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Abstract

eNOS activation resulting in mitochondrial biogenesis is believed to play a central role in life span extension promoted by
calorie restriction (CR). We investigated the mechanism of this activation by treating vascular cells with serum from CR rats
and found increased Akt and eNOS phosphorylation, in addition to enhanced nitrite release. Inhibiting Akt phosphorylation
or immunoprecipitating adiponectin (found in high quantities in CR serum) completely prevented the increment in nitrite
release and eNOS activation. Overall, we demonstrate that adiponectin in the serum from CR animals increases NON

signaling by activating the insulin pathway. These results suggest this hormone may be a determinant regulator of the
beneficial effects of CR.
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Introduction

Calorie restriction (CR) extends lifespans of model organisms

ranging from yeast to mammals [1–4], and many groups have

focused on understanding how this dietary intervention acts

mechanistically. In 2005, Nisoli and collaborators [5] elegantly

demonstrated that dietary restriction induced the activation of

endothelial nitric oxide synthase (eNOS) and lead to enhanced

mitochondrial biogenesis and increased oxygen consumption.

Indeed, the effects of the diet were largely absent in eNOS

deficient animals [5]. Further studies have found links between

mitochondrial activity and CR. Fungal CR models present

increments in respiratory activity [6–8], and CR in yeast can be

promoted by NON-stimulated mitochondrial biogenesis [9].

Furthermore, CR prevents the decline in respiratory activity seen

in aging rats [10,11] and increasing respiratory activity through

the use of mitochondrial uncouplers enhances mouse lifespan [12].

Interestingly, both CR and uncouplers enhance mitochondrial

biogenesis in insulin-sensitive tissues, in a manner involving

protein kinase B (Akt) phosphorylation [13].

Insulin is involved in the control of eNOS phosphorylation and

activity [14–18]. It activates Akt [17,19,20], which promotes

eNOS activation [21], increasing the production of nitric oxide

(NON) and leading to mitochondrial biogenesis [22–25] through

the expression of the peroxisome proliferator-activated receptor-c

coactivator 1a (PGC-1a), a master regulator of mitochondrial

mass (reviewed in [26,27]).

The mechanism which leads to NON signaling and mitochon-

drial biogenesis in response to CR was not well explored to date.

Mammals submitted to CR present lower insulin levels [13,28,29],

but improved tissue insulin sensitivity [13,30], in part due to long-

term decreases in blood glucose [31]. We investigate here if

changes in serological profiles in CR animals are sufficient to

acutely promote NON signaling in cultured vascular cells, and

uncover the signaling pathways involved.

Results

CR decreases serum glucose and insulin; increases
adiponectin levels

After 26 weeks of CR, the average body weight of rats was lower

than control AL rats, an effect accompanied by lower visceral fat

deposits, serum glucose, insulin, and increased adiponectin levels

(Table 1), alterations similar to those observed in most literature

CR studies [28].

CR serum increases NON production
VSMC cells incubated in media in which standard serum was

substituted for serum collected from CR rats presented a time-

dependent increase in NO2
2, indicative of higher levels of NON

production compared to cells maintained in media containing

serum from animals fed AL (Fig. 1A). This result shows that acute

treatment with serum from CR animals is sufficient to increase

VSMC NON production, and suggests CR serum contains

regulatory signals leading to this effect.
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We sought to determine the source of this augmented NON

production by measuring the activities of eNOS in cells which

had been cultured in AL media and were then switched to media

containing serum from CR animals. Under these conditions, the

quantity of total eNOS increased significantly after 24 h (by

20368%, p,0.05). Furthermore, active, phosphorylated, eNOS

increased (Fig. 1B shows a representative blot of the time-

dependent effect of incubation in CR serum, while Fig. 1C

quantifies relative phosphorylated band intensity after 24 h in

AL or CR sera). Overall, these results indicate that eNOS

expression and activation is promoted by serological changes

induced by CR.

CR serum increases insulin signaling
We have previously shown that Akt and eNOS are activated in

insulin-sensitive tissues of CR animals [13]. We sought to measure

the activity of this pathway in VSMC cells cultured in the presence

of CR serum (Fig. 2) and found that the active, phosphorylated,

form of Akt increased in a time-dependent manner in CR media,

from undetectable levels in AL serum (Fig. 2A, upper panels).

Indeed, after 24 h in CR serum, a highly significant change in p-

Akt levels was detected relative to AL serum (Fig. 2B).

Among other pathways controlling Akt, this protein is sensitive

to insulin signaling. Although insulin levels in CR serum are

decreased relative to AL (Table 1), we measured the activation of

insulin receptors (IR) from VSMC grown 24 h in AL and CR

media. The receptors were immunoprecipitated and probed with

anti-phospho-Tyr antibodies. CR serum significantly enhanced

the total amount of IR by 19468%, p,0.05, and lead to a strong

increment in receptor phosphorylation (Figs. 2A and 2B),

indicating that it contains components other than insulin capable

of acutely activating the insulin pathway.

CR serum-induced NON release is dependent on Akt
In order to investigate if enhanced NON release from VSMC

cells was dependent on the activation of the insulin pathway, we

inhibited Akt activity with 1 mM naphthyridinone 17 (NTD). This

concentration of NTD completely prevented the accumulation of

NO2
2 promoted by CR serum, but did not affect the release in

cells grown in AL serum (Fig. 3A). Furthermore, NTD completely

eliminated the detection of phospho-eNOS and decreased total

eNOS band intensity (Fig. 3B). This is consistent with the finding

that Akt activity is important for eNOS phosphorylation [21].

Adiponectin mediates the activation of the insulin
pathway and NON release induced by CR serum

The activation of the insulin pathway in cells acutely treated

with CR serum is surprising since insulin levels are lower (Table 1).

However, adiponectin levels are increased in CR, and this

hormone is an activator of the insulin pathway [32,33]. To

address the role of adiponectin in the CR serum effect on NON

release, we removed it through immunoprecipitation. The

procedure was highly effective (Fig. 4A). Using immunoprecipi-

tated sera, we noted that the phosphorylation of insulin receptors

promoted by CR serum was eliminated (Fig. 4B), while no effect

was seen in AL serum. Immunoprecipitation of adiponectin also

totally reversed the effect of CR serum on eNOS phosphorylation

(Fig. 4C) and on NO2
2 release (Fig. 4D). Overall, these results

indicate that enhanced NON release promoted by CR serum in

vascular cells is a consequence of high adiponectin levels.

Discussion

Mitochondrial mass and function decrease during aging [34–

36] in a manner prevented by CR, which promotes enhanced NON

signaling associated with mitochondrial biogenesis [5,6,11,13].

Thus, NON signaling seems to be central toward the beneficial

effects of CR in aging, although the mechanisms through which

CR affects this pathway have not been directly approached to

date. We addressed this point by treating VSMC, prone to

respond to physiological stimuli that affect NON release [37,38],

with serum collected from CR animals. This protocol has the

advantage of separating long-term dietary effects from acute effects

on vascular cells, specifically addressing the question if hormonal

changes in CR are sufficient to activate NON signaling.

We observed a time-dependent increment in NO2
2 released

into the culture medium, indicative of enhanced NON production,

as well as increments in eNOS quantity and phosphorylation

(Fig. 1), a result in line with previous data showing that CR

Table 1. Effects of CR and AL diets.

CR AL P value

Body weight (g) 481.5682.9 675.7693.1 ,0.0001

Visceral fat (g) 23.969.8 31.267.9 0.0009

Serum glucose (mg?dL21) 85.863.7 115.166.6 0.0008

Serum insulin (ng?mL21) 0.5860.29 1.9860.85 ,0.0001

Serum adiponectin (relative to AL) 3.060.7 1 ,0.0001

Measurements were conducted as described in Materials and Methods.
doi:10.1371/journal.pone.0031155.t001

Figure 1. CR serum increases NO2
2 release and promotes eNOS and nNOS phosphorylation. (A) Culture media NO2

2 was measured over
time after incubation in AL or CR sera, as indicated. (B) eNOS phosphorylation and expression over time after switching from AL to CR serum.
Representative blots are shown. (C). Quantification of eNOS phosphorylation after 24 h in AL or CR sera. *p,0.05 versus AL.
doi:10.1371/journal.pone.0031155.g001
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induced the expression of eNOS through Akt [5,13,17,19,20].

Indeed, Akt phosphorylation was strongly enhanced by CR serum

(Fig. 2) and NTD (a selective Akt inhibitor when used at low

micromolar doses [39]) inhibited eNOS phosphorylation (Fig. 3).

The insulin receptor, an upstream regulator of Akt activity and

eNOS activation [40], was also activated by CR serum (Fig. 2).

Insulin signaling is well known to activate NON signaling, and Akt

physically interacts with eNOS in response to insulin [41].

However, insulin is found at decreased levels in CR serum while

adiponectin, an activator of peripheral insulin signaling [32,33], is

increased (Table 1, [42,43]). Furthermore, adiponectin was

previously reported to activate eNOS through Akt [44,45].

Accordingly, we sought to determine if adiponectin in CR

serum could activate NON signaling. We immunoprecipitated

adiponectin from both AL and CR sera (Fig. 4A), and found that,

while this did not alter the release of NO2
2 promoted by AL

serum, it completely abrogated the increased release specific to CR

serum (Fig. 4D). In addition, increased activation of the insulin

pathway and eNOS were absent upon removal of adiponectin

(Figs. 4B and C). Together, these results demonstrate that

adiponectin is the key regulator of enhanced NON signaling in

vascular cells stimulated with CR serum.

It should be noted that VSMCs present different signaling

receptors and pathways than endothelial cells, which could thus

present different responses to CR sera. However, previous results

demonstrate that adiponectin stimulates NON release from

endothelial cells [46], supporting the idea that this cytokine is

probably a key signaling molecule in CR-induced NON signaling.

Interestingly, it seems that eNOS-derived NON can also have a

determinant role in regulating the production of adiponectin by

adipocytes [47].

Overall, our results point to adiponectin as a key serological

factor involved in acute cellular responses altered by CR, and

suggest that this hormone may be a central regulator of

Figure 3. CR-induced NO2
2 release is dependent on Akt

activity. (A) NO2
2 levels in the culture medium from VSMC incubated

24 h with AL or CR serum and 0.001% DMSO (solvent control) or 1 mM
NTD. (B) eNOSSer1177 phosphorylation in homogenates from VSMC
incubated 24 h with AL or CR serum and 0.001% DMSO or 1 mM NTD.
*p,0.05 versus AL; #p,0.05 versus DMSO. Representative blots are
shown above quantifications.
doi:10.1371/journal.pone.0031155.g003

Figure 4. Adiponectin in CR serum promotes insulin receptor
and eNOS phosphorylation, resulting in NON release. (A)
Adiponectin levels in AL and CR sera before and after immunoprecip-
itation (IP). (B) Tyr phosphorylation in insulin receptors immunoprecip-
itated from homogenates of VSMC cultured for 24 h in the presence of
CR or AL serum, with (IP) or without (Control) prior adiponectin
immunoprecipitation. (C) eNOSSer1177 phosphorylation in homogenates
from VSMC cultured for 24 h in the presence of CR or AL serum, with
(IP) or without (Control) prior adiponectin immunoprecipitation. (D)
NO2

2 levels in the media from VSMC cultured for 24 h in the presence
of CR or AL serum, with (IP) or without (Control) prior adiponectin
immunoprecipitation. *p,0.05 versus AL; #p,0.05 versus control.
Representative blots, shown above quantifications, were cut to remove
other bands, without any further image manipulation.
doi:10.1371/journal.pone.0031155.g004

Figure 2. CR serum activates the insulin pathway. (A) Upper
blots: AktSer473 phosphorylation over time after switching from AL to CR
serum. Lower blots: Tyr phosphorylation in insulin receptors (IR)
immunoprecipitated from VSMC cultured for 24 h in AL or CR media.
Representative blots are shown. (B) Quantification of pAkt/Akt and p-IR/
IR after 24 h in AL or CR sera. *p,0.05 versus AL.
doi:10.1371/journal.pone.0031155.g002
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mitochondrial biogenesis and other processes involving NON

signaling.

Materials and Methods

Animals and serum collection
All experiments were conducted in agreement with National

Institutes of Health guidelines for humane treatment of animals

and were approved (unnumbered) the local Animal Care and Use

Committee (Comissão de Ética em Cuidados e Uso Animal). Male, 8-

week-old Sprague-Dawley rats were separated into 2 groups: AL,

fed ad libitum with an AIN-93-M diet prepared by Rhoster

(Campinas, SP, Brazil) and CR, fed at levels 60% of AL ingested

amounts a diet supplemented with micronutrients to reach the

vitamin and mineral levels consumed by AL animals [48]. Food

was offered daily at 6 pm and feedings were adjusted weekly by

weight, based on AL food consumption. The intervention resulted

in known alterations associated with CR including lower body

weight and improved insulin sensitivity [49]. The animals were

lodged 3 per cage and given water ad libitum. At 34 weeks (26 weeks

on the diet), rats were sacrificed after 12 hours fasting and the

serum was obtained as described in [50], allowed to clot for 20–

30 min at 25uC and centrifuged for 20 min at 300 g. The

supernatant was collected and stored (220uC). Sera were thawed

and heat-inactivated at 56uC for 30 min prior to use.

Serum analysis
Insulin, glucose, triglycerides, HDL, total cholesterol and

adiponectin levels from AL or CR sera were evaluated (Table 1).

Peripheral blood was collected from the tail of 40-week-old animals

fasted for 12 hours and used for glucose analysis (Accu-CheckH
Performa Glucose Analyzer, São Paulo, SP, Brazil). For insulin and

adiponectin determinations, blood samples were centrifuged at

1000 g for 15 min and the supernatant was stored at 220uC. Insulin

was measured using a Linco Research ELISA kit (St. Charles, MO,

USA). Adiponectin was detected by Western Blots.

Cell cultures
Rat vascular smooth muscle cells (VSMC) were purchased from

ATCC (CRL-2797TM) and cultured in 25 mM glucose DMEM

supplemented with 18 mM sodium bicarbonate, 4 mM glutamine,

0.3 mM geneticin, 100 mg/mL streptomycin, 100 U/mL penicil-

lin and 10% v/v fetal bovine serum, at 37uC and 5% CO2. Cells

were passaged every 3 days. After the 8th passage, cells were

cultured in medium where fetal bovine serum was substituted for

AL rat serum. After 2 further passages, cells from a 70% confluent

flask were washed and cultured in DMEM with CR or AL rat sera.

Where used, naphthyridinone 17 (NTD) was pre-incubated with

the cultures for 24 hours, while the control group was incubated

with the same quantity of the solvent DMSO.

After 6, 12 or 24 hours, cell culture media were removed and

stored at 280uC for NO2
2 measurements. Cells were washed,

detached and counted in a Newbauer chamber. The cells were

then centrifuged (300 g, 5 min, 4uC) and homogenized in 50 mM

Tris-HCl buffer, pH 7.4, supplemented with 1% glycerol, 10%

protease inhibitor cocktail (Sigma), 1% octyl phenol ethoxylate,

10 mM sodium orthovanadate, 10 mM sodium fluoride and

10 mM sodium pyrophosphate. After 30 min over ice, cell lysates

were centrifuged (13,000 g, 20 min, 4uC) and the resulting

supernatants were collected.

NO2
2 levels

NO2
2, a marker of NON levels [51], was measured using an NON

analyzer (Model 208A; Sievers Instruments Inc., Boulder, CO,

USA) according to manufacturer protocols through the detection

of chemiluminescence in the presence of potassium iodide and

acetic acid [52,53]. Basal NO2
2 levels from the media were

subtracted.

Western Blots
Total proteins from cell lysates or serum were diluted in

Laemmli sample buffer (100 mM Tris.HCl, 2% w/v SDS, 10% v/

v glycerol, 0.1% bromophenol blue) containing 100 mM dithio-

threitol, with the exception of eNOS and phospho-eNOS Western

Blots, which were performed without dithiothreitol. After heating

at 90uC for 5 min, proteins were separated by SDS-PAGE and

transferred onto nitrocellulose membranes. Membranes were

blocked with 5% BSA and detection was carried out using specific

primary antibodies against: Adiponectin (Abcam, 1:2,000); eNOS

(Sigma, 1:3,000); phospho-eNOSSer1177 (Cell Signaling, C9C3

clone, 1:1,000); Akt (Calbiochem, 1:1,000), phospho-AktSer473

(Cell Signaling, 1:3,000); and c-actin (Sigma, 1:2,000). Chemilu-

minescent detection was performed using a secondary peroxidase-

linked anti-rabbit (Calbiochem, 1:10,000) or anti-sheep IgG

(Calbiochem, 1:13,000) and a detection system from Pierce KLP

(Rockford, IL, USA). The specificity of anti-NOS antibodies [54]

was determined by molecular mass comparisons. Signals were

quantified by densitometry using ImageQuantH (Amersham

Biosciences) and corrected using c-actin, except for serum

adiponectin determinations, which were normalized to AL.

IR and adiponectin immunoprecipitation
107 cells were plated over 75 cm2 and cultured with AL or CR

sera for 24 hours. Cells were homogenized in lysis buffer (50 mM

sodium phosphate, pH 7.4, 10% glycerol, 1% octyl phenol

ethoxylate, 10 mM sodium orthovanadate, 10 mM sodium

fluoride, 10 mM sodium pyrophosphate, supplemented with a

Sigma protease inhibitor cocktail). After 20 min over ice, tissues

lysates were centrifuged (13,000 g, 20 min, 4uC), and the resulting

supernatants were collected. Solubilized proteins (1 mg/mL) were

incubated overnight with 4 mg?mL21 anti-IR beta subunit

antibody at 4uC. Protein A-agarose (Sigma) beads (50%) were

added (80 mL?mL21), and the incubation was continued at 4uC for

2 hours. The beads were centrifuged (13,000 g, 1 min, 4uC),

washed five times in lysis buffer and suspended in Laemmli sample

buffer containing 5% 2-mercaptoethanol. Immunoprecipitation

specificity was verified through SDS-PAGE separation followed by

silver staining.

Adiponectin immunoprecipitation from the serum followed the

same steps described above, except the serum was not diluted. The

polyclonal adiponectin antibody was used at 50 mg?mL21. After a

12 hour incubation period, protein A-agarose beads (50%, Sigma)

were added (200 mL?mL21), and the incubation was continued at

4uC for 2 hours. The beads were centrifuged (13,000 g, 1 min,

4uC) and the serum was analyzed by Western Blot to confirm

efficiency.

Data analysis and statistics
Data shown are representative blots or averages 6 SEM of at

least three identical repetitions. Data were analyzed using

GraphPad Prism and compared using t-tests (for data pairs) or

two-tailed ANOVA followed by Tukey tests (multiple compari-

sons).
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