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Abstract 

Importance: Functional brain networks are associated with both behavior and genetic factors. 

To uncover clinically translatable mechanisms of psychopathology, it is critical to define how the 

spatial organization of these networks relates to genetic risk during development. 

Objective: To determine the relationship between transdiagnostic polygenic risk scores (PRSs), 

personalized functional brain networks (PFNs), and overall psychopathology (p-factor) during 

early adolescence. 

Design: The Adolescent Brain Cognitive Development (ABCD) Study� is an ongoing 

longitudinal cohort study of 21 collection sites across the United States. Here, we conduct a 

cross-sectional analysis of ABCD baseline data, collected 2017-2018.  

Setting: The ABCD Study® is a multi-site community-based study. 

Participants: The sample is largely recruited through school systems. Exclusion criteria 

included severe sensory, intellectual, medical, or neurological issues that interfere with protocol 

and scanner contraindications. Split-half subsets were used for cross-validation, matched on 

age, ethnicity, family structure, handedness, parental education, site, sex, and anesthesia 

exposure. 

Exposures: Polygenic risk scores of transdiagnostic genetic factors F1 (PRS-F1) and F2 (PRS-

F2) derived from adults in Psychiatric Genomic Consortium and UK Biobanks datasets. PRS-F1 

indexes liability for common psychiatric symptoms and disorders related to mood disturbance; 

PRS-F2 indexes liability for rarer forms of mental illness characterized by mania and psychosis. 
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Main Outcomes and Measures: (1) P-factor derived from bifactor models of youth- and parent-

reported mental health assessments. (2) Person-specific functional brain network topography 

derived from functional magnetic resonance imaging (fMRI) scans. 

Results: Total participants included 11,873 youths ages 9-10 years old; 5,678 (47.8%) were 

female, and the mean (SD) age was 9.92 (0.62) years. PFN topography was found to be 

heritable (N=7,459, 57.06% of vertices h2 pFDR<0.05, mean h2=0.35). PRS-F1 was associated 

with p-factor (N=5,815, r=0.12, 95% CI [0.09–0.15], p<0.001). Interindividual differences in 

functional network topography were associated with p-factor (N=7,459, mean r=0.12), PRS-F1 

(N=3,982, mean r=0.05), and PRS-F2 (N=3,982, mean r=0.08). Cortical maps of p-factor and 

PRS-F1 regression coefficients were highly correlated (r=0.7, p=0.003). 

Conclusions and Relevance: Polygenic risk for transdiagnostic adulthood psychopathology is 

associated with both p-factor and heritable PFN topography during early adolescence. These 

results advance our understanding of the developmental drivers of psychopathology. 
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Key Points 

Question: What is the relationship between transdiagnostic polygenic risk scores (PRSs), 

personalized functional brain networks (PFNs), and overall psychopathology (p-factor) during 

early adolescence? 

Findings: In this cross-sectional analysis of the Adolescent Brain Cognitive Development 

(ABCD) Study� (N=11,873, ages 9-10), we found that a PRS of common psychopathology in 

adulthood (PRS-F1) was associated with p-factor during early adolescence. Interindividual 

differences in p-factor, PRS-F1, and PRS-F2 (capturing rarer psychopathology in adulthood) 

were all robustly associated with PFN topography. 

Meaning: Polygenic risk for transdiagnostic adulthood psychopathology is associated with both 

p-factor and PFN topography during early adolescence. 
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Introduction 

Human cerebral cortex is organized into large-scale functional networks that support perceptual, 

motor, cognitive, and emotional functions1,2. Functional connectivity between and within 

networks has been shown to explain behavioral3,4 and psychiatric symptom5–7 variability. 

Evidence suggests that these networks are heritable8–10 and related to gene expression 

patterns11,12; thus, functional network measures may be intermediate phenotypes of psychiatric 

genetic risk. However, standard fMRI analyses use group atlases, which assume functional 

networks’ spatial layouts across cortical structure—their functional topography—is consistent 

across individuals1,2. However, recent work establishes extensive inter-individual variation in 

functional topography, particularly in association cortex13–17. This study uses precision functional 

mapping to capture person-specific functional neuroanatomy and investigate its relationship to 

transdiagnostic psychiatric genetic risk and symptom burden in early adolescence. 

Precision functional mapping has shown that an individual’s personalized functional network 

(PFN) topography is highly reproducible, stable, and predictive cortical activation patterns during 

fMRI tasks13,18–20. PFN topography in development has also been associated with cognition17,21 

and p-factor22, a broad measure of overall psychopathology23,24. Patterns of PFN topography are 

known to be heritable in adulthood25, but the genetic basis of PFN topography during youth, and 

its relationship to psychiatric risk, remains unclear. 

To characterize the shared genetic architecture among psychiatric symptoms and disorders, a 

recent multivariate genome-wide association study (GWAS) used genomic structural equation 

modeling26. This approach identified two transdiagnostic genetic factors, F1 and F2, that explain 

the majority of genetic variation associated with affective and psychotic psychopathology in 

European ancestry adults. F1 captures common psychopathology broadly related to mood 

disturbance, while F2 captures rarer forms of serious mental illness characterized by mania and 
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psychosis. However, it remains unknown how the polygenic risk of F1 and F2 are related to 

overall psychopathology or brain function during early adolescence. 

In this study, we leveraged clinical phenotyping, genotyping, functional neuroimaging, and twin 

pair enrichment included in the Adolescent Brain Cognitive Development (ABCD) Study 

baseline acquisition (total N=11,873, ages 9-10 years)27–30 to investigate the genetic 

underpinnings of overall psychopathology and functional brain network topography. P-factor 

scores were defined using a bifactor model31 of mental health items. Based on Mallard et al. 

202226, we calculated polygenic risk scores of F1 (PRS-F1) and F2 (PRS-F2) in ABCD. As 

previously17,21,22,32, we used non-negative matrix factorization (NMF) to derive PFNs33. We 

hypothesized that polygenic risk for adulthood psychopathology would be associated with both 

p-factor and PFN topography during early adolescence. Thus, we sought to investigate (1) the 

heritability of p-factor34 and PFN topography25; (2) the relationship between p-factor and PRS-

F1 and PRS-F2; and (3) associations of PFN topography with p-factor, PRS-F1, and PRS-F2. 
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Methods 

Study Overview 

This study leverages the baseline sample from the ABCD BIDS Community Collection27, 

which includes N=11,873 youths ages 9-10 years old and their caregivers across 22 sites 

(eMethods 1). Caregivers provided informed consent and each ABCD site received Institutional 

Review Board approval. Using 125 youth and parent-reported mental health items, the p-factor 

was derived using a bifactor model35 (Fig 1A, eMethods 2, eTable 1). Polygenic risk scores of 

latent genetic factors F1 (PRS-F1), indexing liability for common forms of mood disturbance, 

and F2 (PRS-F2), indexing liability for psychotic disorders (Fig 1B), were calculated based on 

summary statistics from Mallard et al. 202226 (eMethods 3). Owing to current GWAS 

limitations36,37, PRSs were only calculated in a European (EUR) ancestry subsample (N=5,815) 

and were adjusted by regressing out the first ten EUR-ancestry principal components38. 

Personalized Functional Networks (PFNs) 

Neuroimaging data was processed using the ABCD-BIDS pipeline39 (eMethods 4). 

Consistent with previous work21,32, we concatenated the time series data from up to four resting-

state scans and three task-based scans20, and excluded participants with incomplete data or 

excessive head motion (N=7,459). Mean framewise displacement (FD) was calculated for each 

participant’s concatenated time series to summarize in-scanner motion and used a model 

covariate. 

PFN generation was consistent with prior work17,21,22,32,33. We applied regularized NMF, 

which positively weights connectivity patterns that covary, to each individual’s concatenated 

fMRI time series to identify k=17 personalized networks (Fig 1C) (eMethods 5). We used a 

group consensus atlas from past work in an independent dataset17 as a prior in time series 
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decomposition. This yielded a loading matrix of 17 x 59,412 for each participant, in which 17 

corresponds to the number of networks and 59,412 corresponds to the number of cortical 

vertices. Each value in the loading matrix quantifies the extent to which each vertex belongs to a

certain network, a probabilistic network definition that we refer to as PFN topography. 

Figure 1. Derivation of P-factor, Polygenic Risk Scores, and Personalized Functional 
Networks 

A. Overall psychopathology of ABCD participants ages 9-10 was captured using a bifactor model, in which each of 
125 mental health interview items loads onto both a general factor (p-factor) and one of 8 orthogonal sub-factors 
(PSY = psychotic symptoms, MAN = manic symptoms, OPP = oppositional defiance, INT = internalizing symptoms, 
ADH = attention-deficiency and hyperactivity, SOM = somatic symptoms, DSE = disordered eating, PTS = post-
traumatic stress). B. In a European ancestry subsample, polygenic risk scores of latent genetic factors F1 (PRS-F1) 
and F2 (PRS-F2) were calculated based on summary statistics from Mallard et al. 202226 (from which factor structure 
and loadings are shown here). F1 encapsulates psychiatric symptoms and disorders largely related to mood 
disturbance (PSY = psychotic symptoms, MAN = manic symptoms, DEP = depressive symptoms, MDD = major 
depressive disorder, BD2 = bipolar disorder II), and F2 encapsulates rarer, more severe disorders largely related to 
psychosis (BD1 = bipolar disorder I, SZA = schizoaffective disorder, SCZ = schizophrenia). C. Spatially constrained 
non-negative matrix factorization (NMF) was used to decompose each participant’s fMRI time series into 
personalized functional networks (PFNs), as defined by a loading matrix of 17 x 59,412 for each participant, in which 
17 corresponds to the number of networks and 59,412 corresponds to the number of cortical vertices. Each value in 
the loading matrix quantifies the extent to which each vertex belongs to a certain network for that participant, a 
probabilistic network definition we refer to as PFN topography. Schematic reproduced from Keller et al. 202432. 
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Statistical Analysis 

We leveraged the twin pairs in our sample (254 monozygotic and 334 dizygotic) to 

calculate heritability of p-factor and PFN vertex-level topography using ACE extended twin 

design models40 controlling for age, sex, and site (as well as mean FD for PFN models) in 

OpenMX41. We computed linear mixed-effects (LME) models to validate univariate associations 

among p-factor, PRS-F1, and PRS-F2, accounting for fixed effects of age and sex as well as 

batch effects of family and site (eMethods 6). 

Next, we trained ridge regression models on the PFN loading matrices of each 

participant to identify multivariate associations with p-factor, PRS-F1, and PRS-F2 scores. All 

models included covariates for age, sex, site, and mean FD that were regressed out separately 

in two half-split subsets based on the ABCD Reproducible Matched Samples42. To estimate 

generalizability across matched subsets, two-fold cross-validation was used: regression models 

were trained in one subset and tested in an unseen subset, followed by swapping of the training 

and testing data (eMethods 7). 

To further interpret multivariate associations between PFN topography and each of our 

variables of interest, we analyzed the feature weights of our ridge regression models. Feature 

weights quantify the strength and direction of each network loading’s association with the 

variable of interest. A positive weight indicates that a network’s loading onto a vertex is 

associated with a higher score (e.g., high p-factor), and a negative weight indicates that a 

network’s loading is associated with a lower score (e.g., low p-factor). To account for the 

covariance structure among features, we applied the Haufe transform43 to weights. We 

averaged Haufe-transformed weights between split-half subsets and interpreted them using 

three approaches: vertex-level regional importance, network-level importance, and directional 

network topographies (eMethods 8). 
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Results 

Overview 

Based on 254 monozygotic and 334 dizygotic twin pairs in the ABCD Study® (N=11,873, ages 

9-10), we found significant heritability of PFN topography. Transdiagnostic psychopathology 

indexed by p-factor in youth was associated with polygenic risk for common psychiatric 

symptoms and conditions in adults (PRS-F1). Interindividual differences in functional network 

topography were associated with p-factor, PRS-F1, and PRS-F2 (which captures polygenic risk 

for rarer adult psychiatric conditions). These multivariate associations were largely driven by the 

topography of higher-order association networks. We found convergence in individualized 

topography associated with p-factor and PRS-F1 and divergence in the topography associated 

with PRS-F2. 

Genetic Effects Underlie P-factor and PFNs 

 First, we calculated twin-based heritability (h2) of p-factor and PFN vertex-level 

topography. A significant proportion of phenotypic variance in p-factor was attributable to 

additive genetic effects (h2=0.54, 95% CI [0.41–0.68], p<0.001) (Fig 2A). Shared environmental 

(C) and nonshared environmental (E) effects accounted for a smaller proportion of p-factor 

variance (C=0.20, 95% CI [0.09–0.30]; E=0.26, 95% CI [0.22–0.32]). For PFN topography, we 

calculated heritability for all non-zero variance PFN loadings. We then mapped the maximum 

heritability of each cortical vertex in terms of its loading on any of the 17 networks (Fig 2B). Of 

these 59,412 heritability estimates, 33,901 (57.06%) were significantly heritable (pFDR<0.05, 

mean of maximum h2=0.35). 

 Next, we investigated associations between polygenic risk and overall psychopathology 

by testing correlations among p-factor, PRS-F1, and PRS-F2. We found that p-factor was 
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correlated with PRS-F1 (r=0.12, 95% CI [0.09–0.15], p<0.001) (Fig 2C), validated in an LME 

model accounting for relevant fixed and batch effects (eTable 2; β=0.11, 95% CI [0.09–0.14], 

p<0.001). P-factor was not correlated with PRS-F2 (r=0.03, 95% CI [0.00–0.06], p=0.05) (Fig 

2C); our LME model was consistent (eTable 3; β=0.02, 95% CI [0.00–0.05], p=0.07). 

Furthermore, PRS-F2 was not correlated with any of the orthogonal sub-factors (eFig 1). 

Consistent with the correlated factor structure reported26 (Fig 1B), PRS-F1 and PRS-F2 were 

found to be correlated (r=0.19, 95% CI [0.17–0.21], p<0.001) (Fig 2C), validated in our LME 

model (eTable 4; β=0.18, 95% CI [0.15–0.20], p<0.001). 

Figure 2. Genetic Effects Underlie Overall Psychopathology and PFN Topography 

A. Leveraging twins included in ABCD, extended twin design models revealed the additive genetic effect (A), or 
heritability (h2), of p-factor (h2=0.54, 95% CI [0.41–0.68], p<0.001) (A = additive genetic effect, C = common 
environmental effect, E = nonshared environmental effect, error bars = 95% CI). B. Map showing the maximum 
heritability of a given cortical vertex across the 17 networks. Out of 59,412 cortical vertices, 33,901 (57.06%) have a 
maximum heritability that was significantly heritable after false discovery rate (FDR) correction. C. Correlation matrix 
of p-factor, PRS-F1, and PRS-F2 using Pearson correlation coefficients. *p<0.001 based on LME models. 
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PFN Topography is Associated with Interindividual Differences in P-factor, PRS-F1, PRS-F2 

 To investigate the multivariate relationship between PFN topography and p-factor, we 

trained ridge regression models on participant PFN loading matrices and corresponding p-factor 

scores, followed by testing in unseen data. Model performance, defined as the correlation 

between the actual p-factor and the model-fit p-factor scores, was significant in both Split-Half-A 

(r=0.12, 95% CI [0.09–0.15]) and Split-Half-B (r=0.12, 95% CI [0.09–0.15]) (Fig 3A). 

Then, to investigate the multivariate relationship between PFN topography and 

psychiatric polygenic risk, we trained and tested ridge regression models on PFN loading 

matrices and corresponding F1 and F2 polygenic risk scores. Significant correlations between 

actual and model-fit scores were found for PRS-F1 (Split-Half-A r=0.05, 95% CI [0.01–0.10]; 

Split-Half-B r=0.07, 95% CI [0.03–0.12]) (Fig 3B) and PRS-F2 (Split-Half-A r=0.08, 95% CI 

[0.04–0.12]; Split-Half-B r=0.08, 95% CI [0.04–0.13]) (Fig 3C). 

Permutation testing revealed that the multivariate associations between PFN topography 

and p-factor, PRS-F1, and PRS-F2 were all significantly higher than chance (P-factor Split-Half-

A p<0.001, Split-Half-B p<0.001; PRS-F1 Split-Half-A p=0.008, Split-Half-B p<0.001; PRS-F2 

Split-Half-A p<0.001, Split-Half-B p<0.001) (Fig 3D). To ensure robustness to data division, we 

randomly divided our samples into half-split subsets 100 times, demonstrating stability of PFN 

model performance on p-factor (mean r=0.12), PRS-F1 (mean r=0.05), and PRS-F2 (mean 

r=0.08) (Fig 3E) across subsets. 
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Figure 3. PFN Topography is Associated with Interindividual Differences in P-factor, PRS-
F1, and PRS-F2  

A-C. The multivariate association between PFN topography and p-factor, PRS-F1, and PRS-F2 was assessed using 
model performance, defined as the correlation between the actual score (p-factor, PRS-F1, or PRS-F2) and the 
model-fit score produced by PFN-trained ridge regression models. Significant correlations between actual and model-
fit scores were found for p-factor (A), PRS-F1 (B), and PRS-F2 (C) in both Split-Half-A (darker scatterplot, rA) and 
Split-Half-B (lighter scatterplot, rB) subsets. D. Permutation testing (N=1000) of model performance revealed that the 
associations of PFN topography with p-factor, PRS-F1, and PRS-F2 (colored points) were all significantly higher than 
chance (*p<0.01, box plots show null distributions) (SHA = Split-Half-A, SHB = Split-Half-B). E. Repeated random 2-
fold cross-validation (N=100) revealed stability of model performance across randomized sample split-halves. 

 

Cortical Regions Driving the Association of PFNs with P-factor, PRS-F1, PRS-F2 

 To identify important cortical regions driving the association between PFN topography 

and p-factor, PRS-F1, and PRS-F2, we evaluated the weights of our ridge regression models at 

the vertex level. Mapping the magnitude of summed weights across networks onto the cortical 

surface revealed regions driving the association of PFN topography with p-factor (Fig 4A top), 

PRS-F1 (Fig 4B top), and PRS-F2 (Fig 4C top). Unsummed weight maps of individual 

networks were also derived (eFigs 2-4). 
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Given that p-factor was found to be heritable (Fig 2A) and that PRS-F1 and PRS-F2 are 

genetic variables, we would expect cortical regions with substantial heritability to drive the 

associations between PFN topography and p-factor, PRS-F1, and PRS-F2. To test this 

hypothesis, we investigated the PFN loading heritability (Fig 2B) of vertices with the top 1% 

contribution weights (i.e., the most important features) for p-factor, PRS-F1, and PRS-F2. The 

top p-factor and top PRS-F1 associated regions were both found primarily in the dorsolateral 

and ventromedial prefrontal cortex. Vertices in these regions were nearly all significantly 

heritable (p-factor cluster 588/594, 99.0%; PRS-F1 cluster 586/594, 98.7%) with substantial 

average heritability (p-factor h2=0.42; PRS-F1 h2=0.42) (Fig 4A bottom, 4B bottom). The top 

PRS-F2 associated vertices, residing primarily in the temporoparietal junction, were nearly all 

significantly heritable (573/594, 96.5%) with an average heritability of h2=0.42 (Fig 4C bottom). 

If the relationship between PRS-F1 and p-factor (Fig 2C) is reflected in functional brain 

network organization, we might expect shared spatial patterns between the contribution weight 

maps of PRS-F1 and p-factor. Using participant-level permutation testing, we tested the 

significance of correlations among all three weight maps. Indeed, we found a strong significant 

correlation between the weight maps of PRS-F1 and p-factor (r=0.70, p=0.003) (Fig 4D), also 

significant in conventional spin testing44 (p<0.001). In contrast, the weight maps of PRS-F2 and 

p-factor were not found to be significantly correlated (r=0.23, permutation testing p>0.99, spin 

testing p=0.06) (Fig 4D). 
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Figure 4. Cortical Regions Driving the Association of PFNs with P-factor, PRS-F1, and 
PRS-F2  

A-C. At each vertex, the absolute values of Haufe-transformed model contribution weights were summed across 
networks, revealing important regions driving the association between PFN topography and p-factor (A top), PRS-F1 
(B top), and PRS-F2 (C top). Maps showing twin-based heritability (h2) of the top 1% contribution weight vertices for 
PFN models fit to p-factor (A bottom, average h2=0.42) PRS-F1 (B bottom, average h2=0.42), and PRS-F2 (C 
bottom, average h2=0.42) (full PFN heritability map shown in Fig 2B; top contribution weight vertices for p-factor, 
PRS-F1, and PRS-F2 reside primarily in the lateral cortex, medial cortex not shown). D. Correlation matrix of the 
three model contribution weight maps. *p=0.003 based on participant-level permutation testing (N=1000), 
p<0.001 based on conventional spin testing (N=1000). 

 

Networks Driving the Association of PFNs with P-factor, PRS-F1, PRS-F2 

 We next sought to identify networks driving the association between PFN topography 

and p-factor, PRS-F1, and PRS-F2. To do so, we evaluated the aggregate importance of 

vertices within each network to p-factor (Fig 5A top), PRS-F1 (Fig 5B top), or PRS-F2 (Fig 5C 
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top) models. P-factor and PRS-F1 shared the same two most important networks: 15, a 

frontoparietal (FP) network, and 7, a ventral attention (VA) network. The two most important 

networks associated with PRS-F2 were divergent: 3, a distinct FP network, and 9, a distinct VA 

network (Fig 5D). 

 Next, we sought to understand the specific network topographies underlying these 

associations. To determine network topography positively associated with p-factor, PRS-F1, and 

PRS-F2, we assigned vertices corresponding to the top 10% of the most positive weights to 

their respective networks. This resulted in maps of PFN topography associated with high p-

factor (Fig 5A middle), high PRS-F1 (Fig 5B middle), and high PRS-F2 (Fig 5C middle) (top 

1% and 5% shown in eFig 5A-B top). Notably, there was substantial shared topography 

between high p-factor and high PRS-F1 maps (2,456/5,941 vertices shared, 41.3%, eFig 6A 

top). Shared positive topography was localized primarily to the prefrontal cortex (Fig 5E), 

including FP networks 3 and 17, default mode (DM) networks 1 and 12, and VA networks 7 and 

9. Topography of the high PRS-F2 map diverged from that of p-factor (125/5,941 vertices 

shared, 2.1%, eFig 6B top), with FP networks 3 and 17, DM networks 1 and 8, and VA network 

9 localized primarily to the temporoparietal junction (Fig 5C middle). 

Similarly, we assigned network identity to the top 10% of the most negative weights, 

resulting in maps of PFN topography associated with low p-factor (Fig 5A bottom), low PRS-F1 

(Fig 5B bottom), and low PRS-F2 (Fig 5C bottom) (top 1% and 5% shown in eFig 5A-B 

bottom). There was substantial shared topography between low p-factor and low PRS-F1 maps 

(1,711/5,941 vertices shared, 28.8%, eFig 6A bottom). Shared negative topography was 

localized primarily to the prefrontal cortex (Fig 5F), including FP network 17, DM network 12, VA 

networks 7 and 9, and dorsal attention (DA) network 14. Topography of the low PRS-F2 map 

diverged from that of p-factor (269/5,941 vertices shared, 4.5%, eFig 6B bottom), with DM 
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network 8, VA network 9, and DA network 14 localized primarily to the temporoparietal junction 

(Fig 5C bottom). 

 

Figure 5. Networks Driving the Association of PFNs with P-factor, PRS-F1, and PRS-F2 

A-C Top. For each network, the absolute values of Haufe-transformed model contribution weights were summed 
across vertices, revealing the cumulative feature importance of each network to the multivariate association between 
PFNs and p-factor (A top), PRS-F1 (B top), and PRS-F2 (C top). Summed weight values were normalized by 
network size, defined as the number of non-zero vertex loadings within each network of the initial group consensus 
atlas. The resulting network importance values were normalized to the maximum so that all values are in the range of 
[0,1] for ease of interpretation. Solid bars reflect significance of p<0.05 based on participant-level permutation 
(N=1000) after FDR correction. (FP = frontoparietal, VA = ventral attention, DA = dorsal attention, DM = default 
mode, AU = auditory, SM = somatomotor, VS = visual). A-C Middle. To identify network topography positively 
associated with our variables of interest, we determined the most positive Haufe-transformed model weight across 
the 17 networks for each vertex, thresholded to keep the top 10% of most positive weights across the cortical surface,
and set a 25mm2 cluster threshold. Then, we assigned each of the retained vertices to the network corresponding to 
each vertex’s most positive weight (network denoted by specific color as shown in legend on the right of each panel). 
This results in maps of PFN topography associated with high p-factor (A middle), high PRS-F1 (B middle), and high 
PRS-F2 (C middle). A-C Bottom. To identify network topography negatively associated with our variables of interest, 
we determined the most negative Haufe-transformed model weight across the 17 networks for each vertex, 
thresholded to keep the top 10% of values (by magnitude) across the cortical surface, and set a 25mm2 cluster 
threshold. Then, we assigned each of the retained vertices to the network corresponding to each vertex’s most 
negative weight (network denoted by specific color as shown in legend on the right of each panel). This resulted in 
maps of PFN topography associated with low p-factor (A bottom), low PRS-F1 (B bottom), and low PRS-F2 (C 
bottom). D. Hard parcellation of PFN group atlas for reference. E. Conjunction map showing shared topography in 
prefrontal cortex between high p-factor (A middle) and high PRS-F1 (B middle) maps. F. Conjunction map showing 
shared topography in prefrontal cortex between low p-factor (A middle) and low PRS-F1 (B middle) maps. Whole 
cortex conjunction maps shown in eFig 6. 
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Discussion 

Here, we applied precision functional brain mapping to demonstrate that polygenic risk underlies 

individual differences in functional network organization during early adolescence. Consistent 

with our and others’ prior work22,45, we showed that PFN topography is associated with 

psychopathology, and that associations of topography with both p-factor and polygenic risk 

scores are largely driven by association networks. Specific cortical regions and network 

topographies converged between p-factor and PRS-F1, whereas they diverged in PRS-F2; this 

aligned with our findings that PRS-F1 was associated with p-factor, whereas PRS-F2 was not. 

Furthermore, our study replicated past work34 showing twin-based heritability of p-factor, and 

expanded on prior findings of PFN topography heritability during adulthood25 by demonstrating 

its heritability during development. Together, these findings demonstrate that polygenic risk for 

transdiagnostic adulthood psychopathology is associated with both p-factor and heritable PFN 

topography during early adolescence. 

Our results showed that PRS-F1, encapsulating common mood disorder symptoms, major 

depression, and bipolar II disorder in adulthood, was associated with p-factor during early 

adolescence. This aligns with prior literature46–48, in which adult-derived polygenic risk scores for 

depression and neuroticism were associated with general psychopathology in youth. In contrast, 

PRS-F2, encapsulating schizophrenia, schizoaffective disorder, and bipolar I disorder in 

adulthood, was not associated with p-factor or any sub-factor scores, suggesting that genetic 

risk for psychotic disorders has yet to clinically manifest at this stage of development49,50. 

Using validated methods of precision functional brain mapping17,33 and rigorous cross-validation 

of our machine learning model, we found that PFN topography is associated with both PRS-F1 

and PRS-F2. This association with PRS-F2 implies that genetic risk for psychotic disorders is 

reflected in the topography of the developing brain before manifesting clinically. The top regions 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.20.24314007doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.20.24314007
http://creativecommons.org/licenses/by-nc-nd/4.0/


driving the associations of PFN topography with PRS-F1 and PRS-F2 were both highly heritable 

in twin ACE models, aligning with prior literature on the heritable and polygenic basis of 

functional brain networks9,10,51. However, to our knowledge, this study is the first to demonstrate 

associations between psychiatric polygenic risk scores and individual-specific functional network 

topography. It is worth noting that the effect sizes of these associations are small. However, 

prior work has shown that small samples tend to inflate effect size52,53, whereas large samples, 

as used here, provide more robust estimates. 

Cortical regions and network topographies associated with p-factor and PRS-F1 were 

remarkably similar, primarily residing within the dorsolateral and ventromedial prefrontal cortex. 

Past literature has found that these regions are altered in neuropsychiatric disorders including 

mood disorders54–56, potentially related to their function in emotional regulation, executive 

function, and reward-related processes57,58. In contrast, cortical regions and network topography 

associated with PRS-F2 were divergent, residing primarily in the temporoparietal junction. Prior 

studies have reported that this region is altered in schizophrenia59–61, specifically in patients with 

auditory verbal hallucinations, likely related to dysfunction in language processing62–64. 

Several limitations should be noted. First, polygenic risk scores were only calculated in 

participants with European-ancestry, limiting cross-ancestral insights65 and highlighting the need 

for greater GWAS population diversity66. Second, p-factor is a low-dimensional representation of 

transdiagnostic psychopathology; more nuanced domain-level factors (e.g., internalizing) may 

correlate more strongly with genetic risk factors67,68. Third, this study is cross-sectional, 

motivating future longitudinal studies to gain further causal insight. 

To advance our search for diagnostic markers and therapeutic targets, it is critical to uncover 

biological mechanisms underlying the emergence of mental illness during development. 
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Together, the present results are a meaningful step towards understanding the genetic and 

functional drivers of transdiagnostic psychopathology in early adolescence. 
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