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Abstract
Bruton's tyrosine kinase (BTK), a member of the Tec kinase family, is critically involved 
in a range of immunological pathways. The clinical application of BTK inhibitors for 
B- cell malignancies has proven successful, and there is strong rationale for the poten-
tial benefits of BTK inhibitors in some autoimmune and allergic conditions, including 
immune- mediated dermatological diseases. However, the established risk- to- benefit 
profile of “first- generation” BTK inhibitors cannot be extrapolated to these emerg-
ing, non- oncological, indications. “Next- generation” BTK inhibitors such as remibruti-
nib and fenebrutinib entered clinical development for chronic spontaneous urticaria 
(CSU); rilzabrutinib and tirabrutinib are being studied as potential treatments for pem-
phigus. Promising data from early- phase clinical trials in CSU suggest potential for 
these agents to achieve strong pathway inhibition, which may translate into meas-
urable clinical benefits, as well as other effects such as the disruption of autoanti-
body production. BTK inhibitors may help to overcome some of the shortcomings 
of monoclonal antibody treatments for immune- mediated dermatological conditions 
such as CSU, pemphigus, and systemic lupus erythematosus. In addition, the use of 
BTK inhibitors may improve understanding of the pathophysiological roles of mast 
cells, basophils, and B cells in such conditions.
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1  |  INTRODUC TION

Almost 70 years ago, Ogden C. Bruton described the first case 
of agammaglobulinemia in an 8- year- old boy suffering from se-
vere recurrent sepsis.1 The underlying cause of this immunodefi-
ciency remained unclear until the discovery, in the early 1990s, of 
a cytoplasmic protein tyrosine kinase involved in B- cell develop-
ment.2,3 The X- chromosome- restricted mutations in this kinase, 
later named Bruton's tyrosine kinase (BTK), were established to be 
directly associated with X- linked agammaglobulinemia.4,5

Owing to its crucial role in B- cell development, migration, and 
activation, BTK became— and remains— the subject of intensive 
study. It has been demonstrated that BTK plays a key role in the 
signaling cascade of receptors such as the B- cell receptor (BCR), 
Fc receptors, chemokine receptors, toll- like receptors (TLR), and 
CD40.6– 12 Further studies revealed the expression of BTK also in 
non- B cells such as mast cells (MCs), natural killer (NK) cells, T cells, 
macrophages, neutrophils, monocytes, and basophils.11,13– 17

Based on these observations, the potential of BTK as a ther-
apeutic target became apparent, and a series of inhibitors were 
developed. Ibrutinib (PCI- 32765) became the first BTK inhibitor 
available for clinical use, approved in 2014 for the treatment of B- 
cell malignancies.18,19 Subsequently, BTK has emerged as a promis-
ing therapeutic target for a number of malignant and non- malignant 
disorders,20– 22 including various immunoglobulin E (IgE)- mediated 
diseases driven by MCs and basophils.16

Here, we review the current understanding of the role of the 
BTK pathway and consider the potential value of pharmacological 
inhibition of BTK as a therapeutic strategy in immune- mediated der-
matological conditions such as chronic spontaneous urticaria (CSU), 
pemphigus, and systemic lupus erythematosus.

2  |  ROLE AND RELE VANCE OF BTK IN 
HE ALTH AND DISE A SE

2.1  |  Role in signaling cascades in B cells and MCs

BTK is a member of the Tec family of tyrosine kinases.23 It forms 
part of signaling cascades triggered by surface receptors such as the 
BCR in B cells and the high- affinity IgE receptor FcεRI in MCs.24,25 
Activation of BTK correlates with increased phosphorylation of 
two regulatory tyrosine residues.26 BTK is phosphorylated at Y551 
(site 1) by kinases activated upstream of BTK, such as spleen tyros-
ine kinase (SYK) or members of the SRC family kinase (e.g., LCK/
YES novel tyrosine kinase; LYN).12,27 BTK then autophosphoryl-
ates at Y223 (site 2) in the SH3 domain,28 enabling association with 
adapter proteins such as SH2- domain- containing leukocyte protein 
of 76 kDa (SLP- 76)29 or B- cell linker proteins (BLNKs).30 This leads to 
phosphorylation of phospholipase C gamma 2 (PLCγ2).31 Activated 
PLCγ2 generates inositol- 3,4,5- phosphate (IP3) and also activates 
protein kinase C via diacylglycerol, resulting in calcium release and 
activation of transcription factors such as NF- κB and NFAT.12 Aside 

from integrating BCR-  or FcεRI- derived signals, BTK is also involved 
in other pathways such as chemokine- mediated homing of pre- B 
cells into lymphoid organs or TLR- mediated signaling, as well as in-
hibition of FcγR signaling and inflammation driven by IgG immune 
complexes.12,32,33 The role of BTK in signaling cascades in various 
cell types and its influence over multiple physiological processes is 
summarized in Figure 1.

2.2  |  Role in B- cell malignancies and other 
pathologies

Bruton's tyrosine kinase activity is crucial to maintain B- cell survival, 
proliferation, and differentiation. It acts as a central node in the BCR 
signaling that drives B- cell malignancies such as chronic lymphocytic 
leukemia (CLL), mantle cell lymphoma (MCL), Waldenström's mac-
roglobulinemia (WM), follicular lymphoma, multiple myeloma, and 
marginal zone lymphoma.12 The involvement of BTK in a range of 
other immunological pathways implicates it in the pathophysiology 
of inflammatory and systemic autoimmune disorders, as well as in 
allergic responses.

2.2.1  |  BTK signaling in autoimmune responses

B- cell- mediated systemic autoimmune diseases are associated 
with activation of autoreactive B cells and their differentiation into 
autoantibody- producing cells.22 Consistent with this, treatment with 
rituximab, an anti- CD20 monoclonal antibody, which results in the 
depletion of mature B cells, has demonstrated clinical benefits in 
certain autoimmune conditions.34 Studies have since revealed in-
creased BTK expression in B cells of patients with systemic auto-
immune diseases; indeed, there is some evidence for a correlation 
of BTK protein levels with autoantibody production.22,35 It appears 
that BTK can modulate signaling, such that overexpression leads to 
autoimmunity while decreased levels improve autoimmune disease 
outcomes.32

2.2.2  |  BTK signaling in allergic responses

The binding of an allergen to its specific IgE triggers crosslinking and 
activation of high- affinity FcεRI on the surface of MCs and baso-
phils.36 The subsequent signaling cascade involves the phosphoryla-
tion of SYK and then BTK, and results in the release of mediators 
including cytokines.16,36 Consistent with this, in vitro analyses have 
demonstrated that BTK inhibition is associated with reduced media-
tor release in human basophils37 and reduced IgE- mediated degranu-
lation and cytokine production in human MCs. Furthermore, a study 
of two patients with food allergy receiving ibrutinib for CLL sug-
gested that, through inhibition of IgE- dependent basophil and MC 
activation, BTK antagonists may be able to block IgE- mediated aller-
gic reactions to food and other allergens.38 BTK inhibition has been 
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shown to reduce a skin- prick test reaction to allergen in healthy 
adults with asymptomatic atopic diathesis in a Phase I trial.39

During IgE- mediated hypersensitivity reactions, activated MCs 
secrete preformed mediators such as histamine within minutes 
during the early- phase reaction, as well as rapidly synthesized 
lipid mediators such as leukotrienes and prostaglandins. Various 

cytokines and chemokines are subsequently generated a number 
of hours later during the late- phase response.40 Passive cutaneous 
anaphylaxis experiments in mice have demonstrated that BTK reg-
ulates both early-  and late- phase MC effector functions driven by 
FcεRI- mediated activation.40 Indeed, BTK positively regulates al-
most any aspect of FcεRI- mediated MC function (with the exception 

F I G U R E  1  Role of BTK in immune cell signaling. The Tec- family kinase BTK is expressed in various cells including not only MCs and B cells 
but also NK cells, monocytes/macrophages, neutrophils, and platelets, where it functions as a major signaling element in diverse receptor 
signaling pathways. Upon receptor activation, BTK is recruited to the plasma membrane via interaction of its pleckstrin homology (PH) 
domain with phosphatidylinositol trisphosphate (PIP3). Phosphorylation at tyrosine Y551 by Src- family kinases triggers autophosphorylation 
at Y223 and the switch into the active conformation. This enables interaction with various downstream signaling and adapter molecules, 
leading subsequently to calcium release and activation of transcription factors such as NF- κB, NFAT, FOXO, AP- 1, and MYC. In MCs and 
B cells, BTK signaling has been primarily— but not exclusively— connected to FcεRI and BCR signaling, respectively. BTK controls IgE- 
dependent MC activation and degranulation responses as well as B- cell survival and differentiation, thereby linking its activity to allergy and 
autoimmunity. BTK inhibitors are designed to specifically either covalently or reversibly target the active site of BTK, preventing ATP binding 
and stabilizing the inactive conformation. ANKRD54, ankyrin repeat domain 54; AP- 1, activator protein- 1; ATP, adenosine triphosphate; 
BCR, B- cell receptor; BLNK, B- cell linker protein; BTK, Bruton's tyrosine kinase; GPCR, G protein- coupled receptor; IBTK, inhibitor of 
Bruton's tyrosine kinase; IgE, immunoglobulin E; NFAT, nuclear factor of activated T cells; NF- κB, nuclear factor kappa- light- chain- enhancer 
of activated B cells; NK, natural killer; PH, pleckstrin homology; PIP5K, phosphatidylinositol 4- phosphate 5- kinase; PKC, protein kinase C; 
PLC, phospholipase C; SYK, spleen tyrosine kinase; TLR, toll- like receptor; WASP, Wiskott– Aldrich syndrome protein
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of interleukin- 4 production, which is enhanced in the absence of 
BTK).40 That BTK may also have negative regulatory roles is an 
important consideration; the use of BTK inhibitors for treatment 
of malignancies has not suggested a tendency for allergen sensiti-
zation, but the potential for this should be considered moving into 
treatment of immune- mediated conditions. A study in which MC 
activation was inhibited by the short- chain fatty acid, butyrate, sug-
gested that MC activation relies on a strong transcriptional silencing 
of critical molecules for IgE receptor- induced signal transduction, 
including BTK.41 Recent data have shown that— in contrast to FcεRI- 
mediated MC activation— stem cell factor- induced KIT signaling in 
bone- marrow- derived MC is largely independent of the phosphory-
lation and activation of BTK.42

2.2.3  |  BTK signaling in other 
inflammatory responses

There is some evidence that BTK contributes to other inflammatory 
mechanisms, such as immunoglobulin G (IgG; FcγR)- mediated activa-
tion of monocytes and neutrophil migration.43 For example, a study 
found that ibrutinib did not affect monocyte FcγR- mediated phago-
cytosis, even at supraphysiological concentrations, but suppressed 
FcγR- mediated cytokine production.44 However, although ibrutinib 
blocked BTK in isolated cultures, pro- inflammatory intercellular 
communication was sufficient to overcome its inhibitory effects on 
monocytes and NK cells.44 BTK- deficient neutrophils have shown 
defects in granulocyte- macrophage colony- stimulating factor (GM- 
CSF)- signaling and GM- CSF- induced maturation accompanied with 
impaired function during an acute inflammatory response.15

3  |  BTK PATHWAY INHIBITION IN THE 
TRE ATMENT OF SKIN DISE A SES

On the basis of the involvement of the BTK pathway in autoimmune, 
IgE- mediated allergic, and other inflammatory mechanisms, BTK in-
hibition is emerging as a candidate therapeutic approach for a num-
ber of dermatological disorders.

3.1  |  Chronic spontaneous urticaria

CSU is defined by the presence of wheals and/or angioedema occur-
ring for more than 6 weeks without a specific trigger.45 It is a common 
condition, affecting approximately 1% of the population world-
wide,46 and showing an increasing trend over time.47 The burden ex-
perienced by patients with CSU can be considerable, with challenges 
such as sleep deprivation, sexual dysfunction, limitations on daily 
life, and reduced performance at work or school all affecting health- 
related quality of life.46 A lack of understanding of underlying cause 
has precluded development of curative treatments,48 and patients 
often experience long delays in achieving effective management46; 

indeed, many patients do not achieve symptom control.49 Fewer 
than half of the patients with CSU respond to a standard- dosed H1- 
antihistamine, the first- line recommended treatment.50 The only 
other licensed treatment for CSU is the anti- IgE monoclonal anti-
body, omalizumab, which, in a phase 2 head- to- head trial, showed a 
complete hive response rate of 26%, compared with 30%– 51% with 
the anti- IgE ligelizumab.49 Agents such as cyclosporine, dapsone, 
and hydroxychloroquine are used off- label.45 Novel treatment op-
tions with improved effectiveness are urgently needed for patients 
with CSU.

The rationale for BTK inhibition in CSU is strong, as BTK is in-
volved in both of the known pathways that lead to the degranulation 
of skin MCs, the key pathogenic driver of CSU (Figure 2A). In type I 
(autoallergic) CSU, the occurrence of signs and symptoms is driven 
by IgE to autoallergens (e.g., against thyroperoxidase, thyroglobu-
lin, tissue factor, interleukin- 24, and double- stranded DNA), while 
type IIb autoimmune CSU is due to MC- targeted IgG autoantibodies 
against IgE or FcεRI.51 Type IIb CSU is the less common endotype, 
but is characterized by high disease activity and poor response to 
treatment with antihistamines and omalizumab.51– 54

BTK inhibitors have potential for efficacy in both autoallergic 
and autoimmune CSU due to inhibition of BTK- mediated degranu-
lation in MCs and autoantibody production in B cells. In particular, 
they may help to address the suboptimal levels of response to cur-
rently available treatments in type IIb CSU.52,53,55

3.2  |  Pemphigus

Pemphigus is an autoantibody- driven skin disease characterized by 
a loss of cell adhesion (acantholysis), leading to blisters or erosions 
of the skin and/or mucous membrane.56,57 There are three major 
forms: pemphigus vulgaris, pemphigus foliaceus, and paraneoplastic 
pemphigus; of these, pemphigus vulgaris is the most common vari-
ant.56 The pathology of pemphigus is based on IgG autoantibodies 
targeting various adhesion molecules in the epidermis, including 
desmoglein (DSG) 1 and 3.56 Dendritic cells presenting DSG antigens 
can activate T cells, in turn triggering anti- DSG antibody production 
from B cells (Figure 2B).57

The mainstay of pemphigus therapy is immunosuppression, 
primarily with systemic corticosteroids and rituximab. However, 
these agents can be associated with significant side effects; se-
vere infection induced by an immunocompromised state is a major 
cause of death in patients with pemphigus.58,59 Rituximab, while 
a very effective treatment option, requires intravenous admin-
istration and results in B- cell depletion, potentially contributing 
to a higher rate of severe infections. There is an unmet need for 
steroid- sparing agents with rapid onset, patient- friendly adminis-
tration, and an acceptable safety profile, including lack of chronic 
B- cell depletion. Targeted approaches such as the use of engi-
neered human cytotoxic chimeric autoantigen receptor (CAAR)- T 
cells to specifically kill B cells producing autoantibodies are under 
clinical investigation for pemphigus.60 Given the key role of BTK in 
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the responses of autoreactive B cells, BTK inhibitors represent a 
promising therapeutic strategy for pemphigus.

3.3  |  Other skin conditions

CSU and pemphigus are the focus of attention with respect to the 
potential of BTK inhibition for efficacy in dermatological conditions, 
but patients with other chronic inflammatory skin diseases, includ-
ing hidradenitis suppurativa (HS), systemic lupus erythematosus 
(SLE), and atopic dermatitis can be expected to also benefit from this 
therapeutic approach.

HS is a chronic inflammatory skin disease, characterized by cu-
taneous inflamed nodules, abscesses, and pus- discharging tunnels 
developed in axillary, inguinal, gluteal, and perianal body sites.61 
Steroid injections, antibiotic creams, or oral antibiotics are first- line 
options used to treat HS; for moderate- to- severe and/or recalcitrant 
cases, anti- TNF treatment with adalimumab is currently the only 

approved therapy.62 Surgery is necessary for some patients with HS, 
particularly when significant scarring has occurred.63 The immuno-
pathogenesis of HS is poorly understood, but B cells— particularly 
plasma cells— have been identified as a potential therapeutic target. 
Characterization of the inflammatory response in HS using pro-
teomic and transcriptomic approaches has revealed enrichment of 
BTK signaling, thus supporting the potential value of BTK inhibition 
as a therapeutic strategy.64

SLE is a chronic autoimmune disease characterized by autoan-
tibodies against nuclear antigens.65 Cutaneous disease is a com-
mon manifestation of SLE; indeed, skin is the second most affected 
organ after articular involvement.66 The disease is characterized by 
altered B- cell selection, triggering production of autoreactive an-
tibodies and pro- inflammatory cytokines, and the presentation of 
autoantigens to autoreactive T cells.65 Due to the heterogeneity 
in the etiopathogenesis of SLE, numerous therapeutic targets have 
been investigated,67 but the first drug approved by the FDA for the 
treatment of SLE in over 50 years was belimumab, a fully human 

F I G U R E  2  Overview of the role of BTK in the pathophysiology of (A) CSU and (B) pemphigus. BCR, B- cell receptor; BTK, Bruton's 
tyrosine kinase; CSU, chronic spontaneous urticaria; IgE, immunoglobulin E; IgG, immunoglobulin G. (A) CSU: The pathogenesis of CSU 
involves antibody- mediated MC and basophil activation, occurring via IgE (“auto allergic” or type I CSU) or IgG (“auto immune” or type IIb) 
generated by differentiated B cells. In type I CSU, crosslinking of FcεRI via autoreactive IgE molecules directed against self- antigens such 
as thyroid peroxidase promotes MC/basophil degranulation. In type IIb CSU, IgG molecules directed against the Fc portion of IgE or the 
FcεRI promote spontaneous cellular degranulation.119 The role of eosinophils is debated, but eosinophil proteins may promote mast cell 
degranulation in CSU, and eosinopenia has been linked to high disease activity, type IIb autoimmunity, and poor response to treatment.120 
In addition to its well- established role in B- cell signaling, evidence suggests that BTK is specifically required for IgE- mediated activation of 
basophils37 and in MC FcεRI- induced cytokine secretion.121 (B) Pemphigus: Dendritic cells presenting desmoglein (DSG) antigens activate T 
cells, in turn triggering BTK- mediated anti- DSG antibody production from B cells57
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IgG1 monoclonal antibody, which selectively targets and inhibits 
the B- cell survival factor, B- lymphocyte stimulator (BLyS).68 Several 
components of BTK signaling pathways are altered in B cells from 
patients with SLE, and BTK is considered to be a promising thera-
peutic target for the treatment of cutaneous as well as CNS, renal, 
and articular manifestations of SLE.65

Atopic dermatitis is the most common inflammatory skin disease, 
characterized by impaired barrier function.69 Current pharmacologi-
cal management strategies include topical agents such as corticoste-
roids, calcineurin inhibitors and phosphodiesterase- 4 inhibitors, and 
systemic agents including broad- spectrum immunosuppressants, 
cyclosporine, methotrexate, mycophenolate mofetil, and azathio-
prine.70 While BTK inhibition is one of a number of therapeutic strat-
egies under investigation,71 recent additions to the armamentarium 
include monoclonal antibodies (dupilumab and tralokinumab), along 
with Janus kinase inhibitors (baricitinib, upadacitinib and abroci-
tinib).72 The penetration of antigens through the impaired derma-
tological barrier leads to production of cytokines such as thymic 
stromal lymphopoietin, which triggers BTK- dependent signaling and 
this may be of therapeutic interest.69

There may also be a role for BTK inhibitors in the treatment of 
pure IgE- mediated conditions such as anaphylaxis of IgE- mediated 
food allergy; further studies are warranted in this area.

4  |  BTK INHIBITORS IN CLINIC AL 
PR AC TICE

4.1  |  First- generation BTK inhibitors

Since ibrutinib came to the market in 2013 for the treatment of 
adult patients with MCL, its range of indications has expanded, and 
a number of other BTK inhibitors, such as acalabrutinib, zanubru-
tinib, and orelabrutinib, have been developed for the treatment of 
B- cell malignancies (Figure 1).73– 78 Acalabrutinib, for example, has 
demonstrated improved potency and selectivity, with reduced off- 
target side effects, compared with ibrutinib, while zanubrutinib is 
another selective BTK inhibitor with superior oral bioavailability and 
greater BTK specificity than ibrutinib.79 All of these agents, how-
ever, interact with their target via covalent bonding, a feature which, 
while affording impressive efficacy, has also been associated with 
drug resistance and a challenging tolerability profile.77 Aside from 
BTK, covalent agents may also bind to other kinases, including— but 
not limited to— those that feature, a cysteine at the same position as 
BTK.76 Severe adverse events (AEs) associated with early BTK in-
hibitors include hemorrhage, hypertension, cardiac arrhythmias and 
cardiac failure, second primary malignancies, and tumor lysis syn-
drome.80 Some of the most common AEs, occurring in more than 
30% of patients, are thrombocytopenia, diarrhea, fatigue, musculo-
skeletal pain, neutropenia, rash, anemia, and bruising.80 As might be 
expected for a treatment that targets B cells, BTK- inhibitor therapy 
elevates the risk of infection.80 Ibrutinib treatment is associated with 

an increased risk of pneumonia, sinusitis, and infections of the upper 
respiratory and urinary tracts, as well as opportunistic skin infec-
tions including herpes simplex and herpes zoster virus reactivations, 
and Staphylococcus aureus superinfection.81 The precise role played 
by BTK in pathogenic microorganism infections is not yet clear and 
remains the subject of investigation.82

The risk- to- benefit profile of these early BTK inhibitors requires 
re- evaluation when considering their potential to offer therapeutic 
benefits outside of the oncology setting. An AE profile that is con-
sidered acceptable for the management of a life- threatening cancer 
is different from that which can reasonably be recommended for 
chronic treatment of conditions that considerably affect patients’ 
quality of life but are not life- threatening. As seen above, there is a 
strong rationale for the potential benefits of BTK inhibitors in some 
autoimmune and allergic conditions. While agents such as acalabruti-
nib and zanubrutinib offered improvements over ibrutinib, supporting 
potential roles in treating chronic, non- malignant conditions such as 
food allergy or IgG4- related disease, a need for the efficacy of BTK in-
hibitors with an improved AE profile has seen a shift toward develop-
ment and investigation of a new generation of drugs in this class.76,83

One strategy being used to address this is the use of BTK in-
hibitors that utilize non- covalent binding mechanisms.77 An im-
portant benefit in the use of covalent inhibitors is their ability to 
achieve high, sustained occupancy of the target without the need 
for extended drug exposure.76 However, non- covalent inhibitors 
may be able to overcome drug resistance, owing to a lack of de-
pendence on binding to C481 mutations, which are a major mech-
anism for acquired resistance in oncologic indications.77 Several 
non- covalent BTK inhibitors are in development for B- cell malig-
nancies and, while longer- term studies are required, early clinical 
data suggest high levels of specificity and an improved tolerability 
profile.77,84,85

4.2  |  Next- generation BTK inhibitors for 
dermatology/allergology indications

An overview of next- generation BTK inhibitors in development 
for immune- mediated dermatological indications is provided in 
Table 1 (also shown in Figure 1). Fenebrutinib (GDC- 0853, RG7845) 
is a highly selective, reversible, non- covalent, oral BTK inhibitor.86 
Remibrutinib (LOU064), rilzabrutinib (PRN1008), and tirabrutinib 
(ONO/GS- 4059) are all oral agents, which bind covalently to their 
BTK target but with high levels of selectivity.83,87,88 In the case of 
remibrutinib, improved selectivity and tolerability are likely attrib-
utable to its ability to bind to an inactive conformation of BTK.83 
Rilzabrutinib demonstrates high affinity and selectivity for the BTK 
receptor, combined with a long duration of action due to prolonged, 
but reversible, target occupancy.87 Tirabrutinib binds in an irreversi-
ble covalent manner. High specificity of tirabrutinib binding to C481 
on the BTK active site has been confirmed experimentally via mass 
spectrometry.89
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4.3  |  Clinical development of BTK inhibitors for the 
treatment of chronic inflammatory skin diseases

In the fields of dermatology and allergology, CSU is a focus of par-
ticular interest for the development of next- generation BTK in-
hibitors. Remibrutinib and fenebrutinib are most advanced in their 
clinical development for CSU, both with phase II studies completed.

The first- in- human study of remibrutinib (in healthy and asymp-
tomatic atopic volunteers; NCT03918980) demonstrated a very 
fast onset of action and full BTK occupancy for at least 24 h fol-
lowing single doses of 30 mg and higher, while repeated dosing did 
not cause accumulation.39 Near- complete inhibition of blood baso-
phil degranulation was achieved with doses of at least 50 mg.39,90 
A phase II study of remibrutinib and an open- label extension study 
have been initiated in CSU: initial data from the dose- finding study 
in 311 patients with CSU inadequately controlled by H1 antihista-
mines (NCT03926611) indicated that all tested remibrutinib doses 
provided significant improvements in urticaria activity score (UAS7) 
change from baseline at Week 4 and Week 12 compared with pla-
cebo, supported by a favorable safety profile.91,92 The open- label, 
multicenter, extension study (NCT04109313) is ongoing to evalu-
ate the long- term safety and tolerability of remibrutinib in eligible 
patients with CSU; this has enrolled 195 participants and is due 
to complete in late 2022.93 Phase III trials of remibrutinib for CSU 

inadequately controlled by H1 antihistamines are planned to initi-
ate late in 2021 (NCT05030311, NCT05032157, and an open- label 
study in Japan: NCT05048342).94,95 Also of note in the context of 
atopic disease, the first- in- human study of remibrutinib demon-
strated a dose- dependent reduction in wheal size in skin- prick tests 
in individuals with atopic diathesis or atopic dermatitis.39,90

Following a phase I study investigating a single, oral dose of fen-
ebrutinib in healthy volunteers (NCT03596632),96 two phase II trials 
of fenebrutinib have been initiated in patients with CSU. In a double- 
blind, placebo- controlled trial in 93 adults with CSU refractory to 
antihistamines (NCT03137069), fenebrutinib was associated with 
significant improvements from baseline in UAS7 over 7 days at week 
8 (primary endpoint) at doses of 150 mg daily and 200 mg twice 
daily.97 Patients with type IIb autoimmunity were apparently more 
responsive to lower doses of fenebrutinib than those without auto-
immunity, and fenebrutinib substantially reduced IgG- anti- FcεRI rel-
ative to baseline.97 Numbers of AEs were generally balanced across 
fenebrutinib and placebo groups and were mild or moderate in se-
verity. Transient grade 3 elevations in alanine transaminase were 
noted with fenebrutinib 150 mg daily and 200 mg twice daily. Two 
serious AEs considered to be related to treatment were reported in 
the 200 mg twice- daily fenebrutinib arm (periorbital cellulitis and an 
increase in hepatic enzymes), and led to treatment withdrawal.97 The 
second, phase II study was an open- label, multicenter extension of 

TA B L E  1  BTK inhibitors in development (phase II+) for treatment of immune- mediated dermatological diseases

Drug Other names Manufacturer/developer Indication Phase Trial identifier (status)

Branebrutinib BMS- 986195 Bristol– Myers Squibb Atopic dermatitis II NCT05014438 (recruiting)

SLEa II NCT04186871 (recruiting)

Fenebrutinib GDC- 0853 Genentech CSU II NCT03137069 (completed)

II NCT03693625 (terminated)

SLE II NCT02908100 (completed)

Remibrutinib LOU064 Novartis CSU II NCT03926611 (completed)

II NCT04109313 (active, not 
recruiting)

III NCT05030311/
NCT05032157 (not yet 
recruiting)

III NCT05048342 (not yet 
recruiting)

Rilzabrutinib PRN1008 Principia Biopharma/Sanofi Pemphigus vulgaris II NCT02704429 (completed)

III NCT03762265 (active, not 
recruiting)

IgG4- related 
disease

II NCT04520451 (recruiting)

Atopic dermatitis II NCT05018806 (recruiting)

Tirabrutinib GS- 4059 Gilead CSU II NCT04827589 (withdrawn)

Pemphigus II JapicCTI- 184231

Note: Trial identifier and status information taken from clinicaltrials.gov, with the exception of JapicCTI- 184231 (NIPH Clinical Trials Search at https://
rctpo rtal.niph.go.jp/en)
Abbreviations: CSU, chronic spontaneous urticaria; SLE, systemic lupus erythematosus.
aIn addition to autoimmune disorder, rheumatoid arthritis and primary Sjögren's syndrome.

https://rctportal.niph.go.jp/en
https://rctportal.niph.go.jp/en
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the double- blind trial, designed to evaluate the long- term safety and 
efficacy of fenebrutinib in patients with CSU.98 This extension study 
was terminated following an interim analysis of data from the par-
ent study.98 Fenebrutinib (150 mg daily or 200 mg twice daily) was 
also evaluated in a placebo- controlled, phase II trial in patients with 
SLE (NCT02908100); it demonstrated evidence of strong pathway 
inhibition (reduced BTK- dependent plasmablast RNA signature, anti- 
dsDNA autoantibodies, total IgG and IgM, and increased comple-
ment C4, versus placebo), although the trial's primary endpoint (SLE 
Responder Index- 4 at week 48) was not met.99 Safety results were 
similar across all arms, except that serious AEs were more frequent 
with 200 mg twice- daily fenebrutinib. More AEs led to treatment 
withdrawal in the fenebrutinib 200 mg twice- daily group (19%; 
n = 17) than in the fenebrutinib 150 mg once daily group (8%; n = 7) 
or placebo group (8%; n = 7). The most common reason for discon-
tinuation was lymphopenia (n = 1 and n = 3 in the 150 mg daily and 
200 mg twice- daily arms, respectively; n = 0 in the placebo arm).99

In addition to these two “front runners,” other agents are in 
development for immune- mediated dermatological conditions. 
Rilzabrutinib has been investigated in the multicenter, proof- of- 
concept, phase II, BELIEVE study in 27 patents with moderate and 
moderate- to- severe pemphigus vulgaris.100 Rilzabrutinib is being 
studied further in the pivotal, phase III, PEGASUS trial (131 patients 
with pemphigus vulgaris or pemphigus foliaceus have been enrolled 
worldwide); this trial did not meet its primary or key secondary 
endpoints.101,102 Tirabrutinib is already approved for recurrent or 
refractory primary central nervous system lymphoma and under reg-
ulatory review for WM and lymphoplasmacytic lymphoma in Japan, 
and is in clinical development in Japan for pemphigus.88,103 Patients 
are currently being recruited for phase II trials of branebrutinib: one 
in atopic dermatitis and the second in a range of conditions including 
SLE.104,105

4.4  |  The potential of BTK inhibitors to address 
unmet clinical needs in dermatology

Recent years have seen a number of therapeutic advances in 
immune- mediated dermatological conditions such as CSU or pem-
phigus and also in SLE. The availability of monoclonal antibodies for 
the treatment of these conditions (e.g., omalizumab, rituximab, and 
belimumab, respectively106– 108) is a particularly exciting prospect. 
These biologic agents are, nonetheless, associated with limitations, 
such that important unmet needs remain in the management of 
these diseases.

Firstly, nearly a third of patients with CSU remain symptomatic 
when receiving licensed doses of omalizumab, even after 6 months 
of treatment.109 Strategies such as updosing and biomarker pro-
filing are being investigated to try and improve the rate of clinical 
response.109,110 The second limitation relates to the route of adminis-
tration of the monoclonal antibody treatments. Those administered 
subcutaneously require training in self- administration from a health-
care professional, while treatments administered intravenously are 

associated with considerable healthcare resource burden as dosing 
must be carried out in a hospital setting. In terms of mode of action, 
biologic treatments target one specific molecule. For conditions 
such as CSU or SLE with multifactorial pathogenesis, this may not 
be the optimal therapeutic approach. It is also important to consider 
the tolerability profiles of these biologic agents. The safety profile 
of omalizumab is generally considered highly favorable, although 
it demonstrated an increased frequency of mild- to- moderate AEs, 
which were mainly upper respiratory tract infections, compared with 
placebo in clinical trials.111 Rituximab is generally well tolerated, but 
treatment is associated with a rare, yet important, risk of infusion- 
related reactions.112 Moreover, there is also a risk of severe infec-
tions during rituximab treatment, which may be fatal.113 Belimumab, 
which has been shown to improve mucocutaneous manifestations 
of SLE,114 demonstrated a similar overall rate of AEs as placebo in 
SLE clinical trials.115 However, it has also been associated with a risk 
of rare but severe AEs such as serious infections, neoplasms, and 
progressive multifocal leukoencephalopathy.115

Drugs that target inhibition of the BTK pathway represent a 
new therapeutic approach for patients with immune- mediated 
dermatological conditions and have the potential to address previ-
ously unmet needs. In contrast to monoclonal antibody treatments, 
these agents feature oral administration (although requiring more 
frequent dosing, so the likely impact on adherence is unclear) and a 
favorable mechanism of action that targets a significant pathogenic 
pathway rather than a single molecule. BTK inhibitors do not carry 
the safety concerns that have been associated with the biologic 
treatment options.

Generally speaking, across the immune- mediated diseases 
market, small molecules are more accessible than biologics due to 
disparities in their science, production strategies, and existing gov-
ernment policies.116 However, pharmacoeconomical comparisons 
should be informed by other aspects such as efficacy, safety, direct, 
and indirect health and societal costs of treating chronic inflamma-
tory diseases. Regarding diseases such as CSU or pemphigus, small 
molecules such as BTK inhibitors are entering a space already pop-
ulated with approved biologic therapies, and only time can tell how 
this market will evolve.

It is also worth considering that BTK inhibitors may prove a useful 
tool to address gaps in understanding of the functions of MCs, baso-
phils, and B cells, and their roles in the pathogenesis of skin diseases.117 
For example, research with ibrutinib using the chronic urticaria– 
basophil activation test (CU- BAT) has helped to show that the IgE/
FcεRI- BTK pathway is dominant for the degranulation of basophils 
treated with sera of patients with autoimmune CSU, but that its inhibi-
tion does not completely abrogate basophil activation in all patients.118

5  |  CONCLUSIONS

The development of treatments for immune- mediated dermatologi-
cal conditions presents a particular challenge: A successful therapy 
not only must be effective but also boast a tolerability profile that 
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is acceptable for the long- term treatment of a chronic condition that 
affects quality of life but does not significantly reduce life expec-
tancy. BTK inhibitors present themselves as promising candidates 
for this role. The wide- ranging clinical potential of BTK inhibition is 
based on the involvement of BTK in various inflammatory mecha-
nisms and in the pathogenesis of many immunological disorders. 
Somewhat paradoxically, BTK inhibitors may also offer high levels 
of specificity with improved tolerability versus existing treatment 
options, owing to reduced off- target activity. There is currently a 
focus on development of these agents in CSU and pemphigus, but 
they also have potential in SLE and other allergic/autoimmune dis-
orders. In addition to inhibition of FcεRI signaling in MCs and baso-
phils, other effects such as blocking of BCR signaling and disruption 
of autoantibody production may contribute to the efficacy of these 
agents and are worthy of further study.
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