
 International Journal of 

Molecular Sciences

Review

High-Molecular-Weight Glutenin Subunits: Genetics,
Structures, and Relation to End Use Qualities

Yi Li 1,2,†, Jiahui Fu 1,†, Qun Shen 3 and Dong Yang 1,2,*

����������
�������

Citation: Li, Y.; Fu, J.; Shen, Q.; Yang,

D. High-Molecular-Weight Glutenin

Subunits: Genetics, Structures, and

Relation to End Use Qualities. Int. J.

Mol. Sci. 2021, 22, 184. https://

dx.doi.org/10.3390/ijms22010184

Received: 26 November 2020

Accepted: 23 December 2020

Published: 26 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional
Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China;
sy20193061047@cau.edu.cn (Y.L.); s20193060969@cau.edu.cn (J.F.)

2 Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University,
Xinghua 225700, China

3 Key Laboratory of Plant Protein and Grain Processing, National Engineering Research Center for Fruit and
Vegetable Processing, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China;
shenqun@cau.edu.cn

* Correspondence: dyang@cau.edu.cn; Tel.: +86-10-6273-7129
† These authors share equal co-first contribution.

Abstract: High-molecular-weight glutenin subunits (HMW-GSs) are storage proteins present in the
starchy endosperm cells of wheat grain. Encoding the synthesis of HMW-GS, the Glu-1 loci located
on the long arms of group 1 chromosomes of the hexaploid wheat (1A, 1B, and 1D) present multiple
allelism. In hexaploid wheat cultivars, almost all of them express 3 to 5 HMW-GSs and the 1Ay gene
is always silent. Though HMW-GSs are the minor components in gluten, they are crucial for dough
properties, and certain HMW-GSs make more positive contributions than others. The HMW-GS acts
as a “chain extender” and provides a disulfide-bonded backbone in gluten network. Hydrogen bonds
mediated by glutamine side chains are also crucial for stabilizing the gluten structure. In most cases,
HMW-GSs with additional or less cysteines are related to the formation of relatively more or less
interchain disulfide bonds and HMW-GSs also affect the gluten secondary structures, which in turn
impact the end use qualities of dough.

Keywords: HMW-GS; end use qualities; interchain disulfide bonds; secondary structures

1. Introduction

Wheat is one of the most widely grown cereal crops worldwide with hexaploid wheat
(Triticum aestivum L., AABBDD) being a representative one. According to the Agricultural
Market Information System (AMIS), the estimate of world wheat production is 764.9 million
tons in 2020 to 2021 [1]. Take China as an example, as the world’s largest wheat producer,
China produced 131 million tons of wheat and consumed 128 million tons in 2019, among
which 67.7% was used for food and 15.0% was used for feed [2]. Protein makes up
approximately 8% to 20% of the total mass of mature wheat grains [3]. Based on their
solubility, protein in wheat grain can be categorized into four classes: albumin, globulin,
gliadin, and glutenin [4]. The latter two, gliadin and glutenin, are the major components
of gluten, which are similar in content and together accounts for approximately 80–85%
of wheat protein [3]. The protein of wheat grain, especially gluten protein, is generally
regarded as one of the most important factors determining dough properties and bread
qualities [5–7].

Defined as the remaining rubbery mass after gently washing wheat dough to re-
move the bulk starch granules and water-soluble components, gluten usually contains
approximately 75–85% protein on a dry weight basis, depending on the thoroughness
of washing [8]. Glutenin subunits are the monomeric component of a gluten polymer in
dough through covalent disulfide linkage and noncovalent interactions including hydro-
gen bonding and hydrophobic interaction, forming a tight gluten network backbone and
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providing dough elasticity as well as dough strength. On the other hand, most gliadins
exist in their monomeric form, affording dough viscosity and extensibility via electrostatic
interactions and hydrogen bonding [9,10]. Gliadins can be further separated from gluten
by dissolving in 60% to 70% (v/v) ethanol solution. Besides, the solubility of glutenin
subunits from gluten would be similar to gliadins in aqueous alcohols if the disulfide
bonds are reduced [8]. Based on their electrophoresis mobility on a sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), reduced glutenin from dough
can be further categorized into High-molecular-weight glutenin subunits (HMW-GSs,
MW of 67,000–90,000 Da) and low-molecular-weight glutenin subunits (LMW-GSs, MW of
30,000–45,000 Da) [11–14]. Though HMW-GSs are minor components in terms of mass
(approximately 10% of gluten protein), they are highly related to end use quality [8]. This re-
view aims to describe the genetics and different levels of structures of HMW-GS, and their
relationships to dough and bread-making qualities.

2. Genetics of HMW-GS

It is now firmly established that genes named Glu-1 loci encoding the synthesis of
HMW-GS (Glu-A1, Glu-B1, and Glu-D1) are located on the long arms of group 1 chromo-
somes of the hexaploid wheat (1A, 1B, and 1D) (Figure 1) [15–18]. Each locus includes
2 genes linked together encoding 2 different types of HMW-GS, the x-type subunits with a
relatively higher molecular weight and the y-type subunits which exhibit relatively higher
electrophoretic mobility on the SDS-PAGE [12–14,19–21]. Moreover, subloci differences
are greater than homoeoallelic differences. For example, differences between Glu-D1x
genes (genes encoding x-type subunits) and Glu-D1y genes (genes encoding y-type sub-
units) are greater than differences between Glu-D1y genes and Glu-B1y genes, as shown in
Figure 2 [22,23].
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Figure 1. Schematic diagram of the gene loci of a high-molecular-weight glutenin subunit (HMW-GS)
in wheat chromosome 1: the genes coding the synthesis of HMW-GS are located on the long arms of
group 1 chromosomes 1A, 1B, and 1D.

2.1. Allelic Variations of Glu-1 Loci

The Glu-1 loci present multiple allelism: 3 alleles at the Glu-1A loci, 11 alleles at
the Glu-1B loci, and 6 alleles at the Glu-1D loci were systematically reported by isolating
HMW-GSs from SDS-PAGE in 1983, in which the numbering system developed to identify
HMW-GS and provide a chromosomal location of the genes is currently still in use [24].
Polymerase chain reaction (PCR) and immunoassay using specific monoclonal antibodies
are alternative ways of isolating novel genes encoding HMW-GS [25–28]. Since the pub-
lication of the catalog of gene symbols for wheat, more than 100 allelic variations at the
Glu-1 loci have been identified [29]. According to the collections of the HMW-GS alleles
from over 7830 cultivars/lines, there is no doubt that the Glu-1 loci exhibits high genetic
polymorphisms [30]. In particular, the Glu-1B and Glu-1D alleles display higher variable
frequency while that of the Glu-1A alleles is a much lower. Recently, a number of novel
Glu-1 genes from wheat landraces or related species have been identified to be of potential
application values to wheat breeding, and efforts have also been made to transfer desirable
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Glu-1 alleles to cultivated wheat by wide hybridization and chromosomal engineering
approaches [14,31–36].
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Working on HMW-GS allelic variations to improve wheat bread-making qualities has
been an attractive research topic in the past several decades. Some allelic variations make
greater contributions to dough elasticity and strength as well as loaf volume than others.
In general, the Glu-D1 loci exhibited the most significant effect on dough and bread-making
properties, followed by Glu-B1 and Glu-A1 [37–39]. Furthermore, several studies found
that both Glu-D1 and Glu-B1 exhibit significant effects on dough qualities on their own,
whereas the effects of Glu-A1 loci depend on the presence of other Glu-1 subunits [40].

As for specific alleles encoding HMW-GSs, the Glu-A1a allele encoding 1Ax1 and
the Glu-D1d allele encoding 1Dx5 and 1Dy10 were reported to be associated with better
bread-making qualities, and the beneficial effects of these two alleles are additive [19].
Later, in 1987, after analysis of 84 hexaploid wheat varieties, the Glu-1 quality scores
assigned to each HMW-GS and corresponding alleles were reported. Among the alleles
reported in the research, wheat containing the Glu-D1d allele encoding 1Dx5 and 1Dy10
represents the highest score, corresponding to higher bread-making qualities, while Glu-
A1c, Glu-B1a, Glu-B1d, and Glu-D1c represent the lowest scores, corresponding to poor
bread-making qualities [16]. By comparing the rapid mix test score from 153 German wheat
varieties, it was discovered that the bread-making quality was positively influenced by
alleles encoding subunits 1Ax1, 1Ax2*, 1Bx7 + 1By9, 1Bx14 + 1By15, 1Bx17 + 1By18, and
1Dx5 + 1Dy10 [41]. Meanwhile, by studying the deletion of combinations of HMW-GS
loci, contributions of each HMW-GS to dough processing properties were ranked in the
following order: 1Dx5 + 1Dy10 > 1Bx17 + 1By18 > 1Ax1 + Null [40]. Nevertheless, several
studies argue that all HMW-GSs contribute positively to dough or bread-processing quality
but only differ in magnitude, since the absence of HMW-GS with weaker effects, such as
1Dx2, 1Dy12, 1Bx20, and 1By20, also led to inferior flour-processing quality in wheat
mutants [42–46].

2.2. Gene Expression

The mechanism that regulates HMW-GS expression remains largely unclear [47].
Some conserved cis-acting elements related to the expression of storage proteins have been
identified in HMW-GS gene promoters [47–50]. To date, storage protein activator (SPA),
a member of the basic leucine zipper (bZIP) family, has been identified to play a key role in
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the regulation of wheat grain storage protein synthesis [51–55]. From a theoretical point of
view, the hexaploid wheat cultivars could express 6 different HMW-GSs, 1Ax, 1Ay, 1Bx,
1By, 1Dx, and 1Dy, while in fact, owing to gene silencing, almost all of them express 3
to 5 HMW-GSs depending on wheat cultivars except the few hexaploid wheat cultivars
expressing all 6 HMW-GSs [56–58]. The expression frequencies of 1Dx, 1Dy, and 1Bx are
usually the highest, while the 1Ax and 1By subunits sometimes are not expressed at all.
On the other hand, the 1Ay subunit is often not expressed in the hexaploid wheat, whereas
its expression is frequently reported in diploid and tetraploid wheat [19,59–61].

2.2.1. Progress on the Ay Gene

Since 1Ay genes show a high frequency of silence in the hexaploid wheat, researchers
have focused on their promoters and coding region structures to explore probable causes.
Comparing the 5′ upstream promoter region of the active gene encoding 1By9 with the
same region from a silent y-type gene derived from chromosome 1A, it was discovered
that there is a deletion of 85 bp bases in the latter, which was also found in the 5′ upstream
promoter region of the inactive Ay1d gene from the cultivated emmer (Triticum dicoccum,
2n = 4x = 28, AABB) [62,63]. However, analysis of 141 accessions of diploid and tetraploid
wheats found this 85 bp deletion to be present in the promoter regions of all 9 1Ay genes,
regardless of whether these genes are active or not [64]. Researchers later constructed
two promoter–GUS (β-glucuronidase) reporter gene chimeric vectors, pBI121-Ay-GUS
and pBI121-Dx5-GUS, in which the native promoters were replaced by promoters from an
inactive 1Ay gene and an active gene encoding 1Dx5, respectively. The transient expression
of promoter–GUS constructs indicated that the 1Ay promoter can drive the expression
of the GUS gene, verifying that 85 bp deletion in the promoter is not associated with
inactivation of 1Ay genes [60].

As for the coding region, an 8-kb insertion retroelement in a cloned pseudo 1Ay
gene from wheat cultivar Chinese Spring (Triticum aestivum L., AABBDD), termed wheat
insertion sequence-2 (Wis-2), was reported, which interrupts the coding sequence [62].
Similarly, the Ay gene coding sequence in a tetraploid wheat cultivar, T. turgidum (AABB),
is also disrupted by an insertion of a Wis retroelement, Wis-3, which may result in silencing
of the Ay gene [65]. Besides the above, many scholars have focused on the stop codons
in the coding region as well. Translations of three silenced Ay genes from the diploid
and tetraploid wheat species, together with silencing of 1Ay (from hexaploid wheat cv.
Cheyenne) were disrupted by premature stop codons [64]. This is consistent with a previous
study showing that the coding region of an inactive Ay gene, namely Ay1d, contains four
stop codons [63]. In conclusion, these genes were highly unlikely to be expressed with full
length and defects in the coding regions could be responsible for silencing of the 1Ay genes.

Since the Glu-1Ay gene is usually silenced in hexaploid wheat, the utilization of active
1Ay genes might be an effective strategy for improving flour quality. An active allele encod-
ing 1Ay subunits was successfully integrated from wild emmer wheat (Triticum turgidum
ssp. dicoccoides) into the hexaploid wheat (Triticum aestivum) [66]. In this study, the selected
line TaAy7-40, which expresses 1Ay subunits stably, was reported to possess better pro-
cessing quality. Two Swedish hexaploid wheat lines (W29323 and W3879) were found to
contain both active 1Ax and 1Ay genes and the corresponding expressed subunits were
initially named 21* and 21*y, which were later found inherited as a pair [57]. Moreover,
the allele encoding 1Ax21* and 1Ay21* were also integrated into two Australian wheat cul-
tivars and was found to have no significant alterations in their agronomic traits. However,
the integration of the Ay subunit showed positive effects in protein and gluten content,
protein composition, dough mixing properties, and Zeleny sedimentation values [67].
In 2019, scholars reported that expression of the gene encoding 1Ay21* has the potential to
simultaneously increase protein content and grain yield under certain environment [68].
Thus, the active Glu-1Ay allele might be of potential value in breeding aiming to improve
wheat flour quality.
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2.2.2. Progress on the Bx7 Gene

Among various kinds of alleles, researchers discovered a unique Glu-B1al allele en-
coding overexpression of 1Bx7 (Bx7OE). This allele is highly associated with improved
dough strength, which has been found in many cultivars and landraces [69–73]. However,
an Australian cultivar H45, though confirmed to overexpress Bx7 subunits, had relatively
low un-extractable polymeric gluten (an indicator of weak dough), the corresponding allele
of which was then designated as Glu-B1br [74].

Compared to the gene encoding normal 1Bx7 subunits, the gene encoding 1Bx7OE

shows an 18 bp nucleotide duplication in the coding region and a 43 bp insertion in
the matrix-attachment region (MAR) upstream to the gene promoter [75,76]. However,
evidence indicated that these 18- and 43-bp sequence insertions are not associated with
the high expression levels of 1Bx7 because the 18- and 43-bp indels were also found in
accessions other than Bx7OE [77]. There is also evidence that the Glu-B1al allele includes
two copies of its x-type glutenin gene [71]. Later, by sequencing a bacterial artificial
chromosome (BAC) clone encompassing the Glu-B1 locus, scholars reported a 10.3-kb
segmental duplication including the Bx7 gene and a flanking long terminal repeat (LTR)
retroelement [78]. Meanwhile, according to research collecting a large amount of diploid,
tetraploid, and hexaploid accessions, the LTR retroelement/duplication genomic structure
was not found in accessions without Bx7 overexpression. These results indicated that
gene duplication at the Glu-B1 locus mediated by insertion of a retroelement may lead to
overexpression of the Bx7 subunits [77].

3. Structures of HMW-GS
3.1. The Primary Structures

The mature HMW-GSs consist of three structural domains: a nonrepetitive N-terminal
domain comprising approximately 81–104 residues and a C-terminal domain of 42 residues,
flanking a repetitive central domain with 481 to 872 residues [79]. The repetitive central
domain, as the largest part of HMW-GS, is identified by three types of primary repeat
units in the x-type subunits and two types of primary repeat units in the y-type sub-
units. In the x-type subunits, the repeat units are the tripeptides (GQQ), hexapeptides
(PGQGQQ), and nonapeptides (GYYPTSPQQ). In the y-type subunits, the repeat units
are the hexapeptides (PGQGQQ) and nonapeptides (GYYPTSLQQ) [80–82]. Note that the
tripeptide and hexapeptides of the x-type subunit are always present in tandem with each
other [83]. While the N- and C-terminal regions are quite conservative, variations in the
central repetitive domain, particularly the number of tripeptides and hexapeptides, are the
main causes of differences in subunit size [79,82,84,85]. Meanwhile, as indicated by the
amino acid composition, the central repetitive domain exhibited hydrophilic properties
while the N-terminal and C-terminal domain exhibited hydrophobic characteristics [81,82].
A recent study shows that the central repetitive domain could be folded in the action of
wheat protein disulfide isomerase, which serves as the basis of dough extension [86].

3.2. Cysteine Residues and Disulfide Bonds

The distribution of cysteine residues in typical x-type and y-type subunits are shown
in Figure 3. In general, most x-type subunits contain four cysteines, three in the N-terminal
domain and one in the C-terminal domain [31,82]. The 1Dx5 subunit contains an additional
cysteine at the beginning of the repetitive domain, while the 1Bx14 and 1Bx20 subunits
contain only two cysteine residues, one in the N-terminal region and the other in the
C-terminal domain [87–91]. A typical y-type subunit contains seven cysteines: five in
N-terminal domains, one in the central repetitive domain, and one in the C-terminal
domain [22,31]. Cysteine residues in the central domain of all y-type subunits usually do
not exist in the x-type subunits.
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central repetitive domain. Two cysteine residues in the N-terminal of the y-type HMW-GSs are absent in the x-type.
In HMW-GS 1Dx5, there is one additional cysteine residue in the repetitive domain near the N-terminal side, and there is an
additional cysteine residue in the repetitive domain of the HWM-GSs 1By and 1Dy near the C-terminal side.

Though cysteines are less abundant in HMW-GS, they are extremely crucial to the
structure and functions of gluten [92]. Cysteines in the HMW-GSs form either intrachain
disulfide bonds or interchain disulfide bonds with other HMW-GSs or LMW-GSs through
oxidation, e.g., by catalysis of wheat protein disulfide isomerase [6,83,93,94]. In general,
the HMW-GS acts as the “chain extender” of the gluten network owing to the fact that,
in most cases, each HMW-GS can provide at least two cysteines participating in the forma-
tion of interchain disulfide bonds to form larger gluten aggregates, and it can be further
improved by the addition of a so-called flour improver, which are oxidants in nature
(e.g., azodicarbonamide and ascorbic acid) [8,95]. According to a structural model for
wheat gluten, the HMW-GS provides a disulfide-bonded backbone which forms the basis
for “branches” of LMW-GS linked by interchain disulfide bonds and interacts with gliadins
by noncovalent interactions [96]. In addition, interchain disulfide bonds play an important
role in stabilizing HMW-GS polymers [97]. For these contributing to gluten formation,
the disulfides bonds are called “rheologically active” and others are “rheologically inac-
tive”, and the former is catalyzed by wheat protein disulfide isomerase [98]. In FT-Raman
Spectroscopy, the band appearing at 497 cm−1 is related to the interchain disulfide bond.
Studies have shown that the content of interchain disulfide bond is positively associated
with dough properties [99–101]. However, up to now, interchain bonds related to HMW-GS
extracted from gluten have only been found: (1) between cysteines in a y-type HMW-GS
N-terminal domain and the corresponding residue of another y-type HMW-GS, which are
connected in parallel; (2) between the cysteine of a y-type HMW-GS repetitive central
domain and a cysteine in LMW-GS; (3) and between the additional cysteine of 1Dx5 and
the cysteine of an x-type HMW-GS C-terminal domain. Intrachain disulfide bonds related
to HMW-GS extracted from gluten have only been between the adjacent cysteines of the
N-terminal domain of 1Bx7, which is in line with a molecular model [102–105]. Other schol-
ars have also proposed two possible patterns of disulfide bond formation according to the
homology modeling and molecular dynamics simulations of the N-terminal domain of
1Dy10 [106]. Later in 2017, disulfide linkages in a recombinant N-terminal domain of 1Dx5
(1Dx5-N), which contains three cysteine residues (Cys10, Cys25, and Cys40), were dissected
by site-directed mutagenesis and liquid chromatograph-mass spectrometer/mass spec-
trometry (LC-MS/MS). According to the LC-MS/MS results, intermolecular linkages were
found in many combinations among Cys10, Cys25, and Cys40, indicating that the disulfide
linkages between Cys10, Cys25, and Cys40 were not conserved strictly. Meanwhile, it was
identified that Cys10 and Cys40 were the active sites for intermolecular linkages and that
intramolecular linkages were only found between Cys25 and Cys40, which is contradictory
to a molecular model of 1Dx5-N with no formation of intramolecular disulfide bonds by
prediction [105,107]. Besides, the addition of 1Dx5-N greatly enhanced the formation of
a gluten network through disulfide bonds cross-linking and hydrophobic interactions,
which exerted a synergistic effect and thus contributed to the superior improvement in
dough qualities [108].

It has been reported that, in most cases, HMW-GSs with additional or less cysteines
were supposed to give rise to relatively higher or poorer qualities. The additional cysteine
in 1Dx5, which might form another interchain bond, is supposed to be responsible for the
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superior bread properties exhibited in cultivars expressing 1Dx5 subunits [101,103,109].
As for HMW-GSs with less cysteine residues, scholars compared the effects of 1Bx20 subunit
with two cysteine residues versus subunit 1Bx7 containing four cysteine residues and dis-
covered that the wheat line carrying a 1Bx20 subunit exhibited less large glutenin polymer
formation and poorer mixographic parameters [110]. Similar results have been obtained
that incorporation of 1Bx20 subunits to base flour only resulted in small effects, either posi-
tive or negative, on dough strength and stability [25]. Meanwhile, 1Bx14*, which contains
only two cysteine residues resulting in less formation of intermolecular disulfide bonds,
is suggested to be partially the reason of poor milling quality [111]. These experiments
fully demonstrated a role of the number of cysteine residues in determining the formation
of glutenin polymers and subsequent rheology parameters of dough.

In addition to cysteine, glutathione (GSH), which is naturally present in wheat flour,
also plays a critical role in polymerization. GSH contains one cysteine and can easily be
oxidized to form GSSG or protein bound glutathione (PSSG, Equation (1)) [112].

GSH + PSSP→ PSSG + PSH (1)

That is to say, GSH may cleave the SS bonds of glutenin polymers and promote free
cysteine formation, resulting in the trigger of SH/SS interchange reactions. Meanwhile,
GSSG reacts with free sulfhydryl groups of aggregated glutenins during polymerization
and generates PSSG. Finally, the average molecular weight of gluten network proteins
decreases and dough softening occurs [112,113].

3.3. Secondary Structures of HMW-GS

The N- and C-terminal domains are both considered to be rich in α-helixes [114,115].
As for the central repetitive domains, β-reverse turns were initially proposed to be the dom-
inant structural feature, as supported by the circular dichroism (CD) and Fourier transform
infrared spectra (FTIR) study of synthetic peptides designed with the consensus peptides
PGQGQQ and GYYPTSPQQ of HMW-GS [80,115–117]. These regularly repeated β-turns
in the HMW-GS were organized into a β-spiral structure, supported by scanning tunneling
microscopy images of 1Dx5 [116,118–120]. Analyses of the data from viscometric and small
angle X-ray scattering also indicated that the structure of both reduced (no formation of
disulfide bond) and alkylated HMW-GS are rod-shaped [119,120]. Despite β-turns, FTIR of
HMW-GS in the hydrated solid state also indicated the presence of intermolecular β-sheet
structures owing to the formation of extensive hydrogen bonds, which may be promoted
by the N- and C-terminal domains [114,119,120]. The content of β-sheets was reported to
change according to water content and temperature [121,122].

Although interchain disulfide bonds are crucial for stabilizing the HMW-GS polymers,
nuclear magnetic resonance (NMR) studies indicate that hydrogen bonds mediated by glu-
tamine side chains may also play an important role in stabilizing the gluten structure [121].
A “loop and train” model has been proposed for the contribution of such hydrogen bond-
ing to gluten elasticity, in which HMW-GS has unbonded mobile regions (loops) and
bonded regions (trains) at intermediate moisture contents [123]. The loops can be stretched,
and when the stress is removed, reestablishment of the loop-train equilibrium provides
the elastic restoring force; as a result, extension of the dough will result in stretching of
the “loops” and “unzipping” of the “trains” [10]. The formation of interchain hydrogen
bonds between glutamine residues may account for this observation as well [124,125].
Later, this model was further supported by many studies. NMR experiments showed that
some parts of a purified HMW-GS chain were held in a much less mobile state, even at
higher water contents [121]. According to the carbon and proton solid-state NMR study,
regions rich in glutamine and glycine residues may form more mobile (or loop) parts of the
network whereas regions containing high amount of hydrophobic residues intermingled
with glutamines residues may form the junction zones (trains) [126]. In addition, the
ratio of these “loops” and “trains” vary with the hydration level and with the length as
well as sequence of the repetitive domain [121,127,128]. As the hydration level increases,
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the system is plasticized, allowing the orientation of β-turns in adjacent β-spirals to form
structures that resemble an “interchain” β-sheet. Further extension will disrupt these
“trains”, while release from the extension will result in reformation of the equilibrium
balance, resulting in elastic recoil. Support for this hypothesis comes from a study in which
changes in gluten-protein conformation were determined by FTIR spectroscopy during
protein deformation [128].

4. Relationship to End Use Qualities

It has been reported that different HMW-GSs affect the proportion of gluten secondary
structures, and higher contents of β-sheets and β-turns of gluten are generally considered
to be associated with better dough qualities [101,108,122,129]. A near-isogenic line with
the highest content of β-turns was reported to yield the greatest dough viscoelasticity,
while another with the highest content of β-sheets exhibited the greatest wheat dough
strength. Meanwhile, it was also mentioned that significant differences in the secondary
structures of different wheat lines were mainly caused by their HMW-GSs [129]. Similar
results from another research reported that the proportion of secondary structure of gluten
in three wheat near-isogenic lines mainly resulted from the different HMW-GS composi-
tions encoded by Glu-A1 and Glu-D1 loci and that the content of β-sheets in gluten has
a significant relationship with dough rheological properties [101]. Compared with the
normal Bx7 subunits, Bx7OE subunits of a wheat near-isogenic line were also reported
to yield increased content of β-sheets in gluten secondary structure and were related to
superior dough rheological properties [130]. Besides, HMW-GSs with higher content of
β-strands, indicated by secondary structure prediction, may be helpful to form a better
gluten structure [131]. A longer repetitive domain or a higher proportion of repeats units
of HMW-GSs may produce more β-turns, which confer elasticity to the polymers and are
supposed to be positively related to dough and bread-making qualities [33,132–136].

Currently, scholars hold different views on the effect of α-helixes content on the
dough quality. Compared with subunits from hexaploid wheat, subunits from TD-256,
a cultivar with poor flour quality, possess less α-helixes quantity according to a secondary
structure prediction study [111]. This indicated that the α-helixes content of HMW-GSs
may exhibit positive effects on dough quality, supported by many other studies [131,133].
However, the content of α-helixes of gluten was reported to be negatively correlated with
that of β-sheets, which could be explained by the transformation between α-helixes and
β-sheets under certain conditions [122,129]. More α-helixes lead to less β-sheets, and the
latter correlates positively with dough quality. Scholars further argue that α-helix content
showed a negative correlation with dough quality [122]. In fact, significant correlations
were found between the percentage of unextractable polymeric protein and the secondary
structures mentioned above, so these secondary structures could be used as indicators for
end product quality of dough [137].

5. Conclusions

HMW-GSs of wheat grain play a key role in determining rheological dough properties
and end use properties. Both the interchain disulfide bonds and hydrogen bonds mediated
by glutamine side chains are crucial for stabilizing the gluten structure. Specific alleles
encoding HMW-GSs make greater contributions. In most cases, HMW-GSs with additional
or less cysteines were supposed to give rise to relatively more or less formation of interchain
disulfide bonds. As for secondary structures, HMW-GSs affect dough qualities by acting on
the secondary structures’ composition of gluten. Though cumulative work has been carried
out for the relationship between the genetics/structures of HMW-GSs and dough end use
qualities, it is essential to explore the mechanism of crosslinking via disulfide bonds among
different types of HMW-GS and other gluten components more specifically to establish
an accurate model for the role that HMW-GSs play in the dough. The number of cysteine
residues, the length of the repetitive domain, and the secondary structure content could
be used as predictors to evaluate the quality of novel HMW-GSs for molecular breeding.



Int. J. Mol. Sci. 2021, 22, 184 9 of 14

Meanwhile, more efforts should be made to transfer desirable Glu-1 alleles to cultivated
wheat via hybridization and chromosomal engineering approaches.
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