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Abstract

The relative evolutionary rates at individual sites in proteins are informative measures of conservation or adaptation.
Often used as evolutionarily aware conservation scores, relative rates reveal key functional or strongly selected residues.
Estimating rates in a phylogenetic context requires specifying a protein substitution model, which is typically a phe-
nomenological model trained on a large empirical data set. A strong emphasis has traditionally been placed on selecting
the “best-fit” model, with the implicit understanding that suboptimal or otherwise ill-fitting models might bias infer-
ences. However, the pervasiveness and degree of such bias has not been systematically examined. We investigated how
model choice impacts site-wise relative rates in a large set of empirical protein alignments. We compared models
designed for use on any general protein, models designed for specific domains of life, and the simple equal-rates
Jukes Cantor-style model (JC). As expected, information theoretic measures showed overwhelming evidence that
some models fit the data decidedly better than others. By contrast, estimates of site-specific evolutionary rates were
impressively insensitive to the substitution model used, revealing an unexpected degree of robustness to potential model
misspecification. A deeper examination of the fewer than 5% of sites for which model inferences differed in a meaningful
way showed that the JC model could uniquely identify rapidly evolving sites that models with empirically derived
exchangeabilities failed to detect. We conclude that relative protein rates appear robust to the applied substitution
model, and any sensible model of protein evolution, regardless of its fit to the data, should produce broadly consistent
evolutionary rates.
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Introduction
That the rates of substitution are not constant across a se-
quence, and are modulated by a multitude of processes and
forces has been recognized since the dawn of modern com-
parative evolutionary analysis (Uzzell and Corbin 1971;
Echave et al. 2016). Failing to account for site-to-site rate
heterogeneity would be considered a neophyte error in con-
temporary applications, since it can lead to biased parameter
estimation or incorrect phylogenies (Yang 1996). In addition
to being an important confounder that needs to be corrected
for, the distribution of rates across sites is of essential interest
in its own right in many applications. As an example, the
majority of analyses that seek imprints of natural selection
on sequence data do so by inferring and interpreting the
distributions of synonymous and nonsynonymous substitu-
tion rates and interpreting their properties (Delport et al.
2009).

In the context of protein sequence analysis, low site-
specific substitution rates have served as a proxy for evolu-
tionary conservation. Similarly, high rates have been regarded
as a correlate of adaptation or positive selection (Sydykova
and Wilke 2017). Positions which play key roles in protein
functions, including those involved in protein–protein or
protein–ligand interactions or those at or near active regions,

tend to evolve very slowly and are highly conserved (Echave
et al. 2016; Jack et al. 2016; Sydykova et al. 2018). By contrast,
sites will tend to evolve rapidly if they interact with rapidly
changing external stimuli, for example, if they are involved in
chemosensory activity (Spielman and Wilke 2013; Almeida
et al. 2015), or mediate immunity, that is, pathogen surface
proteins or key regions of host immune genes (Tusche et al.
2012). Indeed, searching for conserved immune epitopes is a
popular approach to finding vaccine or drug targets (Garcia-
Boronat et al. 2008).

Evolutionary rates at individual sites in proteins are com-
monly measured as relative quantities, that indicate how
quickly the site evolves relative to the “mean” protein rate.
In such approaches, empirically derived models of protein
evolution are fit to data in a phylogenetic framework, using
either maximum-likelihood or Bayesian methods (Pupko et al.
2002; Mayrose et al. 2004; Fernandes and Atchley 2008;
Nguyen et al. 2015; Ashkenazy et al. 2016; Spielman and
Kosakovsky Pond 2018). Available substitution models can
be loosely dichotomized into two classes. “Generalist” models
are inferred from training data that comprise proteins from
many domains of life, for example, JTT (Jones et al. 1992) or
LG (Le and Gascuel 2008), and are meant to represent the
shared evolutionary predilections of many different proteins.
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“Specialist” models, by contrast, are trained on data aimed to
capture the properties of a particular taxonomic or biological
group, for example, mtREV for mammalian mitochondrial
sequences (Adachi and Hasegawa 1996) or AB for human
antibody sequences (Mirsky et al. 2015).

Because site-specific rates are usually estimated by condi-
tioning on a specific model of sequence evolution, one can
reasonably assume that the estimated distribution of rates
among sites will be influenced by the choice of the evolution-
ary model, which can be considered a nuisance parameter
when rate estimates are of primary interest. It comes as no
surprise that the question of model selection has assumed a
prominent role in evolutionary rate inference, with popular
implementations, such as ProtTest (Darriba et al. 2011) gar-
nering thousands of citations.

Historically, protein substitution and similarity scoring
models have primarily been developed and benchmarked
in the specific context of homology identification (Henikoff
and Henikoff 1992) and phylogenetic reconstruction (Le and
Gascuel 2010). As a consequence, the relative performance of
these models for inferring evolutionary rates from protein
sequences has not been extensively studied. When this facet
of model performance is mentioned, it is usually done in
passing. For example, Landau et al. (2005) suggested that rates
inferred with different models may be similar but feature
“nonnegligible” differences.

We undertook a systematic comparison of site-specific
rate estimates inferred using three generalist models, three
specialist models, and the Jukes–Cantor equal-rates model
(also known as JC, Jukes and Cantor 1969). As expected, stan-
dard likelihood-score based information criteria used in phy-
logenetic model selection revealed very strong model
preferences for all alignments. Contrary to prevailing expec-
tation, models yielded rates that were nearly perfectly corre-
lated across alignments ranging in taxonomic scope and levels
of sequence divergence. Even when we deliberately misap-
plied a specialist model, for example, by using a mitochondrial
model on chloroplast data, we obtained rates that were al-
most perfectly correlated with the rates inferred under the
cognizant specialist model. Only the extreme case of the
equal-rates JC model yielded, albeit rarely, rates meaningfully
different, and potentially indicative of positive selection, from
models with unequal residue exchangeabilities.

Our results imply that some features of the evolutionary
inference are quite robust to model misspecification and that

any sensible model of protein evolution is likely to produce
largely consistent evolutionary rate patterns in many settings.
On the one hand, this finding is not as surprising as it may
appear, because many evolutionary-rate analyses have been
reported robust to various severe modeling violations at least
based on simulated data and practical use cases (Anisimova
et al. 2001). On the other hand, our results suggest that,
depending on what estimates are of primary interest, stan-
dard model selection approaches may be suboptimal, since
they do not identify the source of improvement in fit. In
particular, our finding suggests that for some important appli-
cations, it is not necessary to waste CPU cycles on exhaustive
model selection, and that alternative evaluative measures of
goodness-of-fit, such as the use of posterior predictive
approaches, could be more informative about the impact
of evolutionary model choice on interpretable parameter in-
ference (Brown 2014).

Results
We compiled 419 alignments (table 1) selected to represent
both “general” and “specialist” proteins: a data set of enzyme
alignments randomly selected from Jack et al. (2016), a data set
of mammalian G protein-coupled receptor (GPCR) alignments
from Spielman and Wilke (2013), a data set of green land plant
chloroplast alignments, and a data set of Metazoan mitochon-
drial alignments (see Materials and Methods for details).

We inferred site-specific relative evolutionary rates from
each alignment under three generalist models (LG, WAG,
JTT), three specialist models (mtMet, gcpREV, HIVb), and
the JC model with equal rates. Respectively, these three spe-
cialist models were originally trained on Metazoan mitochon-
drial sequences (Le et al. 2017), green plant chloroplast
sequences (Cox and Foster 2013), between-host HIV-1 (sub-
type M) sequences (Nickle et al. 2007).

We inferred rates with each model twice, with and without
including a gamma distributed component to model rate
heterogeneity during the branch length optimization step,
producing 14 sets of relative rate estimates per alignment.
Throughout, we use þG to refer to a model which incorpo-
rated gamma-distributed rate heterogeneity. For a given
alignment, rates inferred with any model employed the
same equilibrium frequencies, empirically derived from the
alignment, but a different exchangeability matrix. Any differ-
ences we identified between model inferences, therefore,
were directly attributable to the differences in amino-acid

Table 1. Data Sets Used for Rate Estimation.

Data Set Class Na Median Sites (IQRb) Median Sequences (IQR) Median Tree Lengthc (IQR)

Enzyme Generalist 100 564 (371) 301 (104) 82.4 (34.0)
Mitochondria Specialist 13 464 (357) 344 (2) 86.2 (49.4)
Chloroplast Specialist 79 238 (328) 341 (15) 7.9 (7.52)
GPCR Generalist 227 385 (156) 22 (4) 1.6 (1.75)

aNumber of alignments in the data set.
bIQR stands for “interquartile range,” defined as the difference between the 75th and the 25th percentiles of the distribution.
cTree length is computed as the sum of branch lengths, measured in expected substitutions per site, from the phylogeny (all built under the LGþF model) used as LEISR input.
See supplementary figures S1 and S2, Supplementary Material online, for details on how models affect tree lengths.
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exchangeabilities between model matrices. As such, we use
the terms “model” and “matrix” interchangeably. We use the
term “MLE” to refer to maximum-likelihood point estimates
of relative rates.

A priori, we expected that gcpREV should best fit align-
ments from the chloroplast data set, and that mtMet should
best fit alignments from the mitochondrial data set. Further,
no model would be expected to fully recapitulate the evolu-
tionary dynamics of the GPCR data set, as these transmem-
brane proteins are subject to unique evolutionary constraints
imposed by the membrane environment (Stevens and Arkin
2001; Spielman and Wilke 2013). We included the HIVb
model as an example of a specialist model expected to fit
poorly to the data sets used here, all of which are dissimilar
from the data on which HIVb had been trained.

Although other analyses of protein evolutionary rates have
opted to normalize rates by the gene-wide mean or median
(Jack et al. 2016; Spielman and Kosakovsky Pond 2018;
Sydykova et al. 2018) or convert rates to standard Z-scores
(Pupko et al. 2002), we directly analyzed rates yielded by LEISR
without any normalization. Because of this choice, we con-
sider Spearman (rank) correlations (q) when comparing
MLEs. We adopt a rank-based test because MLEs are relative
to the whole-protein rate, so the relative rank of MLEs is a
more natural measure than the MLEs themselves. To com-
plement this measure, we also consider Pearson correlation
coefficients (r), on log-transformed data. This transformation
is necessary to satisfy assumptions of the Pearson correlation,
in part by mitigating the issue that the variance of rate esti-
mates increases, possibly nonlinearly, with increasing rate
magnitude (Scheffler et al. 2014). In addition, MLE distribu-
tions for a given gene are typically very skewed, with most
rates falling below �10 with a few outlying MLEs several
orders of magnitude larger.

Gamma Distributed Rate Variation Has Little Effect on
Site-Specific Relative Rates
We first compared, for each alignment, MLEs between each
model’s inference, with or without þG. As expected, adding
gamma variation resulted in increased tree lengths (supple-
mentary figs. S1 and S2, Supplementary Material online) com-
pared with constant-rate models. However, the effect of þG
on relative site rates was negligible. In figure 1, we show how
these inferences relate for single representative alignment
from each of our four data sets. Rates track the x¼ y line
of equality nearly perfectly across all data sets, with minor
deviations generally appearing only at very high rates.
Disagreements tend to emerge only for rapidly evolving sites
whose rates are difficult to estimate and have numerically
unbounded confidence intervals (CI range � 1,000).

This near-perfect agreement was consistent across all
models considered, and all alignments examined here
(fig. 2a). The lowest measured correlation between model
parameterizations was q¼ 0.924, and q� 0.99 for 98% of
comparisons. Pearson correlations (fig. 2b) were even higher,
with all r> 0.98. We therefore concluded that modeling rate
variation during relative branch-length estimation has virtu-
ally no impact on the inferred site-specific rates MLEs.
Consequently, we considered only rates inferred without
þG for the remainder of our analyses.

Models Yield Virtually Identical Relative Rate
Inferences
We next assessed the extent to which the evolutionary model
affected relative rate MLEs at individual sites. In figure 3, we
show the relationship between LG MLEs and those inferred
by all other models for four representative alignments across
our data sets. A remarkably strong agreement was apparent
for all model types (generalist, specialist, and equal-rates JC)
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FIG. 1. Relationship of site-specific MLEs inferred with a given model, with and without specifyingþG in branch length optimization. Points in each
log–log plot represent a single alignment site, and the line in each plot represents x¼ y. Representative alignments shown for enzyme, mito-
chondria, chloroplast, and GPCR data sets, respectively, are CS (citrase synthase), HRH1 (human histamine receptor 1), maturase K (matK), and
cytochrome B (CYTB). Black points represent MLEs with reliable estimates, and gray points represent those with unbounded (range �1,000)
confidence intervals, for either axis. For visual clarity, all sites where MLE<10�8, on either axis, have been removed from the figure.
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and similarly for all data sets, regardless of taxonomy. Rate
comparisons between LG and JC, however, did show some-
what more noise, although a clear rank correspondence for
most sites was still present. Similar to the patterns observed in
figure 1, points which do not fall close to the x¼ y line in
figure 3 nearly always corresponded to sites with imprecise

MLEs, that is, sites with unbounded confidence intervals (CI
range �1,000).

In figure 4, we show correlations between all pairs of mod-
els, averaged across alignments for each data set. As with
correlations between rates with and without þG (fig. 2),
Pearson correlations were consistently larger than

Pearson Correlation

Spearman Correlation
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FIG. 2. Spearman and Pearson correlation coefficients of MLEs inferred with a given model, with and without specifying þG in branch length
optimization. Each point represents the respective correlation between MLEs for a single alignment. Note the limited range for the y axes, where
panel (a) ranges from 0.92 to 1.0 and panel (b) ranges from 0.98 to 1.0.
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FIG. 3. Relationship of inferred rates (“MLE”) between the LG and other models. Points in each log–log plot represent a single alignment site, and
x¼ y line is also shown. Representative alignments shown for enzyme, mitochondria, chloroplast, and GPCR data sets, respectively, are CS (citrase
synthase), HRH1 (human histamine receptor 1), maturase K (matK), and cytochrome B (CYTB). Black points represent MLEs with reliable estimates,
and gray points represent those with unbounded (range�1,000) confidence intervals, for either axis. For visual clarity, all sites where MLE<10�8,
on either axis, have been removed from the figure.
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Spearman correlations, but all values were still exceptionally
high. The strength of these correlations was consistent across
all models and data set types, generalist and specialist alike.
For example, rates inferred on chloroplast with a chloro-
plast (gcpREV) model show nearly perfect correlations
with rates inferred with a mitochondrial (mtMet) or
HIV-specific (HIVb) model. JC was the only model with
lower correlations with all other models, although the min-
imum averaged correlation was still extremely strong at
q¼ 0.92 6 0.03 and r¼ 0.987 6 0.001.

Significant Rate Differences Are Infrequent but
Generally Associated with JC
In spite of the near-perfect correlations among rates inferred
with different models, relative rate estimates at individual sites
are occasionally influenced by the choice of the model to a
noticeable extent. For each individual site in all alignments
(426, 678 sites), we assessed the extent to which the approx-
imate 95% confidence intervals (CI) from different models
overlapped one another. For example, in figure 5, we show

five sites, each representing a different category of agreement
or disagreement, from the enzyme citrase synthase alignment.

(1) A site was “fully concordant,” when the MLE from any
model fell within the 95% CI from every other model,
indicating that the relative rate at this site was insen-
sitive to model choice.

(2) A site was “mostly concordant,” when the rate MLE
from at least one model fell outside CIs from at least
one other model (e.g., the MLE for mtMet fell outside
the CI for HIVb), but all CIs included the median gene
rate inferred from each model. In this case all MLEs did
not significantly differ from the median rate, so a such a
site would not be considered “interesting” for most
downstream analyses. We considered the median
gene-wide rate for this analysis, rather than the mean
gene-wide rate, because difficult-to-estimate sites can
yield inflated and highly outlying MLEs which overly
bias the mean as a measure of location.

(3) An “inconsistent site” was a site where model infer-
ences do not fully agree. At the example site in figure 5,
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the MLE from the WAG model fell outside the CI for
the gcpREV model; JTT and WAG models indicate that
the site was evolving faster than the median site, while
the other five models suggest that the site’s MLE did
not significantly differ from the median. However, all
MLEs here displayed the same general trend of being
larger than the median rate, and therefore sites like this
would usually also not be considered “interesting.”

(4) A site was “discordant” if at least one model (in fig. 5,
JC), yielded a fully inconsistent MLE compared with
most models. Specifically, the JC MLE for the example
site was reliably below the median rate, whereas all
other models yielded MLEs that did not significantly
differ from the median rate.

(5) A site was “diametrically opposed” when, depending
on the model, its rate was either reliably below or
above the median rate.

The last two site classifications (discordant and diametri-
cally opposed) reveal the most interesting sites for our pur-
poses, in that different models inferred different and at times
opposite levels of evolutionary constraint.

We queried all 426, 678 sites across all alignments to de-
termine how frequently the following scenarios occurred: 1)
fully or mostly concordant sites, 2) inconsistent sites, and 3)
discordant or diametrically opposed sites. We found that only
relatively few sites were impacted by the choice of model
(fig. 6a), and the extent of discordance was influenced by
tree length (fig. 6b). As tree length increased, the proportion
of sites where models agree tended to decrease, while the
proportion of sites where models disagree tended to increase.
This observation was highly significant, as assessed with a
linear model with proportion of sites as a response, and the
interaction of tree length and model agreement represented
by the three scenarios shown in figure 6 as the predictor
(P< 2� 10�16). In other words, the specific model chosen
should have a larger effect on rate estimates for a more di-
verged alignment. By contrast, the specific model chosen may

have virtually no impact on an alignment with relatively low
divergence. This was the case for the GPCR data set, which
contained the fewest overall per-site substitutions and very
rarely showed discordant model inferences.

Only 118 sites (0.03% of all alignment columns in this
study) belonged to the diametrically opposed category
(fig. 5e), that is, where at least one model reported a site’s
rate as significantly lower than the median rate, while at least
one other model reported it as significantly higher than the
median rate. Strikingly, these 118 sites, found among 53 en-
zyme and 3 mitochondrial alignments, all followed the same
pattern: JC was the outlying model, all JC MLEs were above
the median rate, and MLEs from all other models were below
the median rate.

We hypothesized that these sites represent fast-evolving
residues where the fixed amino acids have relatively high
exchangeabilities in empirical matrices. In such matrices,
this fast-evolving site would appear to have a relatively low
rate simply because the exchangeabilities would contain in-
formation that “should” be incorporated into the rate. By
contrast, in JC, the exchangeabilities make no a priori assump-
tion of fast evolution, and thus the rate parameter would be
able to capture the truly high rate.

To probe this question, we directly counted the number of
substitutions among each pair of amino acids at all sites,
across all alignments. We employed HyPhy (Kosakovsky
Pond et al. 2005) to count substitutions using joint
maximum-likelihood (Pupko et al. 2000) under a specified
amino-acid model (here, LG) to reconstruct ancestral sequen-
ces. We performed this procedure a second time with the JC
model, results of which were indistinguishable from counts
under the LG model; supplementary fig. S3, Supplementary
Material online. We tabulated substitutions under the prin-
ciple of minimum evolution directly from the inferred ances-
tral sequences. Visual inspection of “diametrically opposed
sites” revealed a high proportion of substitutions among
the amino acids isoleucine (I), leucine (L), and valine (V), all
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of which have extremely similar biochemical properties and
consistently high exchangeabilities across empirical protein
models. We therefore determined the proportion of substi-
tutions at each site, considering only sites which experienced
at least one substitution, which were between either IL, IV, or
LV ({I, L, V} substitutions) (Similar results were obtained for a
more generic group of “highly exchangeable” residues; not
shown). We found that diametrically opposed sites, and to
some extent discordant sites, were strongly enriched for {I, L,
V} substitutions (ANOVA P< 2� 10�16, fig. 7a), with at least
56% of substitutions at the diametrically opposed sites occur-
ring among I, L, and V. We additionally found that diametri-
cally opposed sites tended to experience more substitutions
(ANOVA P< 2� 10�16, fig. 7b) relative to other site classi-
fications. One interpretation for these results is that despite
its poor fit to the data (based on information criteria or log
likelihood), JC may uniquely capture sites of potential interest,
where evolution rapidly occurs among substitutions with
high model exchangeabilities.

Strong Model Fit differences are Present In Spite of
High Rate Agreement
We determined which model would be preferred for each
alignment using standard procedures in phylogenetic model
selection (Posada and Buckley 2004). Specifically, we calcu-
lated the Akaike Information Criterion ½AIC ¼ 2ðlog L� KÞ,
where log L represents the log-likelihood and K represents the
number of estimated model parameters)] for each model
fitted to each alignment, and we ranked all models accord-
ingly. We performed this model ranking separately for models

with and withoutþG. Because any model under a given rate
variation setting has the same number of parameters, other
commonly used information criterion measures such as
small-sample AIC (AICc) or Bayesian Information Criterion
would yield the same results as AIC does here.

Considering only models without þG, the best-fitting
model generally matched expectations given the scope of
an alignment. All enzyme alignments were best fit by a gen-
eralist model (LG, WAG, or JTT), the majority of chloroplast
alignments were best fit by the gcpREV model, and the ma-
jority of mitochondrial alignments were best fit by the mtMet
model (fig. 8a, upper panel). GPCR alignments, which have no
corresponding specialist model, were best fit by either a gen-
eralist model, mtMet, or HIVb (fig. 8a, lower panel). As
expected, JC never emerged as a best-fitting model. These
trends were broadly consistent with model selection results
for þG models, with a few minor differences. Curiously, rel-
atively more GPCR models showed a preference for HIVb
than for a generalist model when þG was applied.

We determined the relative level of support for these pre-
ferred models (combining bothþG models and models with-
out rate variation), by calculated each model’s (relative)
Akaike Weight. For each alignment, we calculated the weight
w for each fitted model i as:

wi ¼
exp½�0:5DAIC�

P
i exp ½�0:5DAIC� ; (1)

where DAIC ¼ AICi � AICmin, and AICmin refers to the model
with the smallest AIC value for the given alignment. For all but
one chloroplast alignment, the best-fitting model (AICmin)
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was robustly supported with w� 0.5 with the vast majority of
weights at w� 1 (fig. 8b).

We conclude that although virtually all alignments show
strong model preferences measured by goodness-of-fit, em-
pirically the models revealed broadly consistent and effec-
tively interchangeable estimates of site-specific relative rates,
with the possible exception of JC in certain circumstances.

Discussion
We have investigated how the choice of empirical amino-acid
evolutionary model affects inferred relative evolutionary rates
in protein alignments. We conclude that for most sites in
most alignments, the choice of substitution model has very
little effect on the estimate. Even a priori poor choices, such as
fitting a mitochondrial model to chloroplast data, failed to
appreciably move the needle on site-specific relative rate
estimates. More surprisingly, the model devoid of any biolog-
ical realism (JC, Jukes and Cantor 1969), returned essentially
the same estimates as the other models, with the exception of
about one site in a thousand. Finally, while other applications
of evolutionary rate have considered normalized and/or stan-
dardized rates (Pupko et al. 2002; Jack et al. 2016; Sydykova
et al. 2018), which might emphasize agreement between
models, our analysis found concordance between raw relative
rates.

While rate inference appears to be quite robust to model
choice, information theoretic criteria of model fit display very
strong preferences toward a specific model of evolution
(fig. 8), consistent with previous results and prior expectation.
The goodness-of-fit improvements observed must therefore
derive principally from features of the evolutionary process
other than relative substitution rates at individual sites.

In general, the models examined here were developed for
and have primarily been applied to questions of phylogenetic
inference. Our results reveal both similar and distinct trends
to those previously observed in the literature. For example,
with respect to protein model performance, Keane et al.
(2006) found that, in the context of phylogenetic tree infer-
ence, specialist models may not yield improved inferences
relative to generalist models, even on specialist data. We
have similarly shown that specialist and generalist models
perform highly similarly when inferring relative evolutionary
rates, for any given data set. By contrast, Huelsenbeck et al.
(2008) suggested that, again in the context of phylogenetic
inference, no single protein model may be suitable for a given
alignment.

Our results instead suggest that, in the context of evolu-
tionary rates, any protein model may be equally suitable for a
given alignment, with the distinct possibility that they are all
equally bad. However, we do emphasize that JC identified,
albeit only very few, sites with salient signals of rapid evolu-
tion, where other more “realistic” models failed to identify
these sites due to the high exchangabilities among substitut-
ing amino acids. As such, while JC consistently fits the data
very poorly, this model that can identify rapid evolutionary
toggling among highly similar amino acids. Such evolutionary
patterns can be highly biologically meaningful; for example,
previous work has demonstrated that certain sites in HIV-1
experience strong selection pressure to undergo such amino-
acid toggling (Delport et al. 2008). Therefore, it is possible that
the simplistic equal-rates JC could in fact be most useful for
identifying certain types of selection pressures in proteins.

A careful analysis of properties of amino acid models in-
cluding WAG, JTT, and LG by Goldstein and Pollock (2016)
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FIG. 8. Model selection results. (a) Distribution of preferred models, considering models without þG (top panel) and with þG. The legend
abbreviation “Gen.” refers to one of the three generalist models (JTT, WAG, and LG) examined here. JC never emerged as a best-fitting model under
either rate variation setting. (b) Relative Akaike weight of top model for all alignments, grouped by data set. The horizontal line is y¼ 0.5.
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suggested that, due to the fact that these models strive to
capture the propensities of an average protein, they effec-
tively describe evolution neutrally, that is, they do not fit
any particular protein especially well. Our findings on the
application of such models to evolutionary rate inference
echo the conclusion from Goldstein and Pollock (2016)
that these models may not contain substantially different
information about site-specific rates of protein evolution.
However, our observation that rate inferences with JC, on
occasion, uniquely deviated from models with unequal
exchangeabilities implies that there is some difference be-
tween “averaged” matrices and neutral evolution, as JC would
represent the exact neutral scenario of protein evolution, that
is, that any amino acid can be substituted for another with no
selection preference or biochemical bias.

A wide variety of platforms have been popularized for
selecting the best protein model in the context of both phy-
logenetic and evolutionary rate inference (Keane et al. 2006;
Darriba et al. 2011; Ashkenazy et al. 2016; Kalyaanamoorthy
et al. 2017; Lanfear et al. 2017). Model selection is considered a
part of due diligence and good practice in these applications.
However, an improvement in general goodness of fit may not
translate into a quantifiable impact on the quantities of in-
terest. For example, Spielman and Wilke (2015) found that, in
the context of models of codon evolution (i.e., dN/dS-based
models), AIC and BIC can positively mislead one to prefer a
model with empirically worse rate estimates, while relatively
poorly fit models in fact may produce the most accurate
measures of selection strength. An alternative avenue for
model selection is the use of posterior predictive distributions,
in a Bayesian context (Gelman et al. 2013). We suggest that
such avenues, which are starting to gain some traction in
phylogenetic modeling (Bollback 2002; Rodrigue et al. 2009;
Brown 2014; Lewis et al. 2014; Duchene et al. 2016), may prove
more reliable than the use of theoretic information criteria for
assessing the fit of evolutionary models to sequence data.

Phylogenetic modeling assumptions commonly made for
the sake of inferential tractability (e.g., site independence, us-
ing a fixed topology inferred from the same data for rate
analysis, or stationarity and time-homogeneity of the substi-
tution process) are not biologically justifiable, but they are
tolerated because they produce biologically meaningful infer-
ences. As George E.P. Box wrote, “Since all models are wrong
the scientist must be alert to what is importantly wrong” (Box
1976). Our evidence is that choice of substitution model is
“mostly harmless” (Adams 1979) for the purposes of site-level
rate inference, and it is not necessary to chase the elusive best
fit model for each protein alignment.

Materials and Methods

Data Collection and Processing
We collected alignments from four distinct classes of proteins:
enzymes, Metazoan mitochondrial data, green land plant
chloroplast data, and mammalian G protein-coupled recep-
tor data (GPCRs).

For the enzyme data set, we randomly selected 100 align-
ments with at least 25 unique sequences and corresponding

phylogenies from Jack et al. (2016) for analysis. We prepared
the mitochondrial and chloroplast data sets as follows. First,
we compiled a list of complete Metazoan mitochondrial and
green land plant genomes from the NCBI genomes database,
of which there were 7,515 and 1,026, respectively. For each
data set, we randomly chose 350 taxa to include in analysis.
For these taxa, we obtained all genomic protein sequences
from NCBI. After discarding sequences with amino acid am-
biguities, and retaining only genes for which at least 100 taxa
contained full-length sequences, we made gene-specific align-
ments using MAFFT v7.305b (Katoh and Standley 2013) and
inferred phylogenies using FastTree2 (Price et al. 2010) with
the LGþF substitution model (Le and Gascuel 2008).

Finally, we retrieved 227 alignments of mammalian GPCRs
analyzed by Spielman and Wilke (2013), filtered to include at
least 20 sequences. We reconstructed phylogenies for these
alignments using FastTree2 (Price et al. 2010) with the LGþF
model (Le and Gascuel 2008), as the original phylogenies had
been constructed using masked alignments with reduced
information.

Rate Inference
We then inferred relative protein evolutionary rates with the
LEISR (Pupko et al. 2002; Spielman and Kosakovsky Pond
2018) method in HyPhy version 2.3.8 (Kosakovsky Pond
et al. 2005), using seven different amino-acid evolutionary
models. We used three generalist models: LG (Le and
Gascuel 2008), WAG (Whelan and Goldman 2001), JTT
(Jones et al. 1992), three specialist models: mtMet
(Metazoan mitochondrial, Le et al. 2017), gcpREV (green-
plant chloroplast, Cox and Foster 2013), and HIVb (be-
tween-host HIV-1, Nickle et al. 2007), and the equal-rates JC
model (Jukes and Cantor 1969). We inferred rates under each
model with (þG) and without a four-category discrete
gamma distribution to model site heterogeneity during
branch length optimization. All inferences used empirical
(þF) equilibrium residue frequency estimates. We processed
LEISR output for subsequent analysis using the Python helper
package phyphy (Spielman 2018). All analyses interpreted the
raw relative rates returned by LEISR, that is, rates were neither
normalized nor standardized in any way. In addition, we right-
censored any inferred rate with a maximum-likelihood esti-
mate (MLE) of MLE�1,000 to all have the value MLE¼ 1,000,
because this value is effectively the numerical infinity in this
context. We quantified estimation error of individual relative
rates using profile likelihood, tabulating approximate 95%
confidence intervals, using the critical values of the v2

1

distribution.

Statistical Analysis Availability
Data analysis was primarily conducted in the R programming
language (R Core Team 2017), with substantial use of the
tidyverse (Wickham 2017) suite of data analyis and visualiza-
tion tools. All code and data associated with this work are
freely available from the GitHub repository https://github.
com/sjspielman/protein_rates_models, last accessed June
30, 2018.
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Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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