and rare variants might combine 

to impact upon disease phenotype, a possibility explored further below.

A more detailed example of an interplay between rare and common variants is provided by a 

family containing PTPN2 variants (Fig. 4d). PTPN2 encodes the non-receptor T-cell protein 

tyrosine phosphatase (TC-PTP) that negatively regulates immune responses by 

dephosphorylation of proteins mediating cytokine signalling. PTPN2 deficient mice are B 

cell lymphopenic32,33 and haematopoietic deletion leads to B and T cell proliferation and 

autoimmunity34. A novel premature stop-gain at p.Glu291 was identified in a “sporadic” 

case presenting with CVID at age 20; he had B lymphopenia, low IgG, rheumatoid-like 

polyarthropathy, severe recurrent bacterial infections, splenomegaly and inflammatory lung 

disease. His mother, also heterozygous for the PTPN2 truncating variant, had systemic lupus 

erythematosus (SLE), insulin-dependent diabetes mellitus, hypothyroidism and autoimmune 

neutropenia (Supplementary Note 1). Gain-of-function variants in STAT1 can present as 

CVID (Supplementary Table 1) and TC-PTP, like SOCS1, reduces phosphorylated STAT1 
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(Fig. 4e). Both mother and son demonstrated reduced T cell TC-PTP expression and STAT1 

hyperphosphorylation, more pronounced in the index case and similar to both SOCS1 

haploinsufficient and STAT1 GOF patients (Fig. 4f). Thus PTPN2 haploinsufficiency 

represents a new cause of PID that acts, at least in part, through increased phosphorylation 

of STAT1. Reports that use of the Janus Kinase 1 and 2 inhibitor ruxolitinib is effective in 

controlling autoimmunity in STAT1-GOF patients35, suggests it might be effective in 

SOCS1 and PTPN2 deficiency.

The index case, but not his mother, carried the G allele of variant rs2847297 at the PTPN2 
locus, an expression quantitative trait locus (eQTL)36 previously associated with rheumatoid 

arthritis37. His brother, healthy apart from severe allergic nasal polyposis, was heterozygous 

at rs2847297 and did not inherit the rare variant (Fig. 4d). Allele-specific expression analysis 

demonstrated reduced PTPN2 transcription from the rs2847297-G allele, explaining the 

lower expression of TC-PTP and greater persistence of pSTAT1 in the index case compared 

to his mother (Fig. 4g). This could explain the variable disease penetrance in this family, 

with PTPN2 haploinsufficiency alone driving autoimmunity in the mother, but the additional 

impact of the common variant on the index case causing immunodeficiency. The family 

illustrates the strength of cohort-wide WGS approach to PID diagnosis, by revealing both a 

new monogenic cause of disease, and how the interplay between common and rare genetic 

variants may contribute to the variable clinical phenotypes of PID.

In summary, we show that cohort-based WGS in PID is a powerful approach to provide 

diagnosis of known genetic defects, and discover new coding and non-coding variants 

associated with disease (comparison of WGS with other methodologies; Supplementary 

Note 5). Improved analysis methodology and better integration of parallel datasets, such as 

GWAS and cell surface or metabolic immunophenotyping, will allow further exploration of 

the non-coding space, enhancing diagnostic yield. Such an approach promises to transform 

our understanding of genotype-phenotype relationships in PID and related immune-mediated 

conditions, and could redefine the clinical boundaries of immunodeficiency, add to our 

understanding of human immunology, and ultimately improve patient outcomes.

Methods

PID cohort

The PID patients and their family members were recruited by specialists in clinical 

immunology across 26 hospitals in the UK, and one each from the Netherlands, France and 

Germany. The recruitment criteria were intentionally broad, and included the following: 

clinical diagnosis of common variable immunodeficiency disorder (CVID) according to 

internationally established criteria (Extended Data Table 1); extreme autoimmunity; or 

recurrent and/or unusual severe infections suggestive of defective innate or cell-mediated 

immunity. Patients with known secondary immunodeficiencies caused by cancer or HIV 

infection were excluded. Although screening for more common and obvious genetic causes 

of PID prior to enrolment into this WGS study was encouraged, it was not a requirement. 

Consequently, a minority of patients (16%) had some prior genetic testing, from single gene 

Sanger sequencing or MLPA to a gene panel screen. Paediatric and familial cases were less 

frequent in our cohort, in part reflecting that genetic testing is more frequently performed in 
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more severe cases: 31% of paediatric onset cases had prior genetic testing compared to 10% 

of adult index cases (Extended Data Fig. 2).

To expedite recruitment a minimal clinical dataset was required for enrolment, though more 

detail was often provided. There was a large variety in patients’ phenotypes, from simple 

“chest infections” to complex syndromic features, and the collected phenotypic data of the 

sequenced individuals ranged from assigned disease category only to detailed clinical 

synopsis and immunophenotyping data. The clinical subsets used to subdivide PID patients 

were based on ESID definitions, as shown in Extended Data Table 1. The final PID cohort 

that we sequenced comprised of 886 index cases, 88 affected relatives, and 344 family 

members unaffected at the time of recruitment.

To facilitate GWAS analysis by grouping patients with a degree of phenotypic coherence 

while excluding some distinct and very rare clinical subtypes of PID that may have different 

aetiologies, a group of patients was determined to have antibody deficiency-associated PID 

(AD-PID). This group comprised 733 of the 886 unrelated index cases, and included all 

patients with CID, CVID or Antibody Defect ticked on the recruitment form, together with 

patients requiring IgG replacement therapy and those with specified low levels of IgG/A/M. 

SCID patients satisfying these AD criteria were not assigned to the AD-PID cohort.

WGS data processing

Details of DNA sample processing, whole genome sequencing, data processing pipeline, 

quality checks, alignment and variant calling, ancestry and relatedness estimation, variant 

normalisation and annotation, large deletion calling and filtering, and allele frequency 

calculations, are described in38. Briefly, DNA or whole blood EDTA samples were 

processed and quality checked according to standard laboratory practices and shipped on dry 

ice to the sequencing provider (Illumina Inc, Great Chesterford, UK). Illumina Inc 

performed further QC array genotyping, before fragmenting the samples to 450bp fragments 

and processing with the Illumina TruSeq DNA PCR-Free Sample Preparation kit (Illumina 

Inc., San Diego, CA, USA). Over the three-year duration of the sequencing phase of the 

project, different instruments and read lengths were used: for each sample, either 100bp 

reads on three HiSeq2500 lanes; or 125bp reads on two HiSeq2500 lanes; or 150bp reads on 

a single HiSeq X lane. Each delivered genome had a minimum 15X coverage over at least 

95% of the reference autosomes. Illumina performed the alignment to GRCh37 genome 

build and SNV/InDel calling using their Isaac software, while large deletions were called 

with their Manta and Canvas algorithms. The WGS data files were received at the University 

of Cambridge High Performance Computing Service (HPC) for further QC and processing 

by our Pipeline team.

For each sample, we estimated the sex karyotype and computed pair-wise kinship 

coefficients (full methods described in 47), which allowed us to identify sample swaps and 

unintended duplicates, assign ethnicities, generate networks of closely related individuals 

(sometimes undeclared relatives from across different disease domains) and a maximal 

unrelated sample set (for the purposes of allele frequency estimation and control dataset in 

case-control analyses). Variants in the gVCF files were normalised and loaded into an HBase 

database, where Overall Pass Rate (OPR) was computed within each of the three read length 
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batches, and the lowest of these OPR values (minOPR) assigned to each variant. The rare 

variant analyses presented here are based on SNVs/InDels with minOPR>0.98. Variants 

were annotated with Sequence Ontology terms according to their predicted consequences, 

their frequencies in other genomic databases (gnomAD, UK10K, 1000 Genomes), if they 

have been associated with a disease according to the HGMD Pro database, and internal 

metrics (AN, AC, AF, OPR).

Large deletions (those >50bp in length, defined by Illumina) were merged and analysed 

collectively, as described in38. Briefly, sample-level calls by the two algorithms, Manta 

(which uses read and mate-pair alignment information) and Canvas (which relies on read 

depth and is optimised for calls >1kb in length), were combined according to a set of rules38 

to generate a high quality set for each sample (and a large number across the project was 

visually inspected to ensure reasonably high specificity). To exclude common deletions from 

further rare variant analyses, we included only those that were observed in fewer than 3% of 

the samples, as described previously39.

Diagnostic reporting

We screened all genes in the International Union of Immunological Societies (IUIS) 2015 

classification for previously reported or likely pathogenic variants. SNVs and small InDels 

were filtered based on the following criteria: OPR>0.95; having a protein-truncating 

consequence, gnomAD AF<0.001 and internal AF<0.01; or present in the HGMD Pro 

database as DM variant. Large deletions called by both Canvas and Manta algorithms, 

passing standard Illumina quality filters, overlapping at least one exon, and classified as rare 

by the SVH method were included in the analysis. In order to aid variant interpretation and 

consistency in reporting, phenotypes were translated into Human Phenotype Ontology 

(HPO) terms as much as possible. Multi-Disciplinary Team (MDT) then reviewed each 

variant for evidence of pathogenicity and contribution to the phenotype, and classified them 

according to the American College of Medical Genetics (ACMG) guidelines11. Only 

variants classified as Pathogenic or Likely Pathogenic were systematically reported, but 

individual rare (gnomAD AF<0.001) or novel missense variants that BeviMed analysis (see 

below) highlighted as having a posterior probability of pathogenicity >0.2 were additionally 

considered as Variants of Unknown Significance (VUS). If the MDT decided that they were 

likely to be pathogenic and contribute to the phenotype, they were also reported 

(Supplementary Table 2). All variants and breakpoints of large deletions reported in this 

study were confirmed by Sanger sequencing using standard protocols.

BeviMed

We used BeviMed4 to evaluate the evidence for association, in genetically unrelated 

individuals, between case/control status and rare genetic variants in a locus. For each gene, 

we inferred a posterior probability of association (PPA) under Mendelian inheritance models 

(dominant and recessive), and different variant selection criteria ("moderate" and "high" 

impact variants based on functional consequences predicted by the Variant Effect 

Predictor40). We inferred a PPA across all association models and the mode of inheritance 

corresponding to the association model with the greatest posterior probability. We used 

MAF<0.001 and CADD>=10 as these were selection criteria for rare, likely pathogenic 
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variants used in diagnostic reporting. Approximately 1% of all genes (276/31,35010) have 

previously been implicated as monogenic causes of PID, and we therefore assumed that a 

few hundred genes are causal of PID overall. We encoded this assumption conservatively, by 

assigning a prior probability of 0.01 to the association model for each gene. In addition, we 

used the default prior (mean=0.85) on the “penetrance” parameter, which represents disease 

risk for individuals carrying pathogenic configuration of alleles at a gene locus (see 4 for a 

detailed description of all parameters and their default values). We then gave all four 

combinations of inheritance model and variant selection criteria equal prior probability of 

association of 0.0025 (1/4 of 0.01). We used uniform priors to ensure that our results did not 

depend on any knowledge of previous gene or variant associations with disease. We obtained 

a BeviMed PPA for 31,350 genes in the human genome; the highest ranked genes are shown 

in Fig. 2a, Supplementary Note 2 and Supplementary Table 2. Overall, genes with BeviMed 

PPA>0.1 were strongly enriched for known PID genes (odds ratio = 15.1, P = 3.1x10-8 

Fisher’s Exact test), demonstrating that a statistical genetic association approach can identify 

genes causal for PID.

Conditional on the association model with the highest posterior probability, the posterior 

probability that each rare variant is pathogenic was also computed. We used a variant-level 

posterior probability of pathogenicity >0.2 to select potentially pathogenic missense variants 

in known PID genes to report back. As detailed in Greene et al. (Figure 1 in 4) the method 

was calibrated as part of a simulation study estimating positive predictive value (1-FDR) 

given a fixed level of power. We then examined the relationship between BeviMed rank and 

`known’ gene status in the top fifty genes reported; genes with the highest PPA were 

significantly enriched for known genes (P<0.008 one-sided Wilcoxon rank-sum test). 

BeviMed’s sensitivity in prioritizing genes as causal, even if variants exist in only a few 

cases, is demonstrated by the observation that of the 8 IUIS-defined causal PID genes in the 

top 50 (all with a BeviMed PPA>0.2), 3 are driven by 2 or 3 cases, while 5 have between 4 

and 16.

As allele frequency datasets for non-Europeans are much smaller than for Europeans, 

potential false positives may be induced by the unintentional inclusion of rare variants 

observed only in non-European populations41.Furthermore, whilst the BeviMed analysis was 

restricted to the set of cases and controls carefully filtered to minimise relatedness, it 

remains possible that some associations could be false positives due to residual population 

stratification. We addressed this by flagging variants whose prioritisation was dependent 

upon cases with non-European ancestry. In addition, where identical ultra-rare variants were 

shared between cases, we examined the possibility of cryptic relatedness by seeking direct 

evidence of shared genetic background (Supplementary Note 2). These procedures found 

that population stratification might contribute to the prioritization of 9 candidate genes 

among the top 25, as highlighted in Fig. 2a and Supplementary Table 2. Six of these were 

novel candidates, but that 3 were known causes of PID indicated that population 

stratification does not always generate false positives – and implicated genes should 

therefore be flagged rather than excluded from the list. This potential impact of population 

stratification underlines the importance of subsequent validation of prioritized genes in order 

to demonstrate causality.
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The BeviMed probabilistic model, based on dominant and recessive inheritance involving a 

mixture of pathogenic and benign variants, differs from other popular frequentist methods 

such as SKAT, and is well-suited to the rare disease scenario. When trained on our dataset, 

SKAT and BeviMed both identified NKFB1 as the gene with the strongest association 

signal, but BeviMed placed 8 IUIS 2017 PID genes in the top 50 results whilst SKAT placed 

5, and ARPC1B was ranked 38th by BeviMed and 289th by SKAT (out of a total of 31,350 

tested genes), consistent with the superiority of BeviMed over SKAT and related methods 

demonstrated in Greene et al.1.

Immunohistochemistry: podosome analysis

Frozen peripheral blood mononuclear cells (PBMCs) from healthy donors and patients were 

thawed and CD14+ cells selected using magnetic beads (Miltenyi). 2 x 105 cells/ well in a 24 

well plate were seeded on 10ug/ml fibronectin-coated cover slips (R&D systems) in 500ul 

20ng/ml macrophage colony stimulating factor (MCSF, Gibco) for 6 days to obtain 

monocyte-derived macrophages (MDMs). Cells were fixed with paraformaldehyde 4% 

(Thermo Fisher Scientific) for 10 minutes on ice followed by 8% for 20 minutes at room 

temperature, permeabilised with 0.1% triton (Sigma) for 5 minutes at room temperature and 

non-specific binding reduced by blocking with 5% BSA/PBS for 1 hour at room 

temperature. Cells were incubated with primary anti-vinculin antibody (Sigma 1:200) for 1 

hour at room temperature, washed twice with PBS and incubated with secondary antibody 

conjugated to Alexa Fluor 488 (1:500 Life Technologies) and phalloidin-conjugated to 

Alexa Fluor 633 (1:200 Thermo Fisher Scientific) for one hour at room temperature. Cells 

were washed twice with PBS and cover slips mounted onto slides using mounting solution 

with DAPI for nuclear staining (ProLong Diamond Antifade Mountant with DAPI, Life 

Technologies) overnight. Slides were imaged using Zeiss 710 confocal microscope at 63x 

magnification and podosome analysis was carried out on at least 100 cells per sample from 

10 fields of view.

Filtering strategy for candidate regulatory compound heterozygotes

Being underpowered42 to detect single nucleotide variants affecting CREs, we limited our 

initial analysis to large deletions overlapping exon, promoter or ‘super-enhancer’ CREs of 

known PID genes (Extended Data Fig. 4). We selected uncommon (<0.03 frequency NIHR-

RD BioResource cohort38) large deletion events (>50bp), occurring in PID index cases. We 

intersected these with a catalogue of of cis-regulatory elements linked to protein-coding 

genes, created by combining `super-enhancer’ and promoter (+/- 500bp window around any 

protein coding gene transcriptional start site) annotations with promoter capture Hi-C data 

across 17 primary haematopoietic cell types21. Finally, we filtered these events so that only 

those with linked genes, containing a potentially high impact (CADD>20) rare 

(MAF<0.001) coding variant, within a previously reported pathogenic gene (IUIS 2017), 

were taken forward. Events in ARCPC1B, LRBA and DOCK8 were functionally validated. 

The LRBA cHET variants were confirmed to be in trans by sequencing the parents. 

Functional LRBA deficiency was demonstrated by impaired surface CTLA-4 expression on 

Treg cells (Extended Data Fig. 4). In the absence of the patient’s mother for sequencing, the 

DOCK8 variants were confirmed to be in trans by nanopore sequencing and phasing of 

merged long- and short-read data (see below and Extended Data Fig. 5). Functional DOCK8 
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deficiency was confirmed by a typical clinical phenotype (severe immunodeficiency with 

prominent wart infection), together with characteristic impaired ex-vivo CD8+, but 

preserved CD4+, T cell proliferation. The need for rapid bone marrow transplantation has 

precluded further phenotypic analysis of this patient.

Phasing of DOCK8 variants

In order to confirm the phase of two variants detected in the DOCK8 gene of a single 

individual, chr9:g.306626-358548del and chr9:463519G>A, long read sequencing was 

performed using the Oxford Nanopore Technologies PromethION platform. The DNA 

sample was prepared using the 1D ligation library prep kit (SQK-LSK109), and genomic 

libraries were sequenced using a R.9.4.1 PromethION flowcell. Raw signal data in FAST5 

format was base called using Guppy (v2.3.5) to generate sequences in FASTQ format, which 

were then aligned against the GRCh37/hg19 human reference genome using minimap2 

(v2.2). Average coverage was 14x and median read length was 4,558 ± 4,007. A high quality 

set of heterozygous genotypes for the sample was created by using only variants from the 

short read Illumina WGS data with a phred score of <20 (probability of correct genotype > 

0.99). Haplotyping was then performed with Whatshap (v0.14.1) by using the long 

Nanopore reads to bridge across the informative genotypes from the short read data (https://

whatshap.readthedocs.io/en/latest/index.html). We obtained a single high confidence 

haplotype block spanning the large deletion and the rare missense variant and showing that 

they were in trans (Extended data Fig. 5).

AD-PID GWAS

GWAS was performed both on the whole PID cohort (N cases = 886) and on a subset 

comprising AD-PID cases (N cases = 733); the results of the AD-PID analysis were less 

noisy, and had increased power to detect statistical associations despite a reduced sample 

size (Extended Data Fig. 6). We used 9,225 unrelated samples from non-PID NBR-RD 

cohorts as controls.

Variants selected from a merged VCF file were filtered to include bi-allelic SNPs with 

overall MAF>=0.05 and minOPR=1 (100% pass rate across all WGS data for over 13,000 

NBR participants). We ran PLINK logistic association test under an additive model. We 

adjusted for read length to guard against technical differences in genotype calls across the 

samples sequenced using 100bp, 125bp and 150bp reads, as Illumina chemistries changed 

throughout the duration of the project. We also used sex and first 10 principal components 

from the ethnicity analysis as covariates, to mitigate against any population stratification 

effects. After filtering out SNPs with HWE p<10-6, we were left with the total of 4,993,945 

analysed SNPs. There was minimal genomic inflation of the test statistic (lambda = 1.022), 

suggesting population substructure and sample relatedness had been appropriately accounted 

for. Linear mixed model (LMM) analysis, as implemented in the BOLT-LMM package43, is 

an alternative method of association testing correcting for population stratification. It was 

used to confirm the observed associations (Extended Data Table 3). After genomic control 

correction44 the only genome-wide significant (p<5x10-8) signal was at the MHC locus, with 

several suggestive (p<1x10-5) signals (Extended Data Fig. 6). We repeated the analysis with 

more relaxed SNP filtering criteria using 0.005 < MAF < 0.05 and minOPR>0.95 (Extended 
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Data Fig. 6). The only additional signal identified were the three TNFRSF13B variants 

shown in Supplementary Note 3.

We obtained summary statistics data from the Li et al. CVID Immunochip case-control 

study8 and, after further genomic control correction (lambda = 1.039), performed a fixed 

effects meta-analysis on 95,417 variants shared with our AD-PID GWAS. Genome-wide 

significant (p<5x10-8) signals were seen at the MHC and 16p13.13 loci, with several 

suggestive (p<1x10-5) signals (Extended Data Table 3). After meta-analysis, we conditioned 

on the lead SNP in each of the genome-wide and suggestive loci by including it as an 

additional covariate in the logistic regression model in PLINK, to determine if the signal was 

driven by single or multiple hits at those loci. The only suggestion of multiple independent 

signals was at the MHC locus (Extended Data Fig. 7).

MHC locus analyses

We imputed classical HLA alleles using the method implemented in the SNP2HLA v1.0.3 

package45, which uses Beagle v3.0.4 for imputation and the HapMap CEU reference panel. 

We imputed allele dosages and best-guess genotypes of 2-digit and 4-digit classical HLA 

alleles, as well as amino acids of the MHC locus genes HLA-A, HLA-B, HLA-C, HLA-
DRB1, HLA-DQA1 and HLA-DQB1. We tested the association of both allele dosages and 

genotypes using the logistic regression implemented in PLINK, and obtained similar results. 

We then used the best-guess genotypes to perform the conditional analysis (see above), since 

conditioning is not implemented in PLINK in a model with allele dosages. We repeated the 

conditional analyses as described above. The results of the sequential conditioning on the 

two lead classical alleles and amino acids within the Class I and Class II regions are shown 

in Extended Data Fig. 7.

Allele Specific Expression

RNA and gDNA were extracted from PBMCs using the AllPrep kit (Qiagen) as per the 

manufacturer’s instructions. RNA was reverse transcribed to make cDNA using the 

SuperScript™ VILO™cDNA synthesis kit with appropriate minus reverse transcriptase 

controls, as per the manufacturer’s instructions. The region of interest in the gDNA and 1:10 

diluted cDNA was amplified using Phusion (Thermo Fisher) and the following primers on a 

G-Storm thermal cycler with 30 seconds at 98°C then 35 cycles of 98°C 10 seconds, 60°C 

30 seconds, 72°C 15 seconds.

ARPC1B—The region of interest spanning the frameshift variant was amplified using the 

following primers: Forward: GGGTACATGGCGTCTGTTTC / Reverse: 

CACCAGGCTGTTGTCTGTGA

PCR products were run on a 3.5% agarose gel. Bands were cut out and product extracted 

using the QIA Quick Gel Extraction Kit (Qiagen), as per protocol. Expected products were 

confirmed by Sanger sequencing. 4ul fresh PCR product was used in a TOPO®cloning 

reaction (Invitrogen) and used to transform One Shot™ TOP10 chemically competent E. 

coli. These were cultured overnight then spread on LB agar plates. Individual colonies were 

picked and genotyped. ARPC1B mRNA expression was assessed using a Taqman gene 
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expression assay with 18S and EEF1A1 as control genes. Each sample was run in triplicate 

for each gene with a no template control. PCR was run on a LightCycler® (Roche) with 2 

mins 50°C, 20 seconds 95°C then 45 cycles of 95°C 3 seconds, 60°C 30 seconds.

PTPN2—PTPN2 ASE protocol is modified from above. RNA and genomic DNA were 

extracted from PBMCs using the AllPrep Kit (Qiagen). RNA was treated with Turbo DNAse 

(Thermo) and reverse transcribed to generate cDNA using the SuperScript IV VILO master 

mix (Thermo). The intronic region of interest in gDNA and cDNA was amplified by two 

nested PCR reactions using Phusion enzyme (Thermo). The primers (F1/R1) and nested 

primers (F2/R2) used were: Forward_1: aaagtctggagcaggcagag / Reverse_1: 

tgggggaactggttatgctttc Forward_2: ggagctatgatcacgccacatg / Reverse_2: 

atgctttctggttgggctgac

PCR products were run on a 1% agarose gel. Bands were cut out and product extracted using 

the QIA Quick Gel Extraction Kit (Qiagen), as per protocol. Expected products were 

confirmed by Sanger sequencing. 5ng fresh PCR product was used in a TOPO®cloning 

reaction (Invitrogen) and used to transform One Shot™ TOP10 chemically competent E. 

coli. These were cultured overnight then spread on LB agar plates. Individual colonies were 

picked and genotyped. PTPN2 mRNA expression was assessed using a Taqman SNP 

genotyping assay and on a LightCycler (Roche).

PAGE and Western Blot analysis

Samples were separated by SDS polyacrylamide gel electrophoresis and transferred onto a 

nitrocellulose membrane. Individual proteins were detected with antibodies p-STAT1, 

against STAT1, against SOCS1, against PTPN2 (Cell Signaling Technology, Inc. 3 Trask 

Lane, Danvers, MA 01923, USA), against ARPC1b (goat polyclonal antibodies, 

ThermoScientific, Rockford, IL, USA), against ARPC1a (rabbit polyclonal antibodies, 

Sigma, St Louis, USA) and against actin (mouse monoclonal antibody, Sigma). Secondary 

antibodies were either donkey-anti-goat-IgG IRDye 800CW, Goat-anti-mouse-IgG IRDye 

800CW or Donkey-anti-rabbit-IgG IRDye 680CW (LI-COR Biosciences, Lincoln, NE, 

USA). Quantification of bound antibodies was performed on an Odyssey Infrared Imaging 

system (LI-COR Biosciences, Lincoln, NE, USA). Specifically, for IVNS1ABP, whole cell 

lysates of peripheral blood mononuclear cells were lysed on ice with LDS NuPAGE 

(Invitrogen) at a concentration of 105 cells per 15ul of LDS. Lysates were denatured at 70°C 

for 10 minutes then cooled. Lysates were loaded run on Bis-Tris 4-12% Protein Gels 

(Invitrogen) then transferred to a PVDF membrane (Invitrogen) using iBlot 2 Dry Blotting 

System (Thermo Fisher Scientific). Membranes were blocked with 5% milk in 5% tris-

buffered saline with 0.01% Tween-20 (TBST) for 1 hour at room temperature then incubated 

overnight with the primary antibodies anti-GAPDH (Cell Signaling Technology) and anti-

IVNS1ABP (Atlas Antibodies). Membranes were then washed 3x with TBST at room 

temperature then incubated with secondary anti-rabbit HRP-conjugated antibody (Cell 

Signaling Technology) for 1 hour. Membranes were then washed 3x with TBST and 1x with 

phosphate buffered saline. Membranes were then exposed with Pierce ECL Western Blotting 

Substrate (Thermo Fischer Scientific) and developed with CL-XPosure Film (Thermo 

Fischer Scientific).
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Flow cytometry

Peripheral blood mononuclear cells were prepared for analysis by density centrifugation 

using Histopaque-1077 (Sigma-Aldrich). The following antibodies were used for flow 

cytometry immunophenotyping: CD3 – BV605 (Biolegend, San Diego, CA, USA), CD4 – 

APC-eFluor780 (eBioscience, San Diego, CA,USA), CD8 – BV650 (eBioscience, San 

Diego, CA,USA), CD25 – PE (eBioscience, San Diego, CA,USA), CD127 – APC 

(eBioscience, San Diego, CA,USA), CD45RA – PerCP-Cy5.5(eBioscience, San Diego, 

CA,USA, CD19 – BV450 (BD Bioscience, Franklin Lakes, NJ, USA), CD27 – PE-Cy7 

(eBioscience, San Diego, CA,USA, CD62L – APC-eF780 (eBioscience, San Diego, 

CA,USA, CXCR3 – FITC (Biolegend, San Diego, CA, USA), CXCR5 – AF488 (Biolegend, 

San Diego, CA, USA), CCR7 – PE (Biolegend, San Diego, CA, USA), PD-1 – APC 

(eBioscience, San Diego, CA,USA), HLA-DR- eFluor450 (eBioscience, San Diego, CA, 

USA), IgD – FITC (BD Bioscience, Franklin Lakes, NJ, USA). Flow cytometry analysis 

was performed on a BD LSRFortessa (BD Bioscience) with FACS Diva software (BD 

Bioscience) for acquisition, then analysis was performed with FlowJo software (LLC).

AD-PID GWAS Enrichment

Due to the size of the AD-PID cohort, we were unable to use LD-score regression46 to 

assess genetic correlation between distinct and related traits. We therefore adapted the 

previous enrichment method `blockshifter`47 in order to assess evidence for the enrichment 

of AD-PID association signals in a compendium of 9 GWAS European Ancestry summary 

statistics was assembled from publicly available data. We removed the MHC region from all 

downstream analysis [GRCh37 chr6:25-45Mb]. To adjust for linkage disequilibrium (LD), 

we split the genome into 1cM recombination blocks based on HapMap recombination 

frequencies 48. For a given GWAS trait, for n variants within LD block b we used 

Wakefield’s synthesis of asymptotic Bayes factors (aBF)49 to compute the posterior 

probability that the ith variant is causal (PPCVi) under single causal variant assumptions50 :

PPCVi =
aBFiπi

Σj = 1
n aBFjπj + 1

Here πi = πj are flat prior probabilities for a randomly selected variant from the genome to 

be causal and we use the value 1x10-4 51. We sum over these PPCV within an LD block, b to 

obtain the posterior probability that b contains a single causal variant (PPCB).

To compute enrichment for trait, t we convert PPCBs into a binary label by applying a 

threshold such that PPCBt > 0.95. We apply these block labels for trait t, to PPCBs 

(computed as described above) for our AD-PID cohort GWAS, using them to compute a 

non-parametric Wilcoxon rank sum statistic, W representing the enrichment. Whilst the aBF 

approach naturally adjusts for LD within a block, residual LD between blocks may exist. In 

order to adjust for this and other confounders (e.g. block size) we use a circularised 

permutation technique52 to compute Wnull. To do this, for a given chromosome, we select 

recombination blocks, and circularise such that beginning of the first block adjoins the end 

of the last. Permutation proceeds by rotating the block labels, but maintaining AD-PID 
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PPCB assignment. In this way many permutations of Wnull can be computed whilst 

conserving the overall block structure.

For each trait we used 104 permutations to compute adjusted Wilcoxon rank sum scores 

using wgsea [https://github.com/chr1swallace/wgsea] R package. For detailed method 

description see Supplementary Note 4.

PID monogenic candidate gene prioritisation

We hypothesised, given the genetic overlap with antibody associated PID, that common 

regulatory variation, elucidated through association studies of immune-mediated disease, 

might prioritise genes harbouring damaging LOF variants underlying PID. Firstly, using 

summary statistics from our combined fixed effect meta-analysis of AD-PID, we compiled a 

list of densely genotyped ImmunoChip regions containing one or more variant where 

P<1x10-5. Next, we downloaded ImmunoChip (IC) summary statistics from ImmunoBase 

(accessed 30/07/2018) for all 11 available studies. For each study we intersected PID 

suggestive regions, and used COGS (https://github.com/ollyburren/rCOGS) in conjunction 

with promoter-capture Hi-C datasets for 17 primary cell lines21,47 in order to prioritise 

genes. We filtered by COGS score to select protein coding genes with a COGS score > 0.5, 

obtaining a list of 11 protein coding genes out of a total of 54 considered.

We further hypothesised that genes harbouring rare LOF variation causal for PID would be 

intolerant to variation. We thus downloaded pLI scores53 and took the product between these 

and the COGS scores to compute an `overall’ prioritisation score across each trait and gene 

combination. We applied a final filter taking forward only those genes having an above 

average `overall’ score to obtain a final list of 6 candidate genes (Fig. 4d). Finally, we 

filtered the cohort for damaging rare (gnomAD AF<0.001) protein-truncating variants 

(frameshift, splice-site, nonsense) within these genes in order to identify individuals for 

functional follow up.

Statistical analyses

Statistical analyses were carried out using R (v3.3.3 – “Another Canoe”) and Graphpad 

Prism (v7) unless otherwise stated. All common statistical tests are two-sided unless 

otherwise stated. No statistical methods were used to pre-determine sample size

Extended Data
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Extended Data Figure 1. Graphical abstract
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Extended Data Figure 2. Genetic testing in the PID cohort prior to WGS recruitment, in 
sporadic versus familial cases.
Any type of genetic test is included, such as single exon/gene sequencing, MLPA, or 

targeted gene panel/exome sequencing. The information was supplied on the referral form 

and is likely an underestimate of the number of patients with additional genetic testing.
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Extended Data Figure 3. BeviMed simulation study of Positive Predictive Value (PPV) with 
increasing disease cohort size.
We simulated genotypes at 25 rare variant sites in a hypothetical locus amongst 20,000 

controls and a further 1,000, 2,000, 3,000, 4,000 or 5,000 cases. We simulated that 0.2%, 

0.3%, 0.4% or 0.5% of the cases had the hypothetical locus as their causal locus. We 

distinguish between cases due to the hypothetical locus (CHLs) and cases due to other loci 

(COLs). The allele frequency of 20 variants was set to 1/10,000 amongst the cases and 

COLs. The allele frequency of the remaining 5 variants was set to zero amongst the controls 

and COLs. One of the five variants was assigned a heterozygous genotype amongst the 
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CTLs at random. Thus, we represent a dominant disorder caused by variants with full 

penetrance. As inference is typically performed across thousands of loci, with only a small 

number being causal, we assumed a mixture of 100 to 1 non-causal to causal loci. In order to 

compute the PPV for a given threshold on the posterior probability of association (PPA), we 

computed PPAs for 10,000 datasets without permutation of the case/control labels and 

10,000 further datasets with a permutation of the case/control labels. We then sampled 1,000 

PPAs from the permuted set and 10 PPAs from the non-permuted set to compute the PPV 

obtained when the PP threshold was set to achieve 100% power. The mean over 2,000 

repetitions of this procedure is shown on the y-axis. The x-axis shows the number of cases in 

a hypothetical cohort. As the number of cases increases from 1,000 to 5,000, the PPV 

increases above 87.5% irrespective of the proportion of cases with the same genetic 

aetiology. This demonstrates the utility of expanding the size of the PID case collection for 

detecting even very rare aetiologies resulting in the same broad phenotype as cases with 

different aetiologies. In practice, the PPV/power relationship may be much better, as the 

wealth of phenotypic information of the cases can allow subcategorization of cases to better 

approximate shared genetic aetiologies.
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Extended Data Figure 4. Candidate cHET filtering strategy and LRBA patient.
(a) Filtering strategy to identify candidate compound heterozygous (cHET) pathogenic 

variants consisting of a rare coding variant in a PID-associated gene and a deletion of a cis-

regulatory element for the same gene. (b) Regional plot of the compound heterozygous 

variants. Gene annotations for are taken from Ensembl Version 75, and the transcripts shown 

are those with mRNA identifiers in RefSeq (ENST00000357115 and ENST00000510413). 

The position of each variant relative to the gene transcript is shown by a red bar, with the 

longer bar indicating the extent of the deleted region. Variant coordinates are shown for the 
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GRCh37 genome build. (c) Pedigree of LRBA patient demonstrating phase of the causal 

variants. (d) FACS dotplot of CTLA-4 and FoxP3 expression in LRBA cHET patient and a 

healthy control (representative of 2 independent experiments). Numbers in black are the 

percentage in each quadrant. Numbers in red are the MFI of CTLA-4 staining in FoxP3 -ve 

and FoxP3 +ve cells. (e) Normalised CTLA-4 expression, assessed as previously described 

in Hou et al. (Blood, 2017), in the LRBA cHET patient (n=1), healthy controls (n=8) and 

positive control CTLA-4 (n=4) and LRBA (n=3 deficient patients. Horizontal bars indicate 

mean +/- SEM.
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Extended Data Figure 5. DOCK8 cHET patient.
(a) Regional plot of the compound heterozygous variants. Gene annotations for are taken 

from Ensembl Version 75, and the transcripts shown are those with mRNA identifiers in 

RefSeq (ENST00000432829 and ENST00000469391). The position of each variant relative 

to the gene transcript is shown by a red bar, with the longer bar indicating the extent of the 

deleted region. Variant coordinates are shown for the GRCh37 genome build. (b) 
Photographs of the extensive HPV associated wart infection in the DOCK8 cHET patient. 

(c) cHET variant phasing. Top: cartoon representation of phasing using high quality 

heterozygous calls from short read WGS data and long-read nanopore sequencing data. 

Bottom panel: WGS and nanopore data from the DOCK8 patient. The two variants (large 

deletion and missense substitution) are shown in the bottom track (orange), and a single 

phase block (green) that spans the entire region between the two variants confirmed them to 

be in-trans. (d) Dye-dilution proliferation assessment in response to phytohaemagglutinin 

(PHA) and anti-CD3/28 beads in CD4+ and CD8+ T cells in patient and control cells 
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(representative of 2 independent experiments). Staining was performed with CFSE dye 

(Invitrogen, Carlsbad, CA, USA) with the same additional fluorochrome markers as 

described in the flow cytometry methods section.
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Extended Data Figure 6. Manhattan plots of (a) all-PID MAF>5%, (b) AD-PID MAF>5% and 
(c) AD-PID 0.5%<MAF<5% GWAS results.
Sample sizes: all-PID cases n=886; AD-PID cases n=733; controls n=9,225. Each point 

represents an individual SNP association P-value, adjusted for genomic inflation. Only 

signals with P<1x10-2 are shown. None of the SNPs in plot (c) appear in the results of the 

common variant GWAS in (b), and are therefore additional signals gained from a GWAS 

including variants of intermediate MAF. Red and blue lines represent genome-wide 

(P<5x10-8) and suggestive (P<1x10-5) associations, respectively. Note the additional 

genome-wide significant signal representing the TNFRSF13B locus, and several suggestive 
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associations that only become apparent with variants in the 0.5% - 5% MAF range shown in 

(c). Suggestive loci are indicated by the rsID of the lead SNP in each chromosome. Note that 

lead SNPs in AD-PID GWAS (b) may differ from meta-analysis lead SNPs.
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Extended Data Figure 7. MHC locus conditional analyses in AD-PID GWAS (cases n=733, 
controls n=9,225).
(a) Locuszoom association plots of AD-PID GWAS MHC locus initial (top) and conditional 

(middle, bottom) analyses results. The x and left y axes represent the chromosomal position 

and the -log10 of the association P-value, respectively. Each point represents an analysed 

SNP, with the lead SNP indicated by a purple diamond and all other points coloured 

according to the strength of their LD with the lead SNP. Purple lines represent HapMap 

CEU population recombination hotspots. The bottom panel shows a selection of genes in the 

region, with over 150 genes omitted. Top: association plot of the most significant signal 

rs1265053, which is in the Class I region and close to HLA-B and HLA-C genes. Middle: 

plot showing the association remaining upon conditioning on rs1265053, with the strongest 
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signal rs9273841 mapping to the Class II region close to HLA-DRB1 and HLA-DQA1 
genes. Bottom: plot showing the association signal remaining upon conditioning on both 

rs1265053 and rs9273841. (b,c) MHC locus conditional analyses of the classical HLA 

alleles (b) and amino acids of individual HLA genes (c). Each point represents a single 

imputed classical allele or amino acid, with those marked in red indicating those added as 

covariates to the logistic regression model: the Class I signal (second row plots), the Class II 

signal (third row plots), and both Class I and Class II signals (bottom row plots). The HLA 

allele and amino acid shown in the bottom plots are those with the lowest P-value remaining 

after conditioning on both Class I and Class II signals; as there are no genome-wide 

significant signals remaining, the results suggest there are two independent signals at the 

MHC locus. (d) Protein modelling of two independent MHC locus signals: HLA-DRB1 
residue E71 and HLA-B residue N114 using PDB 1BX2 and PDB 4QRQ respectively. 

Protein is depicted in white, highlighted residue in red, and peptide is in green.

Extended Data Table 1
ESID definition of PID subtypes.

Participants were defined phenotypically to the groups: primary antibody deficiency, CVID, 

CID, severe autoimmunity/immune dysregulation, autoinflammatory syndrome, phagocyte 

disorder, and unspecified PID according to the European Society for Immunodeficiencies 

(ESID) registry diagnostic criteria (https://esid.org/Working-Parties/Registry-Working-Party/

Diagnosis-criteria).

Primary antibody deficiency

At least 1 of the following 4:

• Recurrent or severe bacterial infections

• Autoimmune phenomena (especially 
cytopenias)

• Polyclonal lymphoproliferation

• Affected family member

AND secondary causes of hypogammaglobulinaemia 
have been excluded (infection, protein loss, medication, 
malignancy)

AND at least one of the following:

• marked decrease of at least one of total IgG, 
IgG1, IgG2, IgG3, IgA or IgM levels

• failure of IgG antibody response(s) to 
vaccines

AND no clinical signs of T-cell related disease
AND does not fit any other definitions

Common Variable Immune Deficiency (CVID)

At least one of the following:

• increased susceptibility to infection

• autoimmune manifestations

• granulomatous disease

• unexplained polyclonal 
lymphoproliferation

• affected family member with antibody 
deficiency

AND marked decrease of IgG a nd marked decrease of 
IgA with or without low IgM levels (measured at least 
twice ; <2S D of the normal levels for their age)
AND secondary causes of hypogammaglobulinaemia 
have been excluded (infection, protein loss, medication, 
malignancy)

AND At at least one of the following:

• poor antibody response to vaccines (and/or 
absent isohaemagglutinins); i.e. absence of 
protective levels despite vaccination where 
defined

• low switched memory low switched memory 
B cells (<70% of age-related normal value)

AND diagnosis is established after the 4th year of life (but 
symptoms may be present before)
AND no evidence of profound T-cell deficiency, defined as 
2 out of the following (y=year of life):

• CD4 numbers/microliter: 2-6y <300, 6-12y 
<250, >12y <200

• % naive CD4: 2-6y <25%, 6-16y <20%, 
>16y <10%

Thaventhiran et al. Page 28

Nature. Author manuscript; available in PMC 2020 November 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://esid.org/Working-Parties/Registry-Working-Party/Diagnosis-criteria
https://esid.org/Working-Parties/Registry-Working-Party/Diagnosis-criteria


• T cell proliferation absent

Combined Immune Deficiency (CID)

At least one of:

• at least one severe infection (requiring 
hospitalization)

• one manifestation of immune 
dysregulation (autoimmunity, IBD, severe 
eczema, lymphoproliferation, granuloma)

• malignancy

• affected family member

AND HIV excluded

AND 2 of 4 T cell criteria fulfilled:

• reduced CD3 or CD4 or CD8 T cells (using 
age-related reference values)

• reduced naive CD4 and/or CD8 T cells

• elevated g/d T cells

• reduced proliferation to mitogen or TCR 
stimulation

Severe Combined Immune Deficiency (SCID)

At least one of the following:

• invasive bacterial, viral or fungal/
opportunistic infection

• persistent diarrhoea and failure to thrive

• affected family member

AND manifestation in the first year of life
AND HIV excluded

AND 2 of 4 T cell criteria fulfilled:

• low or absent CD3 or CD4 or CD8 T cells

• reduced naive CD4 and/or CD8 T cells

• elevated g/d T cells

• reduced or absent proliferation to mitogen or 
TCR stimulation

Severe autoimmunity / immune dysregulation

At least one of the following:

• autoimmune manifestations

• lymphoproliferation

• severe eczema

• inflammatory bowel disease

• granuloma

• vasculitis

• HLH-like disease

AND no evidence of B-cell deficiency (low B cell 
numbers, hypogammaglobulinaemia)

AND at least one numeric or functional abnormal finding 
upon immunological investigation
AND no evidence of profound T-cell deficiency, defined as 
2 out of the following (y=year of life):

• CD4 numbers/microliter: 0-6mo <1000, 
6mo-1y <800, 1-2y <500, 2-6y <300, 6-12y 
<250, >12y<200

• % naive CD4: 0-2y <30%, 2-6y <25%, 6-16y 
<20%, >16y <10%

• T cell proliferation absent

Autoinflammatory syndrome

Recurrent fever (temperature >38 degrees Celsius) 
having occurred on at least 6 occasions.
AND exclusion of other known infective / inflammatory 
autoimmune disorders

AND documented evidence of increased inflammatory 
markers (ESR/CRP)
AND predominantly but not exclusively systemic symptoms

Phagocyte disorder

At least one of the following:

• deep seated infection due to bacteria 
and/or fungi

• recurrent severe pneumonia

• buccal and/or genital aphtous lesions or 
ulcerations

AND normal to subnormal respiratory burst (NBT or DHR, 
assessed at least twice)
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• omphalitis

• chronic inflammatory manifestations 
(colitis, fistula formation)

• BCGitis or BCGosis

Unspecified PID

At least one of the following

• At least one major infection

• Abnormal course or frequency of minor 
infections

• At least one manifestation of immune 
dysregulation

• Failure to thrive

AND at least one numeric or functional abnormal finding 
upon immunological investigation
AND exclusion of secondary causes for immunological 
abnormalities (infection, protein loss, medication, 
pregnancy)
AND does not fit any other definition

Extended Data Table 2
Description of the NIHR BioResource - Primary 
Immunodeficiency cohort.

High-level clinical description and relevant clinical features were provided by recruiting 

clinicians. Index cases are patients recruited as sporadic cases or probands in pedigrees, and 

determined to be genetically unrelated by pairwise comparisons of common SNP genotypes 

in the WGS data. Numbers in brackets refer to the percentage of index cases in each 

category. Total number of patients is the sum of index cases and any affected relatives 

sequenced in this study.

Clinical 
Description

Index 
Cases

Familial 
Disease Male

Paediatric 
Disease 
Onset

Antibody 
(IgG/A/M

) 
Deficiency

Auto-
immune 
Features

Low 
CD4+ 

T 
cells

Malignancy
Total 

Sequenced 
Patients

Antibody 
Defect 122 21

(17)
52

(43)
41

(34)
122

(100)
22

(18)
12

(10)
7

(6) 144

CVID 443 50
(11)

220
(50)

103
(23)

443
(100)

126
(28)

95
(21)

35
(8) 469

CID 141 26
(18)

71
(50)

77
(54)

141
(100)

26
(18)

70
(49)

19
(13) 156

SCID 12 3
(25)

8
(67)

12
(100) 0 0 10

(83) 0 12

Phagocyte 
disorder 23 3

(13)
8

(35)
12

(52)
1

(4)
3

(13)
4

(17)
3

(13) 27

Severe 
Auto-

immunity
52

6
(12)

28
(54)

14
(27)

22
(42)

52
(100)

8
(15)

6
(12) 53

Auto-
inflamatory 
Syndrome

26
3

(12)
11

(42)
7

(27)
3

(12)
19

(73)
6

(23)
1

(4) 27

Unspecified 
PID 67 7

(11)
27

(42)
18

(28)
1

(2)
2

(3)
3

(5)
4

(6) 86

Total 886 119
(13)

425
(48)

284
(32)

733
(83)

250
(28)

208
(23)

75
(8) 974
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Figure 1. Description of the immunodeficiency cohort and disease associations in coding regions.
(a) Number of index cases recruited under different phenotypic categories (red – adult cases, 

blue – paediatric cases, lighter shade – sporadic (no family history of PID), darker shade - 

family history of PID). CVID – Common variable immunodeficiency, CID – combined 

immunodeficiency, and SCID – severe combined immunodeficiency. (b) Number of index 

cases with malignancy, autoimmunity and CD4+ lymphopenia. (black bar – total number of 

cases, blue bar - number of cases with AD-PID phenotype). (c) Number of patients with 
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reported genetic findings subdivided by gene. Previously reported variants are those 

identified as immune disease-causing in the HGMD-Pro database.
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Figure 2. Discovery of novel PID genes in a large cohort WGS analysis.
(a) BeviMed assessment of enrichment for candidate disease-causing variants in individual 

genes, in the PID cohort relative to the rest of the NBR-RD cohort (cases n=886, controls n= 

9,284). The top 25 candidate genes are shown. Genes highlighted in yellow are those flagged 

as potentially confounded by population stratification (see Supplementary Note 2). 

Prioritized genes known to cause PID according to the International Union of 

Immunological Societies (IUIS) in 2015 (blue)10 and 2017 (red)3. (b) Pedigrees of 3 

unrelated kindreds with damaging IVNS1ABP variants and linear protein position of 

variants. (c) Western blot of IVNS1ABP and GAPDH in whole cell lysates of PBMCs. (Top) 

Representative blot from A.II.1 (P) and Control (C). For gel source data, see Supplementary 

Figure 1. (Bottom) Graph of relative IVNS1ABP normalized to GAPDH. (representative of 

4 independent experiments). (d) Immunophenotyping of CD3+ T cells, CD4+, CD8+ T 

cells, and CD19+ B cells in C = healthy controls (n=20) and P = IVNS1ABP patients (n=4). 

(e) Assessment of CD127 and PD-1 expression in naïve T cells. (Left) Representative gating 

of naïve (CD45RA+ CD62L+) CD4+ T cells in a control and B.II.1.(Middle) FACS 

histograms of PD-1 and CD127 from controls and IVNS1ABP patients (B.II.1 and A.II.1). 

(Right) PD-1 and CD127 mean fluorescence intensity (MFI) values from controls (C, n=20) 
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and patients (P, n=4). All tests two-sided Mann Whitney U. Lines present means, bars = 

S.E.M.
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Figure 3. Assessment of WGS data for regulatory region deletions that impact upon PID.
(a) Genomic configuration of the ARPC1B gene locus highlighting the compound 

heterozygous gene variants. ExAC shows that the non-coding deletion is outside of the 

exome-targeted regions. (b) Pedigree of patient in (a) and co-segregation of ARPC1B 
genotype (wt – wild-type, del – deletion, fs – frameshift). (c) Western blot of ARPC1A and 

ARPC1B in neutrophil and platelet lysates from the patient (P) and control (C, n=1). For gel 

source data, see Supplementary Figure 1. (d) Podosomes were identified by staining 

adherent, fixed monocyte-derived macrophages for vinculin, phalloidin and the nuclear stain 

DAPI. Quantification was performed by counting podosomes on at least 100 cells per 

sample from 10 fields of view at 60x magnification.
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Figure 4. Antibody deficiency (AD-PID) GWAS identifies common variants that mediate disease 
risk and suggests novel monogenic candidate genes.
(a) A composite Manhattan plot for the AD-PID GWAS. Blue – common variants 

(MAF>0.05) analysed in this study (NBR-RD) only (cases n=773, controls n=9,225), red – 

variants from fixed effects meta-analysis with data from Li et al. (cases n=1,511, controls 

n=20,224); and purple – genome-wide significant low frequency (0.005<MAF<0.05) 

variants in TNFRSF13B locus. Loci of interest are labelled with putative causal protein 

coding gene names. (b) COGS prioritisation scores of candidate monogenic causes of PID 
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using previous autoimmune targeted genotyping studies (Supplementary Table 4) across 

suggestive AD-PID loci (n=4). For clarity, only diseases prioritising one or more genes are 

shown. CEL – coeliac disease, CRO- Crohn’s disease, UC – ulcerative colitis, MS – multiple 

sclerosis, PBC – primary biliary cirrhosis and T1D – type 1 diabetes (c) Graph of relative 

pSTAT1 and SOCS1 in lysates made from 2 hour IFN-γ treated T cell blasts from SOCS1 

mutation patients and controls. (Lines present mean, error bars=S.E.M.) (d) The pedigree of 

the PTPN2 mutation patient. Carriers of the rs2847297-G risk allele are indicated. (e) 
Simplified model of how SOCS1 and TC-PTP limit the phosphorylated-STAT1 triggered by 

interferon signalling. (f) Graph of relative PTPN2 and pSTAT1 from the indicated patients 

and controls, in lysates made from T cell blasts incubated ± IFN-γ for 2 hours. (PTPN2 

normalized to tubulin level, pSTAT1 normalised to STAT1 levels, representative of 2 

independent experiments)
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