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Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low
abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in
deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield
errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our
paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage
library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear
vector and operator framework. We describe a phage library as N×1 frequency vector 𝑛 = ‖n

𝑖
‖, where n

𝑖
is the copy number of the

𝑖th sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is
an operator acting on 𝑛. Selection, amplification, or sequencing could be described as a product of a N ×Nmatrix and a stochastic
sampling operator (Sa). The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the
properties of Sa and use them to define the sequencing operator (Seq). Sequencingwithout any bias and errors is Seq = Sa IN, where
IN is a N × N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix
(CEN), which describes elimination or statistically significant downsampling, of specific reads during the sequencing process.

1. Introduction

In vitro selection experiments—such as phage display [1, 2],
RNA display, SELEX, and DNA aptamer selection [3, 4]—
employ large libraries, from which 102–106 active sequences
are identified through iterative rounds of selection and
amplification.With the recent emergence of deep sequencing,
it became possible to extract a large amount of information
from the libraries before and after selection [5–10]. Deep
examination of the library is a promising technique for direct
evaluation of binding capacities of all binding sequences from
one panning experiment. Deep sequencing also allows the
characterization of unwanted phenomena in selection, such
as amplification bias [6, 11].

Analysis of 106 reads by deep sequencing gave rise to a
large number of errors that were not present in the analysis
based on the small number of sequences obtained using
the Sanger method. Analysis of errors in information-rich

datasets is a problem with over 50 years of history; correction
of digital data made of bits or words is a topic of intense
research in communication theory [12]. As phage display
operates with limited digital sets, data analysis techniques
from the communication theory could be applied to phage
display. For example, Rodi and coworkers used a positional
frequency matrix to calculate the informational content or
Shannon entropy of each sequence [13]. This approach could
be used to distinguish potential fast growing sequences
from potential hits [14]. With the introduction of deep
sequencing, the problem of error analysis in phage display
becomes identical to a classical information theory problem:
“reproducing at one point, either exactly or approximately,
a message selected at another point” [15]. The “message” is
the sequence information stored in the library. Sequencing
process transmits this information andmakes either stochas-
tic or predictable errors. Understanding the sources of errors
during sequencing could provide mechanisms for bypassing
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them, for correcting the errors, and for maximizing the
amount of useful information received from sequencing.

There are over 10,000 published literature reports that
contain the terms “deep sequencing” or “next generation
sequencing” or any of the trademark names such as “Illu-
mina” (reference: ISI database). Among these reports, less
than 10 published reports describe sequencing of phage-
displayed libraries [5–7, 9, 10, 16–19]. Deep sequencing efforts
in the literature are largely focused on genome assembly and
metagenomic analyses.The error analysis techniques tailored
for genome assembly cannot be used directly for analysis of
phage libraries because the data output from phage library
sequencing is very different from the genome assembly. In
genome assembly, genomic DNA is shredded into random
fragments and sequenced. The genome is then assembled
from these fragments in silico. Although multiple fragments
cover each area of the genome, the probability to observe
two identically shredded fragments is very small. Two exact
sequences, thus, could be considered amplification artifacts
and removed by error analysis software. On the contrary,
in phage-display sequencing, the reads are exactly of the
same length. Duplication of the same read is important for
validation of the accuracy of this read. Some researchers focus
exclusively on reads that have been observed multiple times
and discard singleton reads as erroneous [5]. Within each
library, the copy numbers of sequences range continuously
by six or more orders of magnitude [5, 6, 9]. Some phage
clones are observed in the entire library only a few times;
other clones could be present at copy number of 100,000 per
sequencing run [5, 6, 9]. Unlike multiple cells with identical
genomes, each screen is unique: identical set of sequences
with identical copy numbers cannot be obtained even if the
screen is repeated due to stochastic number of the screen that
contains low copy number of binding clones [20].

Metagenomic analyses of microorganisms recovered
from environmental samples [21, 22], also known as “micro-
biome” [23] and “viriome” analyses [24], encountered similar
problems to those observed in phage library analysis: the
concentration of species observed in a particular sample
is unequal [25]. The abundance of species might range by
a few orders of magnitude [26]. It is possible that error
analysis tools developed in the above areas could find use
in phage display sequencing. For example, there are multiple
published algorithms for removing errors from low copy
number reads to ascertain that low copy number sequences
are new species and not sequencing errors (e.g., see [27–
29] and references within). Metagenomic analysis is usu-
ally more complex than analysis of phage-display libraries.
First, in metagenomics, the bacterial or viral genes must
be assembled from short reads de novo. Second, there is
no simple relationship between phylogenetic classification of
“species” and the observed DNA sequence. Third, the exact
number of species in the environment is unknown. On the
other hand, sequencing of phage-displayed peptide libraries
has none of these problems: (i) it requires no assembly
steps because each sequence is covered by one read; (ii) a
uniqueDNA sequence defines a unique “species”; and (iii) the
theoretical complexity in synthetic libraries is known exactly.
For small libraries, such as the library of 7-mer peptides,

the complexity, (20)7, is within the reach of next-generation
sequencing. We see phage-displayed peptide libraries as an
ideal model playground for the development of optimal
error analysis and error correction protocols. It is possible
that error analysis developed from phage libraries analysis
could then be used in other areas such as genomic and
metagenomic analyses.

The errors in sequencing could be divided into “anno-
tated” and “invisible.” The “annotated” errors that originate
from misincorporation of nucleotides are annotated using
Phred quality score [30].These annotated errors are removed
during the processing (see below). Examples of “invisible”
errors are sequence-specific frame shifts that lead to emer-
gence of truncated reads during the Illumina sequencing [31].
Invisible errors could also originate during the preparation of
the libraries for sequencing. Examples are removal of AT-rich
fragments during purification of dsDNA [32] and erroneous
incorporation of nucleotides during PCR [33, 34]. Mutations
have the most significant impact on the observed diversity of
the library.There are 63 ways to misspell a 21-mer-nucleotide
sequence with a one-letter error (point mutation). The large
dynamic range in concentrations of clones in the phage
library exacerbates the problem. Clones that are present in
high abundance—105 copies per read—are more prone to
yield errors [6]. For example, we observed that random point
mutations convert several short sequencewith a copy number
of 105 to a library of sequences with copy numbers ranging
from 1 to 102 [11]. In attempt to unify error analysis into one
convenient theoretical framework, we generalized all errors
as follows. All errors either lead to disappearance of particular
sequence or its conversion to another sequence of the same
length. Errors, thus, operate within a finite sequence space,
and it should be possible to use elementary linear algebra to
generalize most processes that lead to errors.

2. Theoretical Description

See Table 1.

2.1. Operator Description of the Phage-Display Library and
Selection Process. In our previous reports, we described the
phage library as a multiset, or a set in which members can
appear more than once [35]. This description also simplifies
the analysis of the errors in these libraries. The multiset
description represents a library with N theoretical members
as an ordered set of N sequences and N × 1 copy number
vector (𝑛) with positive integer copy numbers (Figure 1(a)).
Any manipulation of a phage library—such as erroneous
reading or selection—changes the numbers within the copy
number vector. All manipulations to the multiset, thus, could
be described by operators (Op) that convert vector 𝑛

1
to

another vector 𝑛
2
as 𝑛
2
= Op 𝑛

1
(Figure 1(c)). For an N × 1

vector, the operator is N×Nmatrix. If elements are selected or
eliminated independently of one another, the N×Nmatrix is
diagonal (Figure 1(d)). This approach is uniquely convenient
for libraries of short reads. For example, a library of 7-mers
contains exactly 207 = 1.28 × 109 peptides and is described
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Table 1: Symbols and definitions used in the theoretical description section.

Symbols Meaning
A, a, f, m, n, k Unless specified otherwise, normal font designates scalars
𝐴, 𝑎,𝑁, 𝑃, 1n, 13n Italic font designates vectors. Different vectors can be distinguished by the left-superscript notation
A, a, Abc, Pan, Sa Bold font designates operators or matrices (here all operators are matrices)
1A,fSa,0.9Sa,0.5Sa Operators can be distinguished by the left-superscript notation. For sampling operator Sa, this

notation specifies the sampling fraction of the Sa operator
A1, a2, A𝑖, a𝑗 Normal font with right subscript designates scalar values of the vector
A11, A21, Aij, Aii Normal font with two right subscripts designates scalar values of the 2D matrix
󵄩
󵄩
󵄩
󵄩
A
1
. . .A
5

󵄩
󵄩
󵄩
󵄩

Description of the scalar elements in the vector
󵄩
󵄩
󵄩
󵄩
󵄩
Aij . . .Aii

󵄩
󵄩
󵄩
󵄩
󵄩

Description of the scalar elements in the matrix
x ∈ [A B] Scalar x belongs to the inclusive scalar interval [A B]; that is, A ≤ x ≤ B
𝑥 ∈ [𝐴𝐵] Vector x belongs to the “vector interval” [𝐴𝐵]; that is, for every element Ai ≤ xi ≤ Bi

{ABC . . .X} Set where A, B, C,. . ., X are the unique elements of the set

{A(a) B(b). . .X(x)} Multiset (2-tuple) where A, B,. . ., X are the unique elements and a, b, x are the scalars describing the
copy numbers of the A, B, X elements

IN Unity matrix of the Nth order; that is, N × Nmatrix 󵄩󵄩󵄩󵄩
󵄩
Aij
󵄩
󵄩
󵄩
󵄩
󵄩
, Aij = 𝛿ij (Kronecker delta)

completely using a 109-element vector. This size is accessible
to the computational capacity of most desktop computers.

In operator notation, phage display can be described as

Sel = Pan Naive, (1)

where Naive is the copy number vector for näıve library,
Sel is the copy number vector after panning, and Pan is
a panning operator. In standard phage display, the Pan
operator is a complex product of all manipulation steps
(binding, amplification, dilutions, etc.). If a screen uses no
amplification and uses deep-sequencing [9, 16], or large-scale
Sanger sequencing [36, 37] to analyze the enrichment, it
might be possible to define the panning process as a simple
product of two operators as follows:

Pan = fSa Ka, (2)

Sel = fSa Ka Naive, (3)

where Ka is a deterministic “association” operator, which
contains association constants for every phage clone present
in the library. Description of such operator is beyond the
scope of this paper and we recommend consulting other
reports that attempted to generalize the selection procedure
[20]. Another operator in (3) is a sampling operator ( fSa),
which describes stochastic sampling of the library with m
sequences to yield a sublibrarywith f∗m-sequences, where f ∈
[0 1] is a sampling fraction. fSa operator has the following
properties, which emanate from physical properties of the
sampling procedure:

(I)

fSai 0 = 0 (sampling does not create new

sequences from nonexisting sequences) .
(4)

(II) fSa is a diagonal operator with diagonal scalar func-
tions ‖Sa

11
Sa
22
⋅ ⋅ ⋅ SaNN‖, Sai(0) = 0.

(III) In 𝐵 = fSa 𝐴, 𝐵 is a vector of positive integers,
B
𝑖
≥ 0 and sum(𝐵) = f∗sum(𝐴). Integer values

ensure that the observable values of the operator have
physical meaning. The clone could be observed once
(1), multiple times (2, 3, etc.), or not observed at all
(0).

(IV) Sa is nondeterministic operator. When applied to the
same vector, the operator does not yield the same
result but one of the possible vectors that satisfy rules
(I–III). The majority of the solutions of the operator,
however, reside within a deterministic confidence
interval fSa 𝐴 ∈ [ lo𝐶 hiC].

(V) As a consequence from (IV), operator Sa is nonlinear,
noncommutative, and nondistributive.

(VI) Large sum of sampling operators with same f should
“average out” to yield IN unity matrix

(
fSa
1
+

fSa
2
+

fSa
3
+ ⋅ ⋅ ⋅

fSak)
k

󳨀→ f∗IN,

as k 󳨀→ ∞.

(5)

The Sa operator is simple to implement as a random
array indexing function in any programming language (e.g.,
see Supplementary Schemes S1, and S2 available online at
http://dx.doi.org/10.1155/2013/491612). It might be possible
to express fSa analytically for any f as a diagonal matrix
(Figure 1(d)). In this paper, we use numerical treatment by
an array sampling function because it is more convenient for
multisets of general structure. We tested the random index-
ing implementation to show that the sampling algorithm
yields a normal distribution for a large number of samples
(Supplementary Figure S1). Despite the simplicity of fSa
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Any phage library is a multiset defined by sequence set and copy number vector

Lib = [S, n] · · · · · ·

n1
n2
nN

N : number of all possible
sequences in the library
ni: copy number of the
ith sequence in the library

Lib = [S ={ sequence1
sequence2}, n = ]
sequenceN

(a)

Total (sum) and unique sequences (uni) 1
1

1
· · ·sum(n) = n · |1| =

|1| =N∑
i=1

ni

uni(n) =
N∑
i=1

1 − 𝛿[ni] 0, n ≠ 0 delta𝛿[n] = 1, n = 0 Kronecker{

(b)

· · ·

Any manipulation of library is an operator acting on the ni vector (copy number vector)
Example: sampling of the library

1
n =

1n1
1n2

1nN

· · ·

2
n =

2n1
2n2

2nN1Lib = [S, 1n]

2Lib = [S, 2n]

T1 total sequences
T2 total sequences

Sum(1n) = T1 Sum(2n) = sum(Sa 1
n) = T2

2
n = Sa 1

n

Sa) acts on 1
n vectorSampling operator (

Some elements
present in 1st

library are “gone”
from the 2nd library

2ni = 0

1ni 0≠

(c)

rn
rn

rn

0 0
0 0

0 0

Example: sampling operator

Properties of Sa:

· · ·
· · ·

· · ·

Sa(n) = round  
T1

T2

N Irndn where N Irnd = ...
...

...⋱

k

Operators are N × N matrices Random, N × N
diagonal matrix

(1) Sa(· · ·(Sa(Sa(n)) )· · ·) ≈ Sa(n)

∑ Sa(n) → ∞n, as k →(2) 1

k

((

(d)

amplification
Synthesis of
nucleotides

Theoretical library 

Example: each random
 

Ligation,

Sequencing

Panning,

Naive librarySynthetic library Selected (panned) library

General problem of selection

Sequencing

Multiset description of the phage display selection

transformation,
growth

nucleotide is present once

T = [S, 1]

The ith sequence Si
has copy number syn ni

enriched sequences x i > 1; depleted sequences x i < 1

P and N cannot be measured. They have to be approximated from the “observables”:

From P and N find enrichment E = [S, x], x e R+
obs

P = [S, pan
obsn]

P = [S, pan
n]N = [S, naive

n]

S = [S, synn]

obs
N = [S, naive

obsn]

(e)

Figure 1: (a) Phage library can be described by multisets made of S = {sequence set} and 𝑛 = ‖vector of copy numbers‖. Any change to the
library can be described as function/operator acting on the 𝑛. (b) Relevant functions are calculations of total sequences (sum) and unique
sequences (uni). (c) Any transformation of library to another library is an operator acting on 𝑛. Sampling of libraries to yield a sublibrary is
the most important operator. (d) It can be described as N × N matrix. Specifically, Sa is a diagonal matrix of values derived from random
distribution. Rounding function is necessary to ensure the physical meaning of the sampling results. Sa acting on the same vector yields
one of many vectors that have the same number of total elements. As a consequence, Sa is nonlinear, nondistributive, and noncommutative
operator. Average of many Sa operators is a scalar (dilution factor). (e) Any screen of any library can be described as operators acting on
the copy number vectors of the näıve (or theoretical) library. Copy number vectors cannot be observed directly. They have to be measured
through sequencing. As sequencing contains sampling process (Sa operator), the result of sequencing is nondeterministic. Sequencing yields
one of many possible observed copy number vectors, none of which are equal to the real copy number vector.

implementation—the entire code is <30 lines in MatLab—
the script allows rapid calculation of the results of fSa for a
multiset of reasonable size (severalmillion sequences, Figures
4 and 5) on a desktop computer.

We evaluated the behaviors of 0.5Sa for several multisets.
The probability to observe a specific solution is described
in Figure 3(b). Individual solutions can be represented as
lines with nodes on 𝑋𝑌-plane, where each node represents

one element of the multiset (Figures 3(d) and 3(e)). The
most probable solutions reside near the “expected solution”
(represented as dotted line), and the probability to observe
a solution where many elements deviate from the probable
solution is low (Figure 3(e)). Graphical representation of the
solutions highlights that sampling could lead to deviation
of the frequency of the individual elements of the multiset;
for example, Figure 3(e) describes >2 fold deviation from
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Library of phage

Sampling

Growth
of phage

Isolation
of DNA

PCR
of DNA

Sequencing Analysis of

Sa Gr

Operator description of each step.

Sa Is Pc Sa Se AnSa

of DNA sequencing

(observed)
Accepted

sequencing data

real
N = [S, real

n]

obs N = [S, obs n]

(a)

Relation between observed copy numbers and “real” copy numbers

Analysis
operator

obs n =
f 5Sa An f 4Sa Seq f 3Sa PCR f 2Sa Is f1Sa Gr real n

Growth bias betoassumedandneglected(usually IN )
Isolation bias betoassumedandneglected(usually IN )

PCR bias betoassumedandneglected(usually IN )
Sequencing bias betoassumedandneglected(usually IN )

(b)

1
0

0

0 0
0 0

0 0

0
0
11

0

0

0

Analysis operator is a matrix that could compensate for 
problems and censorships caused by Se Pc Is Gr operators

f5Sa An (f4Sa Seq f3Sa PCR f2Sa Is f1Sa Gr real ni) ∼ Sa real ni

Seq #1 is accepted as is
Seq #2 is considered a typo
and renamed to seq #3
Seq #3 is accepted as is
Seq #N is deleted (possible error)

· · ·

... ⋱

· · ·

· · ·

...
...

...
An =

(c)

Figure 2: Operator description of the deep sequencing process. (a) A library of phage must be processed before deep sequencing. Each step
involves sampling, which is either a deliberate partitioning of the sample or random loss of the sample. Each sample preparation state could
(and does) introduce bias in sequence abundance. Each step, thus, is an operator chat changeing the 𝑛 vector. (b) If we ignore bias during
preparation, operators could be approximated as unity vectors, and sequencing could be represented as a product of sampling and analysis
operators. (c) Analysis operator (An) is a binary decision matrix, which describes what sequences are and are not considered as errors.
Decisions, such as removal of sequences or correction of sequences, are the most important because they decide which “observed” sequences
are considered “real.” To make the analysis of the selection process meaningful, the same An operator should be used in all analyses.

the expected value for one of the elements. Figure 3(f) shows
that the solution in which two elements deviate by >2 fold
is improbable. This observation is a simple consequence of
the multiplicity of the probabilities (large deviation from the
average has probability 𝑝 and the probability to observe this
deviation twice is 𝑝2).

Even in small multisets, such as {A(1) B(2) C(3) D(4)}
made of four unique and 10 total elements,
0.5Sa {A(1) B(2) C(3) D(4)} operation yields large number
of solutions with equal probability, termed as redundant
solutions (e.g., solutions that have equal probability in
Figure 3(b)). Redundancy depends on the structure of the
multiset (Figure S2).This redundancy makes the calculations
of all probable solutions of Sa impractical. For sets even with
5-6 unique elements, identification of all vectors 𝐵, which
satisfy equation 𝐵 = fSa 𝐴 and reside within a 95% interval,
requires hundreds of thousands of iterations (Figure S2
and S3). On the other hand, calculation of the confidence
interval of each element 𝐵i of the vector 𝐵 converges rapidly.
A multiset {A

1000
} = {A

1
(1) A
2
(2) ⋅ ⋅ ⋅A

1000
(1000)} with

1000 unique elements and 1 + 2 + 3 + ⋅ ⋅ ⋅ + 1000 = 500, 500
total elements is similar to an average deep sequencing
data set (Figure 4). Calculation of all probable solutions of
0.5Sa {A

1000
} is beyond the capabilities of most computers.

However, the 99.9% confidence interval of all elements of
vector 𝐵 = 0.5Sa {A

1000
} can be calculated in ∼2 minutes on

an average desktop computer. The red dots in Figure 4 are
lo
𝐶
𝑖
and hi
𝐶
𝑖
or the 99.9% high and low confidence interval

of all elements Bi (Figure 4).

The sampling operator is critical in phage display because
sampling of libraries occurs in every step of the selection and
the preparation of libraries for sequencing. The stochastic
nature of sampling operators makes two identical screens
“similar within a confidence interval.” Solving (1) exactly is
not possible, but it should be possible to estimate the solution
within a confidence interval. Consider

Sel ∈ [ loKa Naive; hiKa Naive] , (6)

where loKa and hiKa are diagonal matrices of the upper
and lower confidence intervals for the association constants.
A simulation of the behavior of the Sa operator (Figures
3 and S3) suggests that the relative sizes of the confidence
intervalsmight be impractically largewhen the copy numbers
of sequences are <10.

Multiple sampling events of the Sa operator yield a
normal distribution for each element of the vector (Figure 3).
Fitting this normal distribution could yield a “true” value
of the process. This process is identical to the extrapolation
of the average from the normal distribution of noisy data.
Multiple algorithms for such extrapolation exist for one- and
multidimensional stochastic processes [38, 39]. We believe
that Sa behaves as a one-dimensional stochastic process and
it might be possible to extrapolate the true value of the
sampling from 7 to 10 repeated instances of Sa (i.e., the
number of data sufficient to fit an 1D normal distribution).
The necessary practical steps towards solving (3) or (10)
are the following. (i) Eliminate or account for any bias not
related to binding (e.g., growth bias). (ii) Repeat the screen
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Figure 3: (a) Testing the sampling operator implemented as random indexing function using a model multiset. (b) In 100,000 trials, we
observed 22 unique solutions from which 14 resided in a 95% confidence interval. Solutions with 0 and 1 copies of element A were found
at equal abundances (“redundant solutions”). (c) Representation of the most probable solution as a line with 4 nodes; “𝑝” is a probability
to find the solution; dotted line is an expected “average solution” for 50% sampling. (d) The 5th most probable solution; (e) least probable
solution deviates the most form the average; (f) combination of all solutions. Red thick lines describe the most probable solutions; thin blue
lines describe the least probable solutions. (g) Sampling of larger multisets yields more possible solutions (here, 2957 in 5000 trials). (h)
All solutions of the sampling represented as lines. (i) Probability to observe a particular copy number after sampling. While (h) is the most
accurate representations of the confidence intervals, the thin blue lines describe solutions outside the confidence interval; this representation is
impractical due to large number of redundant solutions in largermultisets. In (i), confidence interval could be extrapolated from distributions
of individual copy numbers (e): red dots are on or outside the confidence interval.

several times. (iii) Measure all copy numbers of all sequences,
including zero values, with high confidence. Requirement (i)
has been an ongoing effort in our group [11, 40] and other
groups [13, 41–43]; for review see [11, 44]. Deep sequencing

makes it simple to satisfy requirement (ii) and obtainmultiple
instances of the same experiment. For example, we described
the Illumina sequencing method that allows using barcoded
primers to sequence 18 unrelated experiments in one deep
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Figure 4: (a) Testing the sampling operator using a large multiset made of 1000 unique elements with 1000 different copy numbers. Images
describe linear and log-scale representation of the confidence interval of the sampling operator. Solutions beyond this interval were not
observed in 5000 trials. Dotted line represents an overestimate of the 99.9% confidence interval (for details, see Figure S4). Most probable
outcomes of the Sa operator have either zero or one unique sequence beyond this interval. This line is used in subsequent sections (Figures 5
and 6).We note that distributions of the copy numbers have well-defined shape; according to central limit theorem, it is a normal distribution.
With enough replicas, it should be possible to extrapolate the center of this distribution, define the solutions explicitly, and bypass the
stochastic nature of the Sa operator.

sequencing experiment [45]. We recently scaled this effort
to 50 primer sets and evaluated the performance replicas of
simple selection procedures (in preparation).

The measurement of the copy numbers of sequences
is a separate problem that can be described using the
same sampling operators and bias operators that describe
how the library is skewed by each preparation step. For
example, isolation of DNA by gel purification disfavors AT-
rich sequences, whereas PCR favors sequence with within
specific GC-content range [32].The real sequence abundance
in any phage library ( real𝑛), hence, has to be derived from the
observed sequence abundance ( obs𝑛) by solving this equation:

obs
𝑛 = (

f5Sa An) ( f4Sa Seq) ( f3Sa PCR)

× (
f2Sa Is) ( f1Sa Gr) real𝑛 .

(7)

In this equation, each operator in brackets describes a bias at
a particular step. fSa describes sampling at that step, and f1–
f5 describe the sampling fractions. The bias in growth (Gr),
isolation (Is), PCR amplification (PCR), and sequencing
(Seq) could be related to the nucleotide sequences. The
An analysis operator is a matrix that describes retaining,
discarding, or correcting the sequence (Figure 2(b)). An ideal

An operator could compensate for the biases introduced
by another operator (Figure 2(c)). To define such operator,
(7) could be potentially solved using repeated sequencing
of a well-defined model library. In the next applied section,
we examine the real deep sequencing data and identify
conditions under which these operators could be at least
partially defined.

2.2. Analysis or the Error Cutoff inDeep Sequencing Reads. All
next-generation sequencing techniques provide quality score
(Phred Score) for every sequenced nucleotide. In Illumina
sequencing, this score is related to the probability of the
nucleotide being correct [46]. In low throughput Sanger
sequencing, the Phred score monotonously decreases with
read length and the mechanisms that yield errors in capillary
electrophoresis are well understood. Common practice in
Sanger sequencing is to discard all reads after the first
nucleotide with a Phred score of 0. In next-generation
sequencing, the filtering of the reads is usuallymore stringent
as follows.

(A) Discard reads that have at least one read that has score
lower than “cutoff.”

(B) Discard reads that had cumulative Phred score lower
than cutoff.
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Figure 5: (a) Representative lines from the intermediate file from Illumina deep sequencing analysis (for more information see
ERROR TAG data0001.txt in Section 4 and our previous publication [6]). The reads have been parsed to identify adapters and barcodes.
Each read has been tagged according to the library type, direction of the read, and quality of the adapter regions. We use this intermediate
library to identify reads that harbor erroneous nucleotides. (b) Multiset view of the intermediate library. The library contains subsets that
have low, medium, and high quality reads. Error filtering of this intermediate library to eliminates any read with Phred score below 30 yields
a high quality library of reads 30L. (c) Mean accuracy of the reads in the library after error filtering ranges from 95% to 99.6%. Even for
very low-quality cutoff, Phred > 1, the average read quality is 95%. (d) Distribution of cumulative read accuracy in libraries processed using
different cutoffs. (e) Linear plot of the data presented in (d) with zoom in on the region with >90% cumulative accuracy.

(C) Use a combination of A and B (accept reads with
minimal cutoff and minimal cumulative score).

Many of the error analyses in the area of deep sequencing
are designed for genetic reads, which have variable lengths
and unknown sequence throughout the whole read. Analysis
of the reads in a phage-display library is a simpler problem
because phage-derived constant adapter regions flank the
variable reads. Identification of the adapter region is a
necessary first step in the analysis. Reads, in which the
adapters cannot be mapped, cannot be used. We designed
algorithms to recover reads, even if adapters were hampered
by truncation, deletion, ormutation [6].We observed that the

reads flanked by the erroneous adapters had a significantly
higher error rate than reads flanked by “perfect” adapters
(unpublished). Example of mapping of flawed reads in Illu-
mina sequencing is provided in ERROR TAG data0001.txt
(see Section 4). In the remaining sections, we analyze the
population of the sequences preceded by a “perfect” adapter
to identify possible sequence-specific biases.

We analyzed a typical library sequenced by Illumina using
various cutoffs (Figure 5). We analyzed a 33-bp segment of
the library that contained variable seven amino acids and
a constant region and GGGS terminus. A simple cutoff
that discards reads with Phred <1 nucleotides yields library
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termed 1𝑛, which had an average 95% accuracy of the
33-nucleotide read. Reads that do not contain Phred = 0
nucleotide rarely contain multiple low-quality reads. The 1𝑛
library was bimodal: 80% of the reads had overall accuracy
of 99%, very few reads with accuracy 5–90%, and significant
number of reads with accuracy of 1% (Figures 5(d) and 5(e)).
These observations suggest that reads can be divided into (i)
reads free of errors and (ii) reads with multiple errors.

An example of a more stringent cutoff is elimination
of reads with Phred <13 nucleotides; this process yielded a
library 13𝑛 in which every nucleotide had >95% confidence.
The number of total reads in 13𝑛 was 10% less than number
of reads in 1𝑛; that is, sum( 13𝑛) = 0.9sum( 1𝑛). The observed
average read accuracy of the read in the 13𝑛 library was
99.2%. Theoretically, the 0.95 confidence cutoff in a 33-
mer nucleotide could yield reads with accuracy as low as
(0.95)

33
= 18%. In practice, the probability to find reads with

multiple nucleotides of 95% accuracy was vanishingly small.
Specifically, among 500,000 reads, the lowest observed cumu-
lative accuracy was 77%. Such a result, for example, could be
obtained in a sequence that has 27 “perfect” nucleotides and
5 nucleotides with a Phred = 13 score: (1)27(0.95)5 = 0.77.
Applying the most stringent cutoff to eliminate all reads with
a Phred < 30 yielded a library 30𝑛 in which every nucleotide
had 99.9% confidence. The average confidence of the reads
improved subtly from 99.2% to 99.6%. The number of total
reads in 30𝑛 was 30% less than number of reads in 13𝑛; that
is, sum( 30𝑛) = 0.7sum( 13𝑛). It was not clear whether such
cutoff is an improvement or a detriment for analysis. In the
next section, we examined how frequency of the members of
the library changed upon application of each error cutoff.

2.3. Example of Error Analysis: Sequence-Specific Censorship
during Phred Quality Cutoff. If errors occur by random
chance, they should be uniformly distributed in all sequences.
Removal of erroneous read, in that case, should be identical
to sampling of the library by fSa operator, where f is the
sampling fraction. For example, consider the removal of
Phred < 13 nucleotides from an unfiltered library (process
denoted as 1𝑛 → 13

𝑛). From the experiments, we know
that sum( 13𝑛) = 0.9sum( 1𝑛); if errors were distributed
in sequences at random, the 1𝑛 and 13𝑛 vectors should be
related as

13
𝑛 =
0.9Sa ( 1𝑛) . (8)

The solutions should reside within a confidence interval

13
𝑛 ∈ [

lo
𝐶

hi
𝐶] . (9)

If errors occur preferentially in specific reads, the frequency
of these reads should occur beyond the confidence interval
of the 0.9Sa. This process could be described by a diagonal
matrix Bias as

13
𝑛 =
0.9Sa (Bias ( 1𝑛)) . (10)

The elements of the diagonal matrix Bias = ‖B
𝑖𝑖
‖ could be

estimated as follows:

13
𝑛
𝑖
∈ [

lo
𝐶
𝑖

hi
𝐶
𝑖
] , B

𝑖𝑖
= 1, (11)

13
𝑛
𝑖
<

lo
𝐶
𝑖
, B

𝑖𝑖
=

13
𝑛
𝑖

(0.9
1
𝑛
𝑖
)

. (12)

Figure 6(c) describes the representative solution of the
0.9Sa( 1𝑛) (green dots) and the confidence interval (blue
lines). Supplementary Scheme S3 describes the script that
calculated this interval frommultiset 1𝑛, described as a plain
text file PhD7-Amp-0F.txt, using 10,000 iterative calculations
of 0.9Sa( 1𝑛). This calculation required ∼2 hours on a desktop
computer. Confidence interval was estimated as the mini-
mum and maximum copy number found after 10,000 iter-
ations. In this approximation of the confidence interval, for
sequences with the copy number <10 before sampling, it was
impossible to determine whether the sequence disappeared
due to random sampling or due to bias. The values of Bias
operator cannot be defined for these sequences and it could
be assumed to be 1 (see (11)). For copy number >10, however,
sequence-specific bias can be readily detected. We observed
that the removal of Phred <13 reads yielded a multiset in
which a large number of sequences deviated beyond the
confidence interval (Figure 6(d)). Their sequences could be
readily extracted by comparing the vector 13𝑛with the vector
of the lower confidence intervals lo

𝐶 (see (12)). The solution
of theBias can be illustrated graphically (Figure 6(e)). Top 30
censored sequences are listed in Table S1; the other sequences
can be found in the supplementary information (file PhD7-
Amp-0F-13F-CEN.txt).

We performed similar calculations for 1𝑛 → 30𝑛 and
13
𝑛 →

30
𝑛 processes. The latter process is the most

interesting because 13𝑛 library has all nucleotides within
acceptable confidence range (>95%) and the distribution of
cumulative quality suggested that errors, on average, do not
cluster in one read (Figure 5). The 13𝑛 → 30

𝑛 conversion
eliminated 30% of the reads, and copy numbers of many
sequences deviated significantly from the random sampling;
these sequences are represented by green dots outside the blue
confidence interval in Figure 6(h). Top 30 sequences are listed
in Table S2. The censorship is not only sequence-specific, but
also position-specific. In sequences that had been censored
during the 13𝑛 → 30𝑛 process, lower quality reads clustered
around 3-4 specific nucleotides (supplementary information
Figure S5).

The mechanism that leads to the disappearance of cen-
sored sequences is not currently clear. We attempted to
identify common motifs in censored sequences using two
approaches: (i) clustering and principal component analyses
based on Jukes-Cantor distance between sequences and
(ii) identification of motifs using multiple unique sequence
identifier software (MUSI) [17]. These approaches could
not detect any property common to censored reads, which
would make them significantly different from the other,
noncensored reads. Still, we hypothesize that the observed
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Figure 6: (a) Operator and multiset description of the error filtering procedure. Applying a Phred > 30 cutoff to library filtered by Phred>1
cutoff ( 1n) yields a subpopulation of the library ( 30n). If errors are sequence-independent, the 1n → 30n process should be identical to
random sampling ( 30n = Sa 1n). Any sequence-specific bias (Bias) should be detected as deviation from Sa 1n. (b) Progressive sampling
with more stringent cutoff. (c) Theoretical Sa 1n and theoretical 99.9% confidence interval (blue). (d) Observation of statistically significant
deviation from Sa operator: dots beyond the blue line represent sequences prone to bias. Red dots represent sequences that disappeared after
in 1n → 30n process or during Sa 1n sampling. (e) Magnitude of the bias range from 5 to 100-fold. (f) Bias in sampling of Phred > 30 data
from Phred > 1 data ((f) is theory, (g) is observed). (h) Bias upon sampling of Phred > 30 data from Phred > 13. Many sequences were lost in
this sampling and this loss was statistically significant beyond the 99.9% interval. This result shows that some sequences have propensity to
harbor low- and medium-quality reads. Distribution of the errors is sequence specific.

censorship represents sequence-specific errors, which occur
in every time such sequence passes though the Illumina
analyzer. For example, the sequences listed in Tables S1 and
S2 and supplementary files were censored in five independent

experiments, which were pooled and processed simultane-
ously in one Illumina run. Analysis of other instances of Illu-
mina sequencing performedby other groups could help prove
(or disprove) that censorship is indeed sequence-specific
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and experiment-independent. Sequence-specific censorship
during Illumina analysis has been described in other publi-
cations [46]. The observations presented above suggest that
reading of some sequences in phage libraries does not yield an
accurate copy number. Even if these sequences were enriched
due to binding, their apparent copy number in sequencing
would be decreased due to sequencing bias. If the magnitude
of bias is known, however, such error could be corrected. We
anticipate that other biases could be calculated for these and
other libraries in similar fashion. Their calculation extends
beyond the scope of this paper and it will be performed in
our next publication.

3. Discussion

3.1. Significance and Transformative Potential of Library-
Wide Error Correction. In the Medicinal Chemistry field,
structure-activity relationships (SAR) and pharmacophores
are built using both positive and negative observations. It
is the negative results that bear the most significance in
these studies because they allow mapping of the range of
conditions under which particular structure no longer works.
For example, SAR of an R group of a ligand might be built
on the following observations. A ligand binds to the target
when the R group in the specific position is methyl or ethyl;
changing R to iso-propyl and tert-butyl ablates the binding.
This concludes that the R group must be a small alkyl group.
An analogous situation is found in SARof peptide ligands; the
most important information from alanine scan mutagenesis
is loss of function because it helps identifying the important
residues. Interestingly, loss-of-binding conclusions are never
applied to phage-display. The phage-display field is driven by
positive results. Most publications report and follow up only
on sequences enriched in the screen and consider only large
copy numbers interesting. All papers focus on sequences that
were found. Very few papers in phage display ask why other
sequences were not found.

One of the reasons why phage display is not used for
SAR-type analysis is because negative observations in phage
library cannot be determined with high confidence. From a
practical point of view, measuring zero with high confidence
requires the largest number of observation (the highest depth
of sequencing). The payoff, however, is immense: one screen
with “confident zeros” could potentially yield SAR for every
possible substitution of every possible amino acid. We refer
to this (theoretical) possibility as “Instant SAR,” and its
condensed theoretical form is described in (3) or (9) and
(10). This paper demonstrates that the depth of sequencing is
not the only problem towards this goal. Accurate estimate of
negative results requires complete characterization of the ori-
gins of errors in sequencing which yield false negative values
by censoring certain sequencing. Other types of censorship,
such as growth bias, should be characterized and eliminated
as well. As the phage display field is currently focused on
positive results, the need for optimal error corrections and
recovery of erroneous reads is low. With the rise of SAR-
type applications in phage display, error correction will be
recognized as the most significant barrier because it could

lead to improper assignment of low frequencies and negative
results. Improved error correction strategies could assign
a lower confidence to the sequence instead of eliminating
the errors and labeling them as confident zero. Proper
mathematical framework, possibly similar to the one used in
this paper, could be then used to carry all confidence intervals
through calculations to yield reliable SAR-type data.

We note that the framework described in this paper is
suitable for the analysis of the selection from libraries in
which the diversity of the libraries before and after selection
could be covered entirely by deep sequencing. With the
current depth of sequencing, it corresponds to medium-
scale libraries of ∼106 randommembers and affinity-matured
libraries that contain∼106 pointmutations.We are in the pro-
cess of generating these medium-scale libraries and running
selection procedures that will allow us to apply and refine our
framework. In the future, as technical capabilities and depth
of sequencing increase, the process would be applicable to
larger libraries as well.

4. Methods

4.1. Generation of Z-Bars and Other Visualization Techniques.
Sequencing of the libraries has been described in our previous
publications [6, 47]. All data visualization in this paper was
done by MATLAB scripts; raw ∗.eps output from MATLAB
scripts subject to minor postprocessing in Adobe Illustrator
to adjust fonts relative dimensions of plots. Core scripts are
described in the supplementary information. Other scripts
are available in our previous publication [47]. Illumina files
used for the analysis can be found in the directory at
http://www.chem.ualberta.ca/∼derda/mathbiology/; the file
ERROR TAG data0001.txt is an example of error-tagged
reads; PhD7-Amp-xxF.txt is the library filtered with xx Phred
cutoff (xx = 1, 13 and 30); file PhD7-Amp-13F-30F-CO.txt
describes confidence intervals for Phred(13) to Phred(30)
filtering process; other files with ∗-CO.txt extension describe
confidence intervals of other processes. Supplementary Fig-
ures S1–S4 and Schemes S1 and S2 describe MATLAB imple-
mentation of the Sa operator.
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