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Loss of TACSTD2 contributed to squamous cell
carcinoma progression through attenuating
TAp63-dependent apoptosis

F Wang1,6, X Liu2,6, P Yang2, L Guo3, C Liu1, H Li4, S Long2, Y Shen5 and H Wan*,1,2

Tumor-associated calcium signal transducer 2 (TACSTD2), a calcium signal transducer, is universally expressed in stratified
squamous epithelia of many organs, including skin, esophagus and cervix. Although TACSTD2, was reported to be
overexpressed in many epithelial tumors, which has increased interest in using it as a molecular target for cancer therapy, the
role of TACSTD2 in carcinogenesis of squamous cell carcinoma (SCC) is largely unclear and controversial. To explore the role of
TACSTD2, temporal-spatial expression of TACSTD2 was analyzed in both normal and SCC tissues. Our data demonstrate
that Tacstd2 expression and membrane localization are tightly associated with stratified epithelial homeostasis, while loss
of TACSTD2 was identified in poorly differentiated SCC tissues collected from cervix, esophagus, head and neck. Gradual loss of
TACSTD2 was correlated with stepwise progression of SCC. Consistent with these in vivo observations, our data show that
inhibition of Tacstd2 expression significantly inhibited chemotherapeutic reagent-induced apoptosis, and TACSTD2 regulated
apoptotic gene expression through P63 containing the transactivation domain (TAp63). These findings indicated that loss of
TACSTD2 could promote SCC progression and treatment resistance through attenuating chemotherapeutic reagent-induced
apoptosis through TAp63, and TACSTD2 could be used as a marker for pathological grading of SCC.
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Squamous cell carcinoma (SCC) is derived from squamous
epithelia in many essential organs, including skin, esophagus,
lung, mouth and cervix. It is the most common metastasizing
cancer worldwide, and its survival rate has not improved
significantly in the past 30 years.1,2 Although SCC arises from
different organs, SCCs share many phenotypic and molecular
characteristics with each other.3 Further understanding of the
common molecular mechanism associated with squamous
epithelial homeostasis and progression of SCC will be of great
benefit for better prevention and treatment of SCC.

Tumor-associated calcium signal transducer 2 (TACSTD2)
is generally expressed in normal squamous epithelia of many
organs, including skin, pharynx, esophagus, vagina and so
on, indicating that TACSTD2 may have important roles in
squamous epithelial homeostasis. In support of this hypoth-
esis, studies demonstrated that TACSTD2 is required for
maintenance of the epithelial barrier through regulation of
proper localization of tight junction proteins, whereas loss of
TACSTD2 resulted in susceptibilities to several epithelial

diseases, including epithelial tumor and corneal dystrophy.4–6

Contradictory evidence exists, however, showing increased
expression of Tacstd2 in several epithelial tumors, increasing
the interest in using it as a molecular target for cancer
therapy.7,8 Therefore, the roles of TACSTD2 in normal biology
and neoplastic progression remain unclear.

Keratinocyte differentiation and apoptosis are required for
normal tissue homeostasis. Abnormal regulation of these
biological events is associated with progression of SCC.
In this study, the in-depth physiopathological analysis of
SCC progression and exploration of the associated molecular
mechanism were carried out to explore the function
of TACSTD2 in SCC. Our study demonstrated that
temporal-spatial expression of TACSTD2 was associated
with stratified epithelial homeostasis. Progressive loss of
TACSTD2 was correlated with SCC progression. Inhibition of
Tacstd2 expression significantly inhibited chemotherapeutic
reagent-induced keratinocyte apoptosis and TACSTD2 regu-
lated apoptotic gene expression through P63 containing the
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transactivation domain (TAp63), indicating that TACSTD2
has important roles in SCC progression and treatment
resistance through regulating TAp63-dependent apoptosis,
and TACSTD2 could be used as a marker for pathological
grading of SCC.

Results

Loss of TACSTD2 was identified in SCCs collected from
different organs. In order to determine whether disregula-
tion of TACSTD2 is associated with SCC, immunohisto-
chemistry staining of TACSTD2 was performed on sections
of poorly differentiated SCCs collected from cervix (n¼ 20),
esophagus (n¼ 5) and head-and-neck (n¼ 6). Normal
epithelial tissues adjacent to SCCs were used as internal
controls. In normal stratified epithelium, strong TACSTD2
staining was identified on the cell membrane of differentiated
epithelial cells (Figures 1a, c and e, arrowhead). In poorly
differentiated SCCs, TACSTD2 staining was absent in most
of the cancer cells (Figures 1b, d and f). Weak cell
membrane or cytoplasmic staining was only detected in a
few scattered epithelial cells (Figures 1b, d and f, arrow-
head). These data indicated that loss of TACSTD2 could be a

common phenomenon of poorly differentiated SCC at
different anatomical sites.

Loss of TACSTD2 is associated with SCC progression.
Pre-cancerous lesions at early stages of SCC development
were easily collected from cervical region. In order to
determine whether expression of TACSTD2 is significantly
associated with stepwise progression SCC, well-staged
cervical tissues were collected. Immunohistochemistry stain-
ing of TACSTD2 was analyzed in controls, carcinoma in situ
(CIN) and SCC tissues collected from the cervix. Compared
with CONs (Figure 2a), epithelial cells with cell membrane
staining of TACSTD2 were gradually decreased from CIN1
to SCC (Figures 2b–e). In order to quantify the loss of
TACSTD2-positive cells, average TACSTD2-negative
epithelial cell ratios for CON (n¼ 23), CIN1 (n¼ 9) and
CIN2/3 (n¼ 27), and SCC (n¼ 20) were calculated as
described in Materials and Methods section, respectively.
Significant differences among the groups were found by the
ANOVA test (F¼ 114.98, Po0.05), and significant differ-
ences between each of the groups were identified by
the Student–Newman–Kabul’s multiple comparison test
(Po0.05; Figure 2f), indicating loss of TACSTD2 was

Figure 1 Immunohistochemistry of TACSTD2 on tissues of SCC. Paraffin
sections of poorly differentiated SCCs from cervix (n¼ 20), esophagus (n¼ 5) and
head-and-neck (n¼ 6) were stained with TACSTD2 antibody. Representative
figures for adjacent normal stratified epithelium (a, c and e) and poorly differentiated
SCCs (b, d and f) are shown. The basement membranes of normal stratified
epithelium are highlighted with dotted lines. Epithelial cell with staining of TACSTD2
is indicated with arrowheads

Figure 2 Loss of TACSTD2 staining associated with cervical SCC progression.
Paraffin sections from cervical precancerous and cancerous lesions were prepared
and immune-stained with TACSTD2 antibody. Representative figures for CON (a),
CIN1 (b), CIN2 (c), CIN3 (d) and SCC (e) are shown. A bar graph showing the
TACSTD2-negative cell ratios of CON (n¼ 23), CIN1 (n¼ 9), CIN2/3 (n¼ 27) and
SCC (n¼ 20) are presented as the mean±S.E.M. (f) Significant difference was
identified (*Po0.05). Epithelial cells with membrane staining of TACSTD2 are
indicated with arrowheads and epithelial cells without membrane staining of
TACSTD2 are indicated with arrows
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positively correlated with progression of SCC. Interestingly,
although loss of TACSTD2 staining was increased signifi-
cantly as cervical cancer progressed, the intensity of staining
in the remaining TACSTD2-positive cells appeared to be
increased from CON to CIN3 (Figures 2a–d, arrowhead),
indicating mechanistically that induction of Tacstd2 expres-
sion in response to tissue stress remains intact in normal
keratinocytes within the lesions.

Heterogeneity of TACSTD2 staining was observed in many
SCCs, representing a mixture of biologically different cell
populations. In order to determine whether there are
differences in TACSTD2 staining between poorly differen-
tiated SCCs and moderately differentiated SCCs, average
TACSTD2-negative epithelial cell ratios were compared. The
TACSTD2-negative epithelial cell ratio was significantly lower
in moderately differentiated SCCs (n¼ 5) compared with that
of poorly differentiated SCCs (n¼ 15; Figure 3).

These data demonstrated that gradual loss of TACSTD2-
positive epithelial cells was associated with SCC progression,
indicating that loss of TACSTD2 may have a critical role in
SCC progression and suggesting that TACSTD2 could be
used as a marker for pathological grading of SCC.

Expression of TACSTD2 is associated with epithelial
homeostasis. Most of the SCCs occur around squamoco-
lumnar junctions at different anatomic places including anus,
cervix and esophagus.9 In order to understand the roles of
TACSTD2, expression of TACSTD2 was analyzed using
tissues, which contain the squamocolumnar junction (n¼ 6).
In stratified squamous epithelia, cell membrane staining of
TACSTD2 was detected in differentiated keratinocytes in the
stratum spinosum, stratum granulosum and stratum corneum
(Figure 4a, arrowhead), whereas staining of TACSTD2 was
absent in less differentiated keratinocytes in the stratum
basal/parabasal layers (Figure 4a, arrow). TACSTD2 stain-
ing was absent in cells undergoing squamous metaplasia at
the squamous–columnar junction (Figure 4b, arrow). These
results indicated that expression and cell membrane locali-
zation of TACSTD2 is tightly associated with differentiated
keratinocytes. In columnar epithelium, staining of TACSTD2
was detected on the surface, directly facing the cervical canal
(Figures 4b and c, arrowhead). On the other hand, no
TACSTD2 staining was detected in the columnar epithelium
invaginating into the substance of cervical stroma (Figure 4c,
arrow).

In conclusion, expression of TACSTD2 was tightly asso-
ciated with keratinocyte differentiation, and it was expressed
in surface epithelium directly facing the external environment.
This spatial tissue localization of TACSTD2 indicates that
significantly TACSTD2 may have potential roles in epithelial
homeostasis. This concept was supported by our findings that
significantly increased accumulation of TACSTD2-positive
keratinocytes were observed 4 days after less invasive
epidermal injury by tape stripping (Supplementary Figure 2).

Inhibition of TACSTD2 did not affect keratinocyte
differentiation. Loss of TACSTD2 was associated with
SCCs at different anatomic sites. Consistent with in vivo
observations, strong cell membrane staining of TACSTD2
was detected in HaCaT cells (Figure 5a), a keratinocyte cell
line that highly preserved differentiation capability,10,11 but
significantly weakened or lost in Siha cells, a squamous
cancer cell line (Figure 5b, arrow). In order determine
whether TACSTD2 is required for keratinocyte differentiation,

Figure 4 Immunohistochemistry of TACSTD2 on tissues with squamocolumnar junction. Paraffin sections of tissues containing squamocolumnar junctions were stained
with TACSTD2 antibody. Representative figures for cervical stratified squamous epithelium (a), metaplastic area (b) and columnar epithelium (c) are shown. The basement
membranes are highlighted with dotted lines. The arrow indicates negatively stained epithelial cells and the arrowhead indicates positively stained epithelial cells

Figure 3 Difference of TACSTD2 staining between poorly differentiated and
moderately differentiated SCCs. Paraffin sections of cervical SCCs were
immunostained with TACSTD2 antibody. Representative figures for poorly
differentiated (a) and moderately differentiated (b) SCCs are shown. A bar graph
showing the TACSTD2-negative cell ratios of poorly differentiated (n¼ 15) and
moderately differentiated (n¼ 5) SCCs are presented as the mean±S.E.M.
(c) Significant differences were identified (*Po0.05)
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siRNAs to silence Tacstd2 expression was used to transfect
HaCaT cells cultured in medium containing different calcium
concentration, and the expression of genes associated with
keratinocyte differentiation was analyzed. RT-PCR analysis
demonstrated that expression levels of cytokeratin 10
(Krt10), stratiffin (Sfn) and involucrin (Ivl), key markers of
differentiated keratinocytes,12–14 were induced by calcium,
but were not affected by Tacstd2 silencing (Figures 5g–i).
Although expression levels of cytokeratin 5 (Krt5) and
desmocollin 2 (Dsc2), markers for undifferentiated basal
layer epithelial cells,13,15 were slightly inhibited by calcium,
and were increased significantly after Tacstd2 silencing.

P63 is a transcription factor required for keratino-
cyte differentiation.16 RT-PCR analysis demonstrated that
DNp63, the isoform that is critical for keratinocyte differentia-
tion,17 was inhibited by calcium and was not affected by
Tacstd2 silencing, but TAp63, an isoform of P63 that functions
in regulation of keratinocyte apoptosis,18 was significantly
induced by calcium and was significantly decreased after
Tacstd2 silencing (Figure 5k), indicating that TACSTD2
may have roles in keratinocyte apoptosis. These data

demonstrated that inhibition of Tacstd2 did not affect
keratinocyte differentiation, but induced expression of genes
required to maintain the keratinocyte in an undifferentiated
status.

Loss of TACSTD2 inhibited chemotherapeutic reagent-
induced keratinocyte apoptosis. Proteins involved in
apoptosis were enriched in the stratum spinosum and
stratum granulosum,19 where TACSTD2 was found to be
highly expressed. In order to test the roles of TACSTD2 in
apoptosis, expression of genes critical for apoptosis were
analyzed after Tacstd2 silencing in HaCaT cells. The number
of cleaved caspase-3-positive cells, as assessed by immu-
nofluorescent staining, was significantly decreased (Figures
6a and b). Similarly, mRNA levels of BCL2-associated X
protein (Bax) and cluster of differentiation 95 (Cd95), two
important genes involved in pro-apoptosis signaling,20,21

were decreased significantly (Figure 6c). In contrast, no
changes in antigen identified by monoclonal antibody Ki-67
(KI67) and CYCLIND1, two proliferation markers,22,23 were
observed by western blot analysis (Figure 6d).

Figure 5 Effects of TACSTD2 on keratinocyte differentiation. (a and b) Immunofluorescent staining of TACSTD2 (red) and nuclear counterstaining of DAPI (blue) on
HaCaT and Siha cells. Arrow indicated Siha cell membrane lack of cytomembrane staining of TACSTD2. (c–k) RT-PCR was used to quantitate Krt5, Dsc2, Krt10, Sfn, Ivl,
TAp63, DNp63 and Gapdh mRNAs in control and Tacstd2-silenced HaCaT cells cultured in mediums with different calcium concentrations. Relative mRNA levels are shown
as mean±S.E.M. compared by a two-tailed Student’s t-test (*Po0.05, N¼ 3). Two Tacstd2 siRNA oligos as described in Materials and methods section were tested, and
similar phenotypes were observed. Higher efficiency of Tacstd2 knockdown was observed using Tacstd2 siRNA oligo (ID HSS106222), and a representative illustration is
shown
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Gemcitabine is a cytotoxic medicine used to induce
apoptosis in chemotherapy of SCCs.24,25 In order to test if
TACSTD2 is functionally required for cytotoxic reagent-
induced apoptosis, the effect of Tacstd2 silencing on
gemcitabine-induced apoptosis was assessed by flow cyto-
metry. Compared with controls, gemcitabine-induced apop-
tosis were significantly decreased in Tacstd2-silenced
(Figures 6e–g) cells, indicating TACSTD2 regulated chemo-
therapeutic reagent-induced keratinocyte apoptosis, and may
have critical roles in treatment resistance of SCCs.

TACSTD2 affects genes expression partially through
regulating TAP63. Previous studies showed that TAp63
was a crucial regulator of squamous epithelium home-
ostasis.18,26 In order to test if TACSTD2 functions through
TAp63, a TAp63-expressing plasmid was transfected into
HaCaT cells after Tacstd2 silencing, and cleaved caspase-3,
Bax, Cd95, Dsc2 and Krt5 were analyzed by immunofluor-
escent staining or RT-PCR. TACSTD2-dependent activation
of caspase-3 was partially rescued by forced expression of
TAp63 (Figures 7a–c). TACSTD2-dependent expression of
Bax, Cd95 and Dsc2 were partially rescued by forced

expression of TAp63 (Figures 7e and f), but TACSTD2-
regulated Krt5 expression is independent of TAp63. These
observations indicate that TACSTD2 regulates keratinocyte
gene expression partially through TAP63.

Discussion

Understanding the molecular mechanism is required for better
diagnosis and treatment of SCC. Animal model studies
demonstrated that loss of TACSTD2 did not alter the
incidence and natural history of papilloma formation,
but enhance malignant phenotype of skin cancers
through promoting EMT.6 Consistent with these, this study
demonstrated that loss of TACSTD2 is a hallmark for the
progression of human SCC, and it has critical roles in SCC
progression and treatment resistance by attenuating chemother-
apeutic reagent-induced keratinocyte apoptosis through TAp63.

Gradual loss of TACSTD2 is a hallmark of the stepwise
progression of SCC. Carcinogenesis of SCC is a multi-
stage process. Gradual accumulation of tumor cells caused
by abnormalities in the progenitor cells of the basal layer is

Figure 6 Effects of TACSTD2 on apoptosis and proliferation. (a and b) Immunofluorescent staining of cleaved caspase-3 (red) in control and Tacstd2-silenced HaCaT
cells. Nuclei were counterstained with DAPI (blue). Two Tacstd2 siRNA oligos were tested as described in Materials and Methods section, and similar phenotype were
observed. Higher efficiency of Tacstd2 knockdown was observed by using Tacstd2 siRNA oligo (ID HSS106222). (c) RT-PCR analysis of Bax, Cd95 and Gapdh mRNAs in
control and Tacstd2-silenced HaCaT cells. (d) Western blot analysis of KI67, CYCLIND1, TACSTD2 and GAPDH in control and Tacstd2-silenced HaCaT cells. (e and f)
Representative figures for gemcitabine-induced apoptosis, analyzed by flow cytometry using Annexin V-FITC/PI, are shown for control and Tacstd2-silenced HaCaT cells. (Q1:
necrosis; Q2: late apoptosis; Q3: healthy cells; Q4: early apoptosis). (g) A bar graph showing percentage of gemcitabine-induced apoptosis in control and Tacstd2-silenced
HaCaT cells. A significant difference was identified between control and Tacstd2-silenced HaCaT cells by using the Student’s t-test (*Po0.05, N¼ 3)
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associated with SCC progression. This stepwise progression
of SCC could be observed clearly in pathological samples
collected from the cervix.27,28 In our studies, a gradual
decrease in the TACSTD2-positive cell population in the
upper layers of squamous epithelia was found during the
early stages of cervical SCC progression, from CON, CIN1 to
CIN2/3. In SCCs, TACSTD2 staining was heterogenous and
was detected in some well-differentiated epithelial cells.
Compared with poorly differentiated SCCs, a higher percen-
tage of TACSTD2-positive cells was identified in moderately
differentiated SCCs, indicating that loss of TACSTD2 is a
hallmark of the stepwise progression of SCC. This was
consistent with previous studies, demonstrating lower
expression levels of Tacstd2 in highly malignant cells,
compared with immortalized keratinocytes.29 Our data
demonstrated that TACSTD2 could be potentially used as
a marker for more accurate and sensitive pathological
grading of SCC.

On a smaller set of samples, loss of TACSTD2 was
identified in poorly differentiated SCCs of head-and-neck and
esophageal tumors, indicating that the loss of TACSTD2
could be a common molecular event associated with SCC.
Population-based research studies will need to be initiated to
verify this observation.

TACSTD2 is not required for keratinocyte differentiation.
Disruption of keratinocyte differentiation has critical roles in
SCC progression. Although our data demonstrated that
expression of Tacstd2 was identified in differentiated
keratinocyte, inhibition of Tacstd2 did not affected expression
of genes associated with keratinocyte differentiation,
including Krt10, Sfn and Ivl, indicating TACSTD2 is not a
key regulator of keratinocyte differentiation. These findings
were consistent with the published report that TACSTD2 null
mice display no overt abnormalities.6 Although expression
levels of Krt5 and Dsc2, markers of the undifferentiated

Figure 7 Induced expression of TAp63 in HaCaT cells rescued TACSTD2-dependent caspase-3 activation and apoptotic gene expression. (a–c) Immunofluorescent
staining of cleaved caspase-3 (red). Nuclei were counterstained with DAPI (blue). Inserts are higher magnifications of the cleaved caspase-3-positive cells. (d) A bar graph
showing percentage of cleaved caspase-3-positive cells. Significant differences were identified between control and Tacstd2-silenced HaCaT cells, between Tacstd2-silenced
HaCaT cells and TAp63 rescued cells by using the Student’s t-test (*Po0.05, N¼ 3). (e) RT-PCR analysis of Bax, Cd95, TAp63, Krt5, Dsc2, Tacstd2 and Gapdh. (f) A bar
graph showing relative mRNA levels. Significant differences were identified between control and Tacstd2-silenced HaCaT cells, between Tacstd2-silenced HaCaT cells and
TAp63 rescued cells by using the Student’s t-test (*Po0.05, N¼ 3)
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keratinocytes, were identified to be significantly induced upon
Tacstd2 inhibition, indicating that lack of Tacstd2 expression
could facilitate SCC progression, at least in part, by maintain-
ing keratinocyte in an undifferentiated status. Consistent with
this, our studies demonstrated that Tacstd2 expression is not
presented in the undifferentiated basal cells.

Loss of TACSTD2 promotes SCC progression through
attenuating TAp63-mediated apoptosis. Disruption of
apoptosis has a profound effect on SCC progression and
treatment resistance.30 Our data demonstrated that inhibition
of Tacstd2 decreased protein level of cleaved caspase-3 and
expression of pro-apoptotic genes, including TAp63, Bax and
Cd95. Furthermore, the decreased activation of caspase-3, as
well as Bax and Cd95 expression by Tacstd2 inhibition was
rescued by induction of TAp63 expression, indicating
TACSTD2 regulated keratinocyte apoptosis through TAp63
function. This functional link between TACSTD2 and TAp63
was supported by their phenotypic similarities as demon-
strated in our study as well as in previous studies: neither
TACSTD2 nor TAp63 was required for development of
stratified squamous epithelia; expression of both could be
induced by calcium signaling; and each was required for
chemotherapeutic reagent-induced apoptosis.18 Our studies
demonstrated that inhibition of Tacstd2 decreased gemcita-
bine-induced apoptosis significantly, indicating that TACSTD2
has an indispensible role in chemo-resistance of SCC.

Conclusion. SCC is a complex ecosystem composing
biologically different epithelial cell populations that result in
different outcomes for SCC. In-depth pathophysiological
evaluation of SCC progression and exploration of the
associated molecular mechanism are critical for early
diagnosis and personalized treatment of SCC. Our current
findings demonstrated that gradual loss of TACSTD2 is a
hallmark of SCC progression, loss of TACSTD2 inhibited
chemotherapeutic reagent-induced keratinocyte apoptosis.
These data provide important insights that will be useful in
the diagnosis and treatment of SCC.

Materials and Methods
Clinical samples. Ethical approval was obtained from the research ethics
committees in Sichuan and Suzhou. Pathology samples were collected from
patients who did not undergo any chemo- or radio-therapeutic treatment before
biopsies or surgeries. Cervical samples (n¼ 56) were obtained at West China
Second University Hospital of Sichuan University. Poorly differentiated SCC
samples of esophagus (n¼ 5) and head-and-neck tumors (n¼ 6) were obtained
at the First Affiliated Hospital of Soochow University and West China University
Hospital. Written informed consent was obtained from all the patients. Tissue
sections were prepared as previously described.31 Hematoxylin and eosin-stained
slides were reviewed, and the diagnoses were confirmed independently by two
pathologists according to World Health Organization standard. Two sections per
sample were used for immunohistochemistry analysis of TACSTD2.

Immunohistochemistry and immunofluorescence. Tissue sections
and cells cultured on coverslips were immunostained as previously described.32–34

Primary antibodies are listed in Supplementary Table 1. Biotinylated (Vector
Laboratories, Burlingame, CA, USA) and fluorochrome-conjugated secondary
antibodies (Alexa Fluor 488 or 594, Invitrogen, Grand Island, NY, USA) were used.

Cell culture and transfection. HaCaT cells (CLS, Eppelheim, Germany)
and SiHa cells (ATCC, Manassas, VA, USA) were cultured in DMEM (Invitrogen),
supplemented with L-glutamine, 10% fetal bovine serum and penicillin/streptomycin.

Tacstd2 siRNA (Invitrogen: oligo ID HSS106222 or oligo ID HSS106223), non-
targeting siRNA control (Invitrogen: cat.# 12935-300) and transfection control
siRNAs (Invitrogen: cat.# 2013), PCDNA3.1 (þ ) and pcDNA3.1 (þ )-TA p63 were
prepared. Transfections were performed using Lipofectamine 2000 (Invitrogen).

Protein and RNA quantification. Total proteins were prepared and
western blot was performed. Antibodies used are listed in Supplementary Table S1.
RNAs were isolated by using TRIZOL2000 (Invitrogen), and reverse transcribed by
using VersoTM cDNA kit (Thermo Fisher Scientific, Waltham, MA, USA). The
cDNAs were quantified by RT-PCR. Primers used are listed in Supplementary
Table 2. Independently repeated experiments were performed (N¼ 3), and data
were expressed as the mean±S.E.M.

Cell apoptosis assay. Cells were seeded into plates, and 48 h after
transfection, gemcitabine hydrochloride (Eli Lilly, Indianapolis, IN, USA) was added
to the culture medium (final concentration as 100 nM/ml) to induce apoptosis for
24 h. Cells were harvested and stained with Annexin V-FITC and propidium iodide
(Calbiochem, San Diego, CA, USA), and then analyzed on BD FACS Calibur flow
cytometer (BD Biosciences, San Jose, CA, USA). The percentage of apoptotic
cells was calculated as apoptotic cell number (Q2þQ4)/total cell number for each
sample. Independently repeated experiments were performed (N¼ 3) and data
were expressed as the mean±S.E.M.

Quantification of TACSTD2 staining. Cervical SCCs were divided into
clinically relevant groupings according to ASCCP consensus guidelines, including
CON (normal), CIN1 (low-grade intraepithelial lesions), CIN2/3 (high-grade cervical
cancer precursor lesions) and SCC.27 Cervical tissues used included 9 samples of
CIN1, 27 samples of CIN2/3 and 20 samples of SCCs (5 moderately differentiated
SCCs and 15 poorly differentiated SCCs). Twenty-three morphologically normal
samples of stratified epithelium adjacent to the cervical lesions were used as
controls.

Representative pictures were taken of the TACSTD2 stained sections: one
picture per CON and CIN sample; five pictures randomly acquired per SCC sample.
The area covered by epithelial cells with membrane staining for TACSTD2 (PA) and
the total epithelial area (TA) were measured as indicated in Supplementary
Figure 1. The TACSTD2-negative cell ratio was calculated for each measurement,
which equals to (1–PA)/TA. The average percentage for CON, CIN1, CIN2/3, SCCs,
moderately differentiated SCCs and poorly differentiated SCCs were calculated and
expressed as the mean±S.E.M.

Statistical analysis. All data were analyzed using SAS software (version
9.0; SAS Institute, Cary, NC, USA). A P-value r0.05 was considered significant.
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