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Abstract

Background: The biomarker discovery field is replete with molecular signatures that have not translated into the clinic
despite ostensibly promising performance in predicting disease phenotypes. One widely cited reason is lack of classification
consistency, largely due to failure to maintain performance from study to study. This failure is widely attributed to variability
in data collected for the same phenotype among disparate studies, due to technical factors unrelated to phenotypes (e.g.,
laboratory settings resulting in ‘‘batch-effects’’) and non-phenotype-associated biological variation in the underlying
populations. These sources of variability persist in new data collection technologies.

Methods: Here we quantify the impact of these combined ‘‘study-effects’’ on a disease signature’s predictive performance
by comparing two types of validation methods: ordinary randomized cross-validation (RCV), which extracts random subsets
of samples for testing, and inter-study validation (ISV), which excludes an entire study for testing. Whereas RCV hardwires an
assumption of training and testing on identically distributed data, this key property is lost in ISV, yielding systematic
decreases in performance estimates relative to RCV. Measuring the RCV-ISV difference as a function of number of studies
quantifies influence of study-effects on performance.

Results: As a case study, we gathered publicly available gene expression data from 1,470 microarray samples of 6 lung
phenotypes from 26 independent experimental studies and 769 RNA-seq samples of 2 lung phenotypes from 4
independent studies. We find that the RCV-ISV performance discrepancy is greater in phenotypes with few studies, and that
the ISV performance converges toward RCV performance as data from additional studies are incorporated into classification.

Conclusions: We show that by examining how fast ISV performance approaches RCV as the number of studies is increased,
one can estimate when ‘‘sufficient’’ diversity has been achieved for learning a molecular signature likely to translate without
significant loss of accuracy to new clinical settings.
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Introduction

There has been substantial effort to develop disease diagnostic

strategies based on analyzing large-scale molecular information

(i.e., omics data) from patients. Numerous studies aiming at

developing such molecular diagnostics have examined omics data,

both directly [1,2,3,4,5] and through meta-analyses [6,7,8].

Although many reports have shown high performance estimates

for predictive disease classification, identifying molecular signa-

tures that give consistent results across multiple trials remains a

challenge [9,10,11]. This discrepancy between high reported

performance estimates and the relative paucity of robust omics-

based tests delivered to the clinic was the subject of a recent in-

depth study by the United States Institute of Medicine [12]. While

the general issues discussed exist across all omics data platforms,

herein we will focus on large repositories of transcriptomics data

because of broad availability from many studies, especially those

conducted on Affymetrix microarrays (the most abundant source),

as well as recent RNA sequencing (RNA-seq) data.
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A major factor hindering the consistency of identified disease

classifiers and their performances stems from variability in omics

data attributed to technical and biological influences that are

unrelated to the specific phenotypic differences under study.

Gathering gene expression data from different batches-processed

at a specific experimental site and time–introduces technical

variability, termed ‘‘batch-effects’’ [13]. Moreover, diversity

among studies is present and often significant even in the absence

of batch-effects because of intrinsic biological variation, including

geographic differences in patient subpopulations due to disease

heterogeneity [14,15,16,17,18]. Both batch-effects and intrinsic

biological variation introduce site-specific variability that can bias

the selection of classifiers by obscuring the phenotype-specific

molecular signal.

We use the term study-effects herein to describe the joint

variability that stems from both technical variation introduced by

batch-effects and the biological variation associated with popula-

tion heterogeneity. Importantly, the presence of these study-effects

is not necessarily a reflection of the quality of the laboratories or

experimental studies; rather, they emphasize that measured gene

expression is sensitive to a broad range of influences. Although

numerous excellent studies have examined [19,20,21] and

attempted to mitigate [22,23,24,25,26,27,28,29,30,31] site-specific

variability from technical batch-effects, which have been summa-

rized and compared elsewhere [22,32,33,34], no definitive

solution for study-effects has been adopted by the molecular

diagnostic community at large.

The motivation of our study is to examine the influence of

study-specific variability in gene expression data on disease

classification prediction error and suggest how to mitigate this

influence to achieve improved classification performance. Our

approach to measuring the influence of study-effects on classifi-

cation involves assessing classification performance with a study-

centric validation strategy. In inter-study validation (ISV), we

identify phenotype-specific classifiers based on data pooled from

all studies except for one, and then evaluate the predictive

performance on the excluded study. This process is repeated for all

studies, leaving each one out for testing and training a predictor on

the data combined from all others. This differs from randomized

cross-validation (RCV), the standard in machine learning, wherein

a random subset of the pooled data, for example ten percent in

ten-fold RCV, is set aside for testing, and the predictor is identified

from the pooled data excluding this subset. This process is then

repeated, for example ten times. The critical difference between

these validation strategies is that RCV (and other methods that

split data randomly) estimates classification error under a

condition (namely random sampling) in which the training and

testing data are drawn from the same distribution. In other words,

the assumption is made, at least implicitly, that future samples

from other studies encountered by the classifier will display the

same statistical properties as the training data–a condition that is

often violated in real world settings. Hence, randomized sampling

obscures systematic differences in expression distributions associ-

ated with study-effects. In contrast, ISV is sensitive to study-effects

because it preserves the variation among studies (i.e. the training

and test sets are not necessarily identically distributed). Conse-

quently, estimates of classifier performance derived using ISV are

often low when there are expression patterns that vary substan-

tially between studies within phenotypes. Therefore, the magni-

tude of discrepancies between performance estimates from ISV

and RCV reflects the extent of study-effects. We refer to the

comparison of ISV and RCV performance estimates as compar-
ative cross-validation analysis (CCVA). CCVA can be applied in

subsets of study comparisons in various ways, for example as a

measure of how well controlled a multi-site clinical trial is

performing in terms of cross-site variation.

In this study, we use comparative cross-validation analysis to

gauge the extent to which study-effects confound gene expression-

based disease classification performance. We find that including

data from more studies improves representation of biological

heterogeneity during the disease signature learning process, which

mitigates the influence of study-effects. By tracking the difference

between the ISV and RCV performance, we measure the extent to

which introducing heterogeneity into the training data alleviates

the influence of study-effects on disease classification and can

thereby estimate when sufficient data has been incorporated to

generate classifiers that are robust to study-specific biases.

Materials and Methods

Data Preprocessing
For the microarray data, we download the raw.CEL files of

each microarray experiment, either from the Gene Expression

Omnibus [35], ArrayExpress [36], or from files kindly provided by

the original authors of the experiments. We have developed a

custom pipeline in MATLAB to preprocess the.CEL files of the

samples across all studies in a consensus set using the GCRMA

method [37] (see Text S1 for details). We provide this uniformly

processed dataset to the community as a resource to download at

our website (https://price.systemsbiology.net/measuring-effect-

inter-study-variability-estimating-prediction-error), and we have

added our uniformly preprocessed dataset to GEO with accession

number: GSE60486. It should be noted that this dataset is a

compilation and standardization of data generated from other

groups.

For the RNA-seq data, we download raw fastq files from the

Sequence Read Archive [38] or CGHUB and extracted gene

expression counts using STAR alignment [39] and HTSeq software

(http://www-huber.embl.de/users/anders/HTSeq/doc/overview.

html). We consolidate the data across studies and perform

correlation analysis using Python.

Comparative cross-validation analysis (CCVA)
To estimate the significance of study-effects on classification

performance, we compare two metrics for evaluating classification

sensitivity: inter-study validation (ISV) and the commonly used

randomized cross-validation (RCV). For each method, classifica-

tion performance metric we use is the phenotype-specific

sensitivity, defined as the fraction of samples of that phenotype

that are correctly identified by the learned molecular signature.

In ISV, the expression data from each experimental study is

excluded from the training set used to find diagnostic classifiers.

Data from the remaining studies is used to train a classifier using

an algorithm of choice. The data from the excluded study acts as a

test set to evaluate the performance of a classification algorithm.

This ISV is repeated for every study included in the analysis, and

the sensitivity for each phenotype evaluated on each excluded

study is reported. To mitigate sample number bias in training, we

implemented a stratified training loop (see Text S1 for details).

We implement ten-fold RCV, in which one-tenth of the samples

combined from all studies for each phenotype is randomly

excluded from the training set in each iteration of validation.

Classifier training is executed on the remaining nine-tenths of the

data, and the excluded tenth of the data is used to evaluate

predictive sensitivity. The process is iterated ten times so that each

excluded test set is disjoint. The average sensitivity across all ten

iterations for each phenotype is reported.

Effect of Inter-Study Variability on Classification
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For each phenotype, we compare the average of the ISV sensitivities

across all studies of that phenotype against the phenotype-specific

sensitivity obtained by ten-fold RCV. This approach is implemented in

MATLAB (see https://price.systemsbiology.net/measuring-effect-

inter-study-variability-estimating-prediction-error for code).

Cumulative CCVA
We also investigate the effect of including different numbers of

studies in the considered dataset on ISV and RCV outcomes. In

this cumulative CCVA, we focus on the three phenotypes with

greater than five independent studies: ADC, SCC, and NORM.

For each of these phenotypes, we combine data from

n[f2,:::,Np{1g studies of the phenotype under consideration

(Np is the total number of studies for the phenotype under

consideration) along with data from studies that lack the

phenotype under consideration. We perform ISV and RCV on

this study-controlled dataset and report the ISV and RCV

sensitivities for the phenotype under consideration. For each n,

five random selections of n studies are selected for inclusion, and

the ISV and RCV results are averaged over these independent

iterations. Note that applying this analysis to a dataset consisting of

n~Np studies of the phenotype under consideration would be

equivalent to the standard CCVA. This approach is implemented

in MATLAB (see https://price.systemsbiology.net/measuring-

effect-inter-study-variability-estimating-prediction-error for code).

Classification methods applied
We evaluate predictive performance of support vector machine

(SVM) [40] and Identification of Structured Signatures And

Classifiers (ISSAC) [8]. We choose to use these algorithms because

in addition to demonstrating significant classification capability,

the methods are based upon disparate classification strategies.

SVM was designed to find an optimal discriminating hyperplane

based on a set of input feature genes, which we select using the F-

score feature selection metric [41] (see Text S1 for details). In

contrast, ISSAC was designed to select an optimized set of feature

pairs as a multi-phenotype classifier, wherein classification was

based on comparing expression values within each pair. We

perform feature selection based on the training data within each

iteration of validation. We use existing MATLAB implementations

of these algorithms [8,42].

Statistical significance testing
Non-parametric significance tests are used where possible, with

p,0.05 set as the significance threshold.

Results

Overview of microarray data assembled
We have assembled lung-related expression data from two

publicly available online databases: Gene Expression Omnibus

[35] and ArrayExpress [36]. Our analysis focuses on the lung

because lung diseases pose significant health challenges that would

benefit from improved diagnostic methods [5,43,44,45,46] and

because there exists a wealth of gene expression datasets generated

repeatedly for multiple lung diseases. We examine data from non-

diseased tissue (NORM) and from five common lung disease

phenotypes: three types of non-small-cell lung cancers (adenocar-

cinoma (ADC), squamous cell carcinoma (SCC), and large cell

lung carcinoma (LCLC)) as well as two non-cancer diseases

(asthma (AST) and chronic obstructive pulmonary disease

(COPD)). These studies were performed by laboratories that

sampled geographically distinct patient populations; used different

protocols for tissue sample collection and preparation; measured

gene expression using different Affymetrix microarray platforms;

and utilized different data preprocessing methods to yield gene

expression values from hybridization intensities measured by the

microarrays. We restrict ourselves to microarray platforms

developed by Affymetrix to eliminate additional sources of

variability associated with microarray technology, which have

been covered elsewhere in the literature [15]. Our assembled gene

expression dataset consists of 1,470 samples collected by 26

independent experimental studies. A summary of the data

included in our analysis is shown in Table 1 (see Table S1 for a

complete list of experimental study sources; some studies measured

more than one phenotype considered in our analysis). Microarray

sample sizes within each phenotype ranged from 49 to 580. In

each case, we preprocess the raw data using our custom pipeline to

create a consistent dataset with minimal algorithmic sources of

variance (see Text S1 for rationale and details). We use this

uniformly preprocessed dataset for all subsequent classification

analyses described in this study.

Comparative cross-validation analysis evaluates influence
of study-effects on classification performance

We apply CCVA on our lung microarray dataset using two very

different multi-class classification schemes–the commonly used

linear one-versus-one multiclass support vector machines (SVM)

[40] and Identification of Structured Signatures And Classifiers

(ISSAC) [8] (see Text S1 for descriptions of these algorithms)–to

demonstrate that the results throughout are largely independent of

the classification method selected. Figure 1 shows the estimated

ISV sensitivities for each study, grouped by phenotype, calculated

by ISSAC and SVM. The figure also shows the average ISV

sensitivities across all studies of each phenotype (dashed lines), as

well as the sensitivities obtained by ten-fold RCV for each

phenotype (solid lines). The qualitative outcomes of ISV were

consistent across the two classification schemes. The consistency of

the results provides evidence that results herein are largely

independent of the specific classification method used. There

was no significant correlation between ISV or RCV performance

with sample size of study and no significant correlation between

ISV performance and RCV performance (p.0.05, see Text S1 for

details and for plot of ISV performance as function of study sample

sizes).

Number of independent studies affects the influence of
study-effects on performance

The results in Figure 1 show that phenotypes with data from

larger numbers of studies have smaller differences in RCV and

ISV performance because their ISV sensitivities are greater than

those in phenotypes with fewer studies. We observe a significant

negative correlation between the difference of ISV and RCV

sensitivity across all studies for a phenotype and the number of

studies belonging to that phenotype (Spearman’s rho = 20.93, p,

0.05 for SVM and ISSAC). ISV sensitivities of SCC, ADC, and

NORM–phenotypes with data from seven or more independent

studies-differ from RCV sensitivities only by 0.07, 0.01, and 0.04,

respectively for SVM, and by 0.03, 0.03, and 0.02 for ISSAC. In

contrast, phenotypes with data from few studies independent

studies (AST, 3 studies; LCLC, 4 studies; COPD, 4 studies) have

low ISV sensitivities even when the corresponding sensitivities

from RCV are high, resulting in greater gaps between RCV and

ISV performance (RCV - ISV of AST = 0.76, LCLC = 0.13, and

COPD = 0.32 for SVM; RCV- ISV of AST = 0.69, LCLC = 0.20,

and COPD = 0.35 for ISSAC).

Effect of Inter-Study Variability on Classification
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Besides yielding improved ISV performance relative to RCV,

phenotypes with more studies achieve more consistent ISV results.

We quantify ISV consistency by the coefficient of variation

(CoVar), which is equal to the standard deviation of ISV

sensitivities across studies belonging to a particular phenotype

divided by the average. Lower CoVar values translate to higher

consistency. Phenotypes with fewer studies, such as AST and

COPD, have low consistency (CoVarAST = 1.7, CoVarCOPD = 1.1

for SVM; CoVarAST = 0.54, CoVarCOPD = 1.0 for ISSAC),

whereas SCC and ADC have higher consistency (CoV-

arSCC = 0.30, CoVarADC = 0.17 for SVM; CoVarSCC = 0.12,

CoVarADC = 0.11 for ISSAC).

To measure the extent to which the number of studies affects

CCVA performance, we calculate ISV and RCV while varying

the number of studies included in each phenotype. Figure 2 shows

the phenotype-averaged ISV and RCV sensitivities for ADC,

SCC, and NORM, as the number of studies considered in CCVA

is varied based on SVM and ISSAC (see Text S1 for plot of ISV

sensitivities as a function of the training set sample sizes). Each

point in the figure represents the average and standard deviation

of ISV and RCV estimates calculated from five independent

sampling combinations of input training studies (see Cumulative

CCVA section in Methods for details).

When only two studies are considered in analysis, average ISV

sensitivity for each phenotype is substantially lower than the

corresponding RCV sensitivity, showing that results learned from

one study context do not translate well to a second. Each

phenotype achieves higher sensitivity when data from a greater

number of studies are used for signature learning (Spearman’s

rho = 0.65 for SVM, rho = 0.57 for ISSAC; p,0.05 for both

methods correlating mean ISV sensitivity with the number of

phenotype-specific studies included over all three phenotypes).

Moreover, we observe a converging of ISV sensitivity toward the

corresponding RCV sensitivity as additional studies are added,

although the rates of convergence differ between phenotypes. As

the ISV sensitivity approaches RCV sensitivity, the incremental

improvement of average ISV sensitivity drops with the addition of

further studies. We also observe a significant negative correlation

between the CoVar and the corresponding ISV sensitivity

(Spearman’s rho = 20.64 for SVM, rho = 20.78 for ISSAC; p,

0.05 for both methods correlating over all three phenotypes),

indicating enhanced signature performance and consistency with

the addition of data from different studies. Further analysis shows

that the trends of ISV performance are reflected in large-scale

differences in the expression profiles that can be visualized by

principal component analysis, and that these performance trends

also have association with consistency of selected gene signatures

(see Text S1). These results demonstrate that integrating gene

expression data across diverse studies can strengthen phenotype-

associated signal that translates into new study contexts.

Table 1. Summary of lung disease microarray data.

Disease Label Platforms # Studies # Samples Sampling Method

Adenocarcinoma ADC 1,2 14 580 A

Squamous Cell Carcinoma SCC 1,2 7 239 A

Large Cell Lung Carcinoma LCLC 1,2 4 49 A

Asthma AST 1 3 70 B,C

Chronic Obstructive Pulmonary Disease COPD 1,2 4 63 A,B

Normal NORM 1,2 17 469 A,B

The number of samples (n = 1470), number of studies (n = 26), types of platforms, and the methods of tissue extraction used to collect samples in the studies are shown.
The platform labels represent: 1) Affymetrix Human Genome U133 Plus 2, and 2) Affymetrix Human Genome U133A. The sampling method labels represent: A) surgical
resection, B) bronchoscopy brushing, C) bronchoalveolar lavage. See Table S2 for detailed information on the studies.
doi:10.1371/journal.pone.0110840.t001

Figure 1. Inter-study validation and randomized cross-validation performance. The graphs show ISV and RCV results from SVM (A) and
ISSAC (B). For clarity, the Study ID labels have been excluded from this visualization (see Text S1 for expanded versions of these plots that include the
individual Study ID labels). The colored bars report sensitivities achieved on the validation study designated in the horizontal axis (e.g., the bar on the
farthest left in (A) shows that 74% of ADC samples in the first ADC study are correctly classified by SVM when that study is excluded from training).
The order of studies in the horizontal axis is identical for panels (A) and (B). Dashed lines represent average ISV sensitivities for each phenotype. Solid
lines report corresponding ten-fold RCV sensitivities of each phenotype.
doi:10.1371/journal.pone.0110840.g001

Effect of Inter-Study Variability on Classification
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Study-effects similarly impact classification performance
in RNA-seq data

Advances in sequencing technologies have recently enabled

large-scale RNA-seq studies to measure gene expression for disease

classification [47]. Although RNA-seq offers many advantages

over microarrays [47,48], study-specific variability has also been

observed in RNA-seq data [20,21]. To evaluate the extent that the

CCVA results from microarray data also apply to RNA-seq, we

examined RNA-seq data collected from four independent studies

consisting of ADC and NORM data: GSE37764 (11 ADC, 12

NORM samples) [49], ERP001058 (90 ADC samples and 76

NORM samples) [50], TCGA (448 ADC samples) [51], and

dbGaP (132 NORM samples) [52]. Correlation and classification

analysis based on study label on data from GSE37764 and

ERP001058 confirm that study-effects are also influencing these

RNA-seq datasets (see Text S1).

The CCVA results on data from these four studies indicate

two key results. First, the gap between RCV and ISV

performance is smaller for ADC when the RNA-seq studies

are analyzed (RCV-ISV difference of 0.10, Figure 3A) than

when the same number of ADC microarray studies is analyzed

(difference of 0.26). This suggests that ADC classification based

on RNA-seq data from three independent studies is not

significantly impacted by study-effects (an improvement over

ADC classification based on the same number of microarray

studies). To substantiate this result, we further estimated

classification performance when only one study was used to

train a classifier (Figure 3B). The bars represent classification

sensitivities achieved on the studies excluded from training,

whereas the square points represent RCV sensitivities on the

training studies. ADC sensitivity on studies excluded from

training (0.9460.05) remains high and close to the RCV

sensitivity (0.9660.04) even when only one study is used to

train.

Second, we find that, as with microarray data, increasing RNA-

seq dataset diversity by including additional studies into the

Figure 2. Inter-study-validation and randomized cross-validation results as function of number of studies included in analysis.
Average ISV (black circles) and RCV (white squares) sensitivities as a function of the number of studies included, for ADC (A, D), SCC (B, E), and NORM
(C, F), using SVM and ISSAC classifiers.
doi:10.1371/journal.pone.0110840.g002

Effect of Inter-Study Variability on Classification
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analysis also mitigates the impact of study-effects on classification

outcomes. For example, ISV sensitivity calculated from NORM

RNA-seq data (0.6860.21) is significantly lower than correspond-

ing RCV sensitivity (0.9860.03) (p,0.05, Wilcoxon ranksum test),

indicating that NORM sensitivity is indeed compromised by

study-effects. Notably, we find that NORM ISV sensitivity, which

is achieved by learning a molecular signature from two NORM

training studies (0.6860.21), is greater than the sensitivity

achieved when only one NORM study was used to learn a

molecular signature (0.5660.26). Increasing the number of RNA-

seq studies included in training improves NORM classification

performance on untrained studies and does not significantly

change ADC performance on untrained studies, suggesting that

greater benefit in classification can be gained by the integration of

data from additional NORM RNA-seq studies.

Discussion

Generating molecular signatures that yield consistently high

predictive capability in diagnostic tests remains a critical challenge

in omics-based biomarker discovery. We find that study-effects

stemming from both technical and biological variability substan-

tially decrease predictive performance and consistency when data

from only a few studies are considered in learning molecular

signatures. However, our results show that incorporating data

from additional independent studies mitigates the impact of study-

effects, thereby reducing the predictive error. The qualitative

trends of our study-effects results remained consistent across

microarray and RNA-seq datasets. Given that study-effects also

account for intrinsic biological heterogeneity, the trends associated

with study-effects are relevant to classification even with improved

technologies.

A significant source of variability arises not from technical

batch-effects but rather is an inevitable consequence of the

inherent heterogeneity of many disease phenotypes. Given that

study-effects associated with disease heterogeneity are biological,

they can best be accommodated by collecting data from multiple

sources. The key point is that the diversity represented in the

training and test set needs to reflect the range of diversity expected

in the clinical setting. Subpopulations from different studies have

different underlying distributions of expression, so sampling data

from multiple independent studies improves the approximation of

the global distribution across multiple sites – even when sample

sizes are held constant – which aids the identification of consistent

classifiers. Therefore, the improvement in classification perfor-

mance that results from training classifiers on larger numbers of

studies highlights the need to incorporate more population

heterogeneity in future biomarker discovery studies by integrating

data from multiple sites, including additional sites in test

validation.

Comparative cross-validation analysis provides a quantitative

basis for prioritizing strategies for improving classification of

different phenotypes. For example, our CCVA results highlight

phenotypes for which diagnostic reproducibility was most greatly

affected by study-effects. These phenotypes are the most suitable

candidates for further data gathering and analysis to immediately

yield better classification outcomes. In contrast, in phenotypes with

average ISV sensitivities that approach RCV sensitivities, our

results suggest that, because of the difficulty of the gene expression-

based classification problem, simply gathering more gene expres-

sion data and using the same algorithms would not likely

substantially improve performance. In these cases, leveraging

other strategies for classification, including redefinitions of

molecular phenotypes, integration of multi-omic data, and

contextualization with biological networks, may be more beneficial

to finding classifiers with more consistent performance. By

measuring the improvement in classification once study-effects

have been mitigated, CCVA can be used to guide future data

gathering efforts.

Conclusions

In this study, we quantify the degree of impact of technical and

biological ‘‘study-effects’’ on disease classification performance.

We find that learning diagnostic signatures on larger numbers of

studies compensates for study-effects and results in marked

Figure 3. Inter-study validation performance in RNA-seq data based on SVM. (A) The colored bars report ISV sensitivities achieved by
validating performance on the study designated in the horizontal axis. Dashed lines represent average ISV sensitivities for each phenotype. Solid lines
report corresponding ten-fold RCV sensitivities of each phenotype. (B) The colored bars report average sensitivities from validating on studies
excluded from training. Squares represent corresponding RCV sensitivities from the studies included in the training set. Results were averaged across
the different combinations of training studies, and the error bars report the standard deviation of the results.
doi:10.1371/journal.pone.0110840.g003
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improvements in classification performance. Moreover, we can

estimate when ‘‘sufficient’’ diversity has been achieved for learning

classifiers that are likely to translate effectively to new clinical

settings. These results are relevant to phenotype prediction using

data across measurement technologies. Our finding that study-

effects can be quantifiably mitigated by introducing data collected

from additional studies has applicability to disease classification

study design strategies. It has clear implications for study design

because diversity of samples in the training set (e.g. from multiple

sites) shows markedly better consistency in predictive accuracy

when taken to new clinical sites, as is a needed step on the path to

clinical use. This underscores the need to incorporate more

population heterogeneity in future classification studies by

integrating data from multiple sources. Additionally, we find that

different phenotypes require different degrees of training hetero-

geneity to mitigate study-effects. Applying comparative cross-

validation analysis, we can discriminate between phenotypes that

would benefit from for further data gathering to increase training

heterogeneity from the phenotypes may require different analysis

strategies to reduce predictive error. Therefore, our approach

provides a computational tool for prioritizing strategies to improve

disease classification.
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