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Abstract

Interest in using peptide molecules as therapeutic agents due to high selectivity and efficacy

is increasing within the pharmaceutical industry. However, most peptide-derived drugs can-

not be administered orally because of low bioavailability and instability in the gastrointestinal

tract due to protease activity. Therefore, structural modifications peptides are required to

improve their stability. For this purpose, several in-silico software tools have been devel-

oped such as PeptideCutter or PoPS, which aim to predict peptide cleavage sites for differ-

ent proteases. Moreover, several databases exist where this information is collected and

stored from public sources such as MEROPS and ExPASy ENZYME databases. These

tools can help design a peptide drug with increased stability against proteolysis, though they

are limited to natural amino acids or cannot process cyclic peptides, for example. We

worked to develop a new methodology to analyze peptide structure and amide bond meta-

bolic stability based on the peptide structure (linear/cyclic, natural/unnatural amino acids).

This approach used liquid chromatography / high resolution, mass spectrometry to obtain

the analytical data from in vitro incubations. We collected experimental data for a set (linear/

cyclic, natural/unnatural amino acids) of fourteen peptide drugs and four substrate peptides

incubated with different proteolytic media: trypsin, chymotrypsin, pepsin, pancreatic elas-

tase, dipeptidyl peptidase-4 and neprilysin. Mass spectrometry data was analyzed to find

metabolites and determine their structures, then all the results were stored in a chemically

aware manner, which allows us to compute the peptide bond susceptibility by using a fre-

quency analysis of the metabolic-liable bonds. In total 132 metabolites were found from the

various in vitro conditions tested resulting in 77 distinct cleavage sites. The most frequent

observed cleavage sites agreed with those reported in the literature. The main advantages

of the developed approach are the abilities to elucidate metabolite structure of cyclic pep-

tides and those containing unnatural amino acids, store processed information in a
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searchable format within a database leading to frequency analysis of the labile sites for the

analyzed peptides. The presented algorithm may be useful to optimize peptide drug proper-

ties with regards to cleavage sites, stability, metabolism and degradation products in drug

discovery.

Introduction

During the last two decades, interest in peptide therapeutics has increased in pharmaceutical

research and development. Peptides are generally thought to be well-suited for diseases where

the target is a protein-protein interaction [1, 2]. They have great potential as new drugs due to

high specificity to certain protein targets and higher selectivity, for example the peptide drug

G-protein-coupled receptors (GPCR) [3–5]. Usually peptides also have a good safety profile

and tolerability with high efficacy [1, 3–7].

Today, peptides represent only 2% of the worldwide drug market with approximately 140

peptide-based drugs-available and around 500 peptides in clinical development and preclinical

drug discovery stages [3, 4]. Limited development of therapeutic peptides occurred in the past

due to insufficient absorption, distribution, metabolism and elimination or excretion (ADME)

properties: short half-life time, low permeability, low solubility, limited residence time in tis-

sues. On one hand, low cell permeability is often related to structural factors such as high

hydrogen bonding capacity and low lipophilicity [1]. On the other hand, low oral bioavailabil-

ity is more frequently related to physiological processes, like low absorption and fast extraction

through proteolysis, and pH dependent hydrolysis in blood, gastrointestinal tract, and liver [1,

3, 7, 8]. Therefore, peptides are usually administered through injection or delivered via non-

oral routes such as transbuccal, nasal, inhaled or transdermal [1, 3, 4, 6–8]. Future successful

drug peptides should have appropriate ADME properties.

Traditional structure-based peptide design methodologies include substitution of amino

acids and the building of structure-activity relations (SAR) via experiments such as an alanine

scan and estimation of the half maximal effective concentration (EC50). To achieve better

ADME properties the following chemical modifications are typically applied: substitution of

the common L-amino acids to D-amino acids or other unnatural amino acids, backbone N-

methylation, alpha-methylation of amino acids, salt-bridge formation, lactam bridge forma-

tion, cyclization of the peptide, deamination, oxidation, isomerization and others [3, 7]. These

changes are applied during the design-make-test drug discovery cycle, with hopes of improv-

ing the physicochemical and pharmacokinetics properties of the compound of interest. There-

fore, it is crucial to evaluate these properties rapidly in early development.

Several analytical techniques are used when examining ADME properties including immu-

noassays, bioassays and high-performance liquid chromatography (HPLC) linked to mass

spectrometry (MS). MS-based approaches are capable of efficient and reliable quantitative and

qualitative analyses: peptide-parent loss over time and metabolite formation and identification.

MS techniques combined with HPLC are the methods of choice for drug metabolism studies,

when metabolites should be separated and identified with a high degree of certainty in com-

plex biological matrices [9].

Since the task of metabolite characterization of peptides from MS data is very time-con-

suming, several semi-automated tools were developed for full scan/data-dependent MS/MS

peptide data interpretation. These approaches include four main groups: database searching

(SEQUEST, MASCOT, etc.), de novo peptide sequencing (PEAKS, PepNovo, etc.), peptide
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sequence tagging (GutenTag) and consensus of multiple search engines (Scaffold) [10]. These

MS-based proteomics approaches have difficulties with sequencing cyclic peptides without

prior linearization and they are limited to the 20 standard amino acids [6, 14, 15].

Recently, information was collected for about 500–600 human proteases in total and about

300–400 that are functional in the human body [14, 16, 17]. High-resolution crystallographic

structures are publicly available for over 150 distinct human proteases. MEROPS [11], CutDB

[12] and ExPASy ENZYME database [13] integrate available information about proteolytic

sites and, consequently, about proteases, their cleavage sites, substrates and inhibitors. This

information can be used to identify possible labile residues in the candidate peptide for

individual proteases. Most of the information in these databases is limited to 20 standard

amino acids [14]. Several computational bioinformatics sequence-based and matrix pattern

approaches were developed to identify the most possible protease and/or the labile residues

and the most likely cleavage site for the studied protein/peptide. However, these tools (SitePre-

diciting [18], PROSPER [19], PoPS [20], PeptideCutter [21]) are based on available literature

or rely on the MEROPS database and therefore are limited to the 20 standard amino acids [14]

and thus do not properly cover unnatural amino acids and cyclic peptides.

This article presents a new approach that uses LC-MS data from peptide metabolic stability

experiments to determine the specific metabolic cleavage sites and then store the results in a

chemically aware database, where chemical structure based searches can be performed by

structure and/or fragments. This approach includes a new search algorithm applied for the

mentioned database. Finally, this methodology can be used to perform frequency analysis to

discover the most frequent metabolically labile amide bonds within this experimentally

derived database, enabling the match of chemical peptide structures.

Materials and methods

Experimental data

Dataset. Metabolite identification was performed using two different peptides sets and

experimental conditions. The first set (dataset-1) included ten commercially available peptides

(secretin, calcitonin, oxytocin, octreotide, deslorelin, histrelin, goserelin, buserelin, leuprolide

and gonadorelin) and four marker substrate peptides with known cleavage sites as positive

controls for each of the selected proteases—trypsin, chymotrypsin, pancreatic elastase and

pepsin Table 1. Five out of the ten compounds had unnatural amino acids and three of them

were cyclic peptides. Moreover, to investigate the effect of small chemical/monomer changes

in the peptide structure with respect to the proteases catalyzed reactions, the set was selected

to also contain five synthetic analogues for the same peptide series, the luteinizing-hormone

releasing hormone (LHRH). All test compounds were prepared as a stock at a concentration of

10 mM in dimethyl sulfoxide (DMSO).

Metabolite identification following incubation with select proteases, was performed for a

second set of peptides (dataset-2) which consisted of four commercially available peptides: glu-

cagon-like peptide-1 (GLP-1) and three synthetic analogues of GLP-1—taspoglutide, exenatide

and liraglutide (Table 1). Taspoglutide peptide had non-natural amino acids and liraglutide

had C-16 fatty acid side chain (palmitic acid). GLP-1, taspoglutide and exenatide were pre-

pared as a stock in concentration of 10 mM and liraglutide was prepared in concentration of 5

mM in DMSO.

Incubations. Incubations with dataset-1 were performed using isolated enzymes. We

investigated serine proteases like trypsin, chymotrypsin, and pancreatic elastase (E 3.4.21.1,

E 3.4.21.4, E 3.4.21.36) at a concentration of 500 μg/mL in simulated intestinal fluid (SIF) and

the aspartic protease pepsin (E 3.4.23.1) at a concentration of 500 μg/mL in simulated gastric
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fluid (SGF). Proteases were purchased from Sigma Aldrich and SIF and SGF were purchased

from RICCA Chemical Company (Arlington, TX, USA). For dataset-2 incubations proteases

with different catalytic mechanisms were employed. The serine protease dipeptidyl peptidase-

4 (DPP-4) (E 3.4.14.5) was incubated at 2 μg/mL concentration and the zinc-dependent metal-

loprotease like neprilysin (NEP) (E 3.4.24.11) was also incubated at 2 μg/mL concentration in

Hank’s buffered salt solution. All incubations were conducted at 37˚C. More detailed informa-

tion regarding incubation conditions is provided in S1 Table.

Table 1. Peptide-substrates structures and other characteristics.

Drug Name Provider Molecular

weight

Structure Sequence

Dataset 1

Linear peptides

Gonadotropin releasing hormone and analogues

Gonadorelin BioNet HS2014 1182.29 linear H-Pyr-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2

Deslorelin BioNet HS2009 1282.45 linear H-Pyr-His-Trp-Ser-Tyr-D-Trp-Leu-Arg-Pro-NHEt

Goserelin Sigma G4919 1269.41 linear Glp-His-Trp-Ser-Tyr-Ser-tBu-Leu-Arg-Pro-NHNHCONH2

Buserelin Sigma B3303 1238.66 linear Glp-His-Trp-Ser-Tyr-Ser-tBu-Leu-Arg-Pro-NHEt

Histrelin Sigma L2761 1323.5 linear Glp-His-Trp-Ser-Tyr-HisBzl-Leu-Arg-Pro-NHEt

Leuprolide Sigma L0399 1209.4 linear Glp-His-Trp-Ser-Tyr-D-Leu-Leu-Arg-Pro-NHEt

Other peptides

Secretin human Sigma S7147 3039.41 linear H-His-Ser-Asp-Gly-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-Leu-Arg-

Glu-Gly-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val-NH2

Cyclic peptides

Octreotide Sigma O1014 1019.24 cyclic H-D-Phe-Cys(1)-Phe-D-Trp-Lys-Thr-Cys(1)-Thr-ol

Oxytocin Sigma O6379 1007.19 cyclic H-Cys(1)-Tyr-Ile-Gln-Asn-Cys (1)-Pro-Leu-Gly-NH2

Calcitonin Sigma T3660 3429.71 cyclic H-Cys(1)-Ser-Asn-Leu-Ser-Thr-Cys (1)-Val-Leu-Gly-Lys-Leu-

Ser-Gln-Glu-Leu-His-Lys-Leu-Gln-Thr-Tyr-Pro-Arg-Thr-Asn-Thr-

Gly-Ser-Gly-Thr-Pro-NH2

Control substrate peptides

Ala-Ala-Phe-7-amido-

4-methylcoumarin

Sigma A3401 464.52 linear H-DL-Ala-DL-Ala-DL-Phe-AMC

N-methoxysuccinyl-Ala-Ala-Pro-

Val-7-amido-4-methylcoumarin

Sigma M9771 627.69 linear MeoSuc-Ala-Ala-Pro-Val-AMC

N-Benzoyl-L-isoleucyl-L-glutamyl-

glycyl-L-arginine-4-nitroanilide

Sigma 87528 697.74 linear Bz-Ile-Glu-Gly-Arg-pNA

Phe-Ala-Ala-Phe(4-NO2)-Phe-Val-

Leu(4-pyridylmethyl) esther

Sigma 77431 950.09 linear Phe-Ala-Ala-Phe(4-NO2)-Phe-Val-Leu(4-pyridylmethyl) esther

Dataset 2

Linear peptides

Glucagon like protein-1 and analogues

Glucagon-Like 1 protein Sigma G9416 3297.68 linear H2N-His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-

Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val-Lys-

Gly-Arg- Gly-OH

Liraglutide Bachem AG H-

6724

3749.95 linear H-His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-

Glu-Gly-Gln-Ala-Ala-Lys(γ-Glu-palmitoyl)-Glu-Phe-Ile-Ala-Trp-

Leu-Val-Arg-Gly-Arg-Gly-OH

Taspoglutide Pharmten Chemical

Ltd. PTN3367

3338.71 linear H-His-Aib-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-

Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val-Lys-Aib-

Arg-NH2

Exenatide Chemie

Brunschwig

E957300

4184.0 linear H-His-Gly-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-Gln-Met-

Glu-Glu-Glu-Ala-Val-Arg-Leu-Phe-Ile-Glu-Trp-Leu-Lys-Asn-Gly-

Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-NH2

https://doi.org/10.1371/journal.pone.0186461.t001
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The dataset-1 incubations were performed at Merck Research Laboratories (Merck & Co,

West Point, PA, USA). Negative control samples were prepared under the same conditions of

the incubation (see above), containing each enzyme but without adding probe compounds.

Probe compounds were added to 96-well plates (Micronic 0.75 mL V-bottom) using a Hewlett

Packard HPD300e. To give a 10-μM concentration for a 50 μL incubation per well, 50 nL of

each compound was dispensed. Each well was a time point, with five timepoints (0, 5, 15, 45

and 120 min) per compound per protease. Incubations were carried out using a Hamilton

MicroLab STAR Plus liquid-handler to initiate, conduct and stop incubation reactions within

a single automated method. The incubation plates were placed in heated shakers present on

the deck of the liquid-handler and operated at 37˚C and 400 rpm shaking speed. Reactions

were started with the addition of the enzyme at the appropriate time to allow for all reactions

to be quenched at a single time. Incubation quenching was again carried out by the Hamilton

STAR Plus with the addition of 100 μL of acetonitrile with 1% formic acid (FA) or 1% ammo-

nium hydroxide (pepsin-only) and the internal standard (melanotan) at a concentration of

1 μM. Following reaction quenching, the samples were vortexed for approximately 2 min and

the time zero sample was generated by aliquoting 50 nL of the appropriate stock compound

into quenched control samples. The samples were then centrifuged in a Beckman Allegra 25R

at 6000 rcf for 20 min at 10˚C. Resulting supernatant was transferred to Eppendorf LoBind

96-well plates and 1 μL was injected onto a Waters Acquity BEH-C18 1 x 50 mm, 1.7 μm col-

umn via a Waters Acquity M-Class ultra-performance liquid chromatography (UPLC) auto-

sampler. All time points were analyzed using a data-dependent MS/MS method. Full scan/

data-dependent MS/MS experimental settings are provided in S2 Table.

The dataset-2 peptide incubations were performed at Roche Innovation Center Basel F.

Hoffmann-La Roche Ltd., (Hoffmann-La Roche, Basel, Switzerland) using isolated enzymes.

For both DPP-4 and NEP incubations, a solution of the respective enzyme in Hank’s buffered

salt solution was pre-incubated at 37˚C for 3 to 5 min, in 96-well plate Nunc (Thermo Scien-

tific, 163320) before the addition of 30 μL of test substance to give final concentrations of 2 μg/

mL DPP-4 or 2 μg/mL NEP. Negative control samples were prepared under the same condi-

tions (see above), containing each enzyme but without adding test compound. Samples for tas-

poglutide, liraglutide and exenatide were incubated at 37˚C for 2, 4, 8, and 24 hr and for GLP-

1 for 0, 5, 15, 30 and 60 min. The incubation plates were placed in heated shakers present on

the deck of the liquid-handler and operated at 37˚C and 600 rpm shaking speed. Reactions

were started with the addition of the enzyme and then quenched at each time point with 75 μL

cold acetonitrile containing 1% FA followed by thorough mixing. The samples were centri-

fuged at 4˚C for 15 min at 14,000g, and the supernatant was collected. The metabolite profile

was immediately analyzed. Full scan/data-dependent MS/MS experimental settings are pro-

vided in S2 Table.

UPLC-MS/MS. For dataset-1, chromatographic separation of metabolites was performed

using the ACQUITY UPLC system (Waters, Milford, MA, USA). The ACQUITY UPLC BEH

C18 column (1.0 × 50 mm, 1.7 μm) was heated to 60˚C. The mobile phase consisted of 0.1%

FA in water (eluent A) and 0.1% formic acid in acetonitrile (eluent B) at a flow rate of 75 μL/

min. The initial condition was 10% eluent B, which was maintained for 0.1 min. Eluent B was

then increased via a linear gradient to 40% until 3.1 min and further increased to 90% via lin-

ear gradient to 3.6 min. Eluent B was then held at 90% until 4.0 min when it was ramped down

to 10% by 4.05 min and held until the end of the run at 6 min. ACQUITY UPLC system exper-

imental settings are provided in S3 Table. Full scan/data-dependent MS/MS analyses were run

on a Thermo Scientific Q-Exactive Plus mass spectrometer operated in positive electrospray

ionization (ESI) mode. The MS and MS/MS acquisition scans were operated with a resolution

setting of 17,500 for both, with an automatic gain control (AGC) setting of 1E6 and maximum
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injection time of 100 ms for MS and AGC of 2E5 and max injection time of 50 ms for full

scan/data-dependent MS/MS. Lock masses were employed using background phthalate ions

with exact masses of 391.2848, 419.3161, and 447.3474. Full scan MS/MS was a data dependent

acquisition (DDA) using peptide-specific inclusion lists containing amide hydrolysis ions of

multiple charge states (z = 1 to 3). These lists were generated using a MOL file for each peptide

and the software Mass-MetaSite 5.1.5. The DDA method settings employed a chromatographic

peak width of 4 s with an apex trigger between 1.5–5 s, under fill ratio of 3.0%, charge exclu-

sion of 6–8 and > 8, peptide matching preferred, isotopes excluded, dynamic exclusion of 4 s.

To generate dataset-2, a Thermo Scientific Dionex UltiMate 3000 RS UPLC system in

combination with a Pal autosampler (CTC Analytics AG, Zwingen, Switzerland) was used.

Chromatographic separation was performed using an Acquity CSHT Phenyl-Hexyl Column

(1.7 μm, 2.1 x 100 mm). The mobile phases consisted of A: H2O/0.1% FA and B: methanol/

0.1% FA. Start condition was 5% B at a flow rate of 0.4 mL/min, the LC gradient started at 1

min and was increased at 10 min to 100%. ACQUITY UPLC system experimental settings are

provided in S4 Table. Full scan/data-dependent MS/MS analyses were run on a Q Exactive™
Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher Scientific) operated in posi-

tive ESI mode. Spray voltage was 3.5 kV, the collision energy was set to 25 V. Full scan MS/MS

was a DDA using peptide specific inclusion lists containing amide hydrolysis ions of multiple

charge states (z = 1 to 5). These lists were generated using a MOL file for each peptide and the

software Mass-MetaSite 5.1.5. The post-acquisition data analyses were performed using the

peptide specific mode integrated in Mass-MetaSite 5.1.5 Mass 3.2.3 software (Molecular Dis-

covery Ltd, Middlesex, UK). Minimal dataset containing raw files for all the incubations is

available on the BioStudies repository (https://www.ebi.ac.uk/biostudies/). Submission num-

ber is S-BSST33.

Data processing

All data acquired from the LC/MS system were processed using MetaSite 5.1.5. The MetaSite-

Batch Processor was used to process data without supervision. The produced output was auto-

matically uploaded into the web application “WebMetabase 3.2.7” (Molecular Discovery Ltd,

Middlesex, UK), where all the samples from the same experiment were clustered together for

further analysis and interpretation. In WebMetabase the detected chromatographic peaks

were displayed together with the structural elucidation data for parent and metabolites. The

Mass-MetaSite/WebMetabase workflow used is shown in Fig 1.

Fig 1. Mass-Metasite/WebMetabase workflow from experimental data to searchable information

manageable by in silico analysis tools.

https://doi.org/10.1371/journal.pone.0186461.g001
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The Mass-MetaSite settings used for the MetaSite-Batch Processor and required to repro-

duce the results are reported in S5 Table. The sample list used for the batch was generated in

WebMetabase mirroring the experimental design (enzymes, time points and instrument) and

defined as a WebMetabase protocol. Settings used for the WebMetabase protocol are given in

S6 Table.

Mass-MetaSite. The application of Mass-MetaSite for the interpretation of small mole-

cules metabolic stability data has been described previously [22–28]. Here, we will point out

the main processing parameters differences for the case of peptides with respect to the previ-

ously described small molecule parameters.

Mass-MetaSite uses as inputs the 2D structure of the compound together with control and

treated sample data files (Fig 1). The data can be processed sample-by-sample manually or in a

batch mode with an automatic processing of a set of sample files. The data processing consists

of two steps. Step-1 consists of automatic detection of the chromatographic peaks related to

the parent compound, i.e. metabolites. The methodology for peptides does not differ from

the one described for small molecules [25]. Step-2 consists of structure elucidation of the

potential metabolites based on the fragmentation pattern for each peak detected. Once the list

of potential chromatographic peaks has been selected (step-1), Mass-MetaSite compares the

m/z associated with each peak to all the possible theoretical metabolites based on a list of

included biotransformation reactions [25]. In this study, the only transformation of interest

selected was the hydrolysis of amide bonds. Mass-Metasite then generates all possible metabo-

lites based on a predefined list of metabolic biotransformation reactions.

The overall principle for the structural elucidation of metabolites is a comparison of frag-

ment ions obtained from the parent (assigned from the incubation time t = 0 sample) and the

ones from the metabolites (t = incubation time) and then identifying mass shifts correspond-

ing to the mass of the metabolite or common neutral losses [24]. In addition, for peptides, an

extra bond/breaking rule was added and carbon-carbon bonds having the same hybridization

are not broken, mainly to optimize the computational speed since the number of fragments

increases exponentially with the number of broken bonds. The maximum number of bonds

broken was set to 2 to also help reduce the computational time.

In addition to the above comparative fragmentation analysis, the fragmentation of the

metabolite without comparison to the parent molecule is considered. This fragmentation strat-

egy is most advantageous in the case of cyclic peptides where the metabolite could be a linear

peptide (the amide hydrolysis is occurring in and opening the cycle) and fragmentation can be

significantly different compared to parent. Fragmenting all the metabolite structures to the

same extent as the substrate takes a prohibitive amount of computational time; therefore, the

number of bonds that can be broken to generate metabolite fragments has been limited to 1.

A score is assigned to each peptide metabolite based on the number of matches/mismatches

between the theoretical fragment m/z value and the m/z value observed in the MSMS spectrum

as it has been described for small molecules [28]. Once Mass-MetaSite results have been

uploaded into the WebMetabase, they should be manually checked and approved by the expert

(Fig 1).

WebMetabase. All WebMetabase experimental settings are reported in S6 Table. Each

experiment consisted of a set of samples, i.e. one sample per incubation time point per prote-

ase. Mass-MetaSite processes every sample file as a separate unit and thus generated three

main pieces of information for each sample: metabolic scheme, spectrometry data (structural

fragment assignment) and chromatogram (retention time, MS area, MS relative area and

ppm) for each structure, both substrate and metabolites. Afterwards, WebMetabase consoli-

dates all these data from the individual files in a single interpretation for the entire experiment

(time/protease) and analyze which metabolite peaks from each sample can be grouped based
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on the retention time and m/z. Retention time tolerance and m/z tolerance are shown in S6

Table. These consolidated substrates and metabolites are used for the following analysis.

A new algorithm was introduced into WebMetabase to store information about peptide

in a chemically aware searchable format, including a system to perform searches based on

matches of chemical structure. Also, this approach can perform frequency analysis to under-

stand the most metabolically labile amide bonds in peptides towards the specific proteases/spe-

cific media (Fig 2).

Peptide database and search algorithm. Once the experimental results are interpreted

and approved in WebMetabase, the peptide and metabolite structures are stored in the data-

base. Each peptide structure is annotated by the structural blocks (SB) between amide bonds

and their connectivity. Only the amide bonds are assumed to be broken to form SB and in this

way a SB can contain more than one amino acid, for example cyclic peptides where amino

acids can be connected through disulfide bridges, in peptides-conjugates, or with other bond

types between amino acids. SBs are interpreted as different structures depending on chirality

(L, D or undefined) and position in the peptide (N-terminal, C-terminal, in the middle). For

each SB, additional information is stored in the database such as InchiKey and Inchi, 2D struc-

ture, atom mapping and connectivity, physico-chemical properties and pharmacophoric prop-

erties described through molecular descriptors calculated by VolSurf [29] and SHOP software

[30] (Fig 3). Each connection of SBs is annotated by two connected structural blocks, bond

type and two connected atoms which help to identify the direction of the connection. More-

over, in the case of the metabolites additional information is computed related to the cleaved

bonds and incubation protease. The annotation of the peptide information in this manner

enables doing a chemically aware substructure search inside the database and is not limited to

any type of peptides (cyclic/linear, natural/synthetic). It is important to highlight that the

developed search algorithm does not consider the theoretical mass spectrum or even sequence

alignment, but rather performs an exact chemically aware search of parent’s and its metabolites

SB structure.

Fig 2. The Mass-MetaSite/WebMetabase workflow with in silico analysis tools available for the

peptides data processing.

https://doi.org/10.1371/journal.pone.0186461.g002
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Searches can be performed for exact sequence of the SBs. This type of search is treated as a

chemical structure and therefore the target sequence should be used as an input with specific

chirality and specified connection points. The algorithm provides an output of a list of experi-

ments that contains the chemical substructure (searched sequence) in the parent compound.

Also, the methodology can be used to perform a structural search of cleaved bonds. In this

way, the developed system can identify experiments where a certain bond of interest was

involved in a metabolic reaction. In this case, the searched sequence and marked bond should

be used as an input. The output of this type of search is a list of experiments where the searched

bond between two monomers was cleaved.

Peptide frequency analysis. A peptide frequency analysis of the cleaved amide bonds can

be performed for the entire database or for the selected set of the approved experiments in

WebMetabase. The algorithm collects information about all cleaved peptide bonds that were

involved in the metabolic reactions of interest. Herein site of cleavage (SoC) considers the two

SBs involved in the amide cleavage containing the C-terminal and N-terminal of the SBs

involved. We define a potential SoC (pSoC) as the pair of structural blocks that may and may

not be involved in the catalysis. The frequency analysis refers to the number of times that a

pSoC is observed in the parent structure and how many times this is an actual SoC.

There are a number of ways to count the different SoCs, and so the frequency calculation

follows certain rules: a) if the same pSoC was cleaved to generate different metabolites for the

same parent peptide (i.e. if a metabolite is further metabolized) it will be counted as one. b) if

Fig 3. Peptide’s parent and metabolite structure annotation in the database.

https://doi.org/10.1371/journal.pone.0186461.g003

Peptide site of cleavage analysis based on HRMS data

PLOS ONE | https://doi.org/10.1371/journal.pone.0186461 November 1, 2017 9 / 23

https://doi.org/10.1371/journal.pone.0186461.g003
https://doi.org/10.1371/journal.pone.0186461


the same actual SoC was identified in the same parent/protease from different experimental

occasions (i.e. experimental replication) it is calculated as one. c) if the pSoC was found in a

parent peptide at more than one location, for each actual SoC found the frequency is computed

separately and finally added up.

The output of the frequency analysis is done by protease and provides two tables. The first

table contains the number of times that the pSoC was found and the number of times it was an

actual SoC. The second table contains the number of times that the pSoC was found and if it

was cleaved once, twice or more than twice. A frequency analysis of the actual SoC depending

on the protease can be done to create a set of empirically derived rules that later could be used

to predict the metabolic liability of different amide bonds in a new non-tested peptide.

Results and discussion

Here, we present experimental results of applying our approach and algorithm for the analysis

of the two peptide datasets. First, Mass-MetaSite processes the DDA HRMS data and finds

chromatographic peaks related to the parent and then elucidates the metabolites structure

based on this HRMS data. Second, these results were uploaded to WebMetabase followed by

consolidation of all these data (cluster metabolites from different experimental conditions, i.e.

incubation times from the same experiment). This consolidated data was used for further anal-

ysis, i.e. evaluation of the kinetics of the parent peptide and metabolites. After approval of the

experiments, parent and metabolite structures were stored in the database. Finally, the meth-

odology can be used to perform an analysis on the information stored including frequency

analysis of the metabolized bonds. The frequency analysis results were used to identify the

most metabolically labile SoC in the studied peptide sets and protease.

Metabolite identification was performed on the fourteen commercial peptide compounds

and the four positive substrates for the selected proteases that were incubated with digestive

serine, aspartic proteases and a metalloprotease. The compounds were structurally diverse due

to linear and cyclic structure, containing natural and unnatural amino acids and a wide range

of molecular weights (Table 1). The peptide mode of Mass-MetaSite was used to process

UPLC-HRMS and UPLC-MS/MS data to detect chromatographic peaks and to assign the

most probable metabolite structures of the tested peptides. As an example, we will discuss

results of the metabolite identification for linear buserelin and cyclic oxytocin incubated in

chymotrypsin for 120 minutes. Further results are presented in supporting information listed

in SFiles.

SFiles. Metabolite identification reports exported from WebMetabase for

each of the tested peptides in each protease

The results of the first step of peak detection using the Mass-MetaSite algorithm for the

120-minute chymotrypsin incubations with buserelin and oxytocin are shown in Figs 4 and 5.

The metabolites listed in the figure are named by a shift in m/z (such as -786 or +18) with

respect to the parent. For this example, buserelin yielded three metabolites peaks (M1-786,

M2-684 and M3-434) with a retention time of 0.45, 1.84 and 2.12 minutes, respectively. For

oxytocin, three metabolites were also identified, M-38 with retention time 0.97, M-56 with

retention time 2.00 and M+18 with retention time 0.45 min. The computed m/z values of the

identified metabolites agreed with the predicted values. Four of the metabolites (three from

buserelin and one from oxytocin) correspond to first-generation products (from a single reac-

tion) and are indicated by the green color of the peak. The one brown colored metabolite is

indicative of multiple enzymatic reactions (2 or more) needed to reach the observed m/z.

Though detected at earlier time points, one of the oxytocin metabolites was not automatically
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Fig 4. Extracted ion chromatogram of buserelin after 120 minutes of incubation with chymotrypsin.

Blue peak—parent peptide compound;

Green peaks—first generation of metabolites;

Brown peaks- second generation or higher;

Marine peak—internal standard;

Red—structure was not elucidated automatically or peak was not found automatically.

https://doi.org/10.1371/journal.pone.0186461.g004

Fig 5. Extracted ion chromatogram of oxytocin after 120 minutes of incubation with chymotrypsin.

Blue peak—parent peptide compound;

Green peaks—first generation of metabolites;

Brown peaks- second generation or higher;

Marine peak—internal standard;

Red—structure was not elucidated automatically or peak was not found automatically.

https://doi.org/10.1371/journal.pone.0186461.g005
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retrieved from the 120-min sample. In this case a manual extracted ion chromatogram was

performed within WebMetabase to collect the peak information.

The second step of our algorithm assigns chemical structures to the identified metabolites.

All buserelin and oxytocin metabolites have a similar fragmentation pattern as compared to

the substrate fragmentation. The software predicts the theoretical fragments for the parent

compound and metabolites, and compares them with experimentally obtained MS and MS/

MS results. The metabolite fragment ions can have the same mass as a parent fragment or an

expected mass shift, conserved and shifted, respectively. The assigned structures of the previ-

ously found metabolites for buserelin and oxytocin are presented in Fig 6.

The structural assignments for oxytocin metabolites are shown in greater detail in Fig 7a–

7d and are based on the fragment ions (ppm<10) that were detected in the substrate and

metabolite spectra. In this figure, nine fragment ions were found that are compatible with the

shown structure for oxytocin. For the M1-38 and M2-56 metabolites, four of the matching

metabolite fragment ions with the highest full scan/data-dependent MS/MS signal intensity

are shown. A score is calculated and reported for each metabolite. For the metabolites M1-38

and M2-56, the score was 645 with 15 matching fragments and 871 with 11 matching frag-

ments, respectively. The structural assignment is believed to be reliable because of the high

score, several matching fragments, no mismatching fragments, and a low m/z difference

between the observed and computed values (<3 ppm). Other results are in supporting infor-

mation listed in SFiles.

Results from structure assignment of the buserelin metabolite M2-684 peak which elutes at

2.12 minutes are additionally shown in Fig 8a and 8b. Here, the full scan/data-dependent MS/

MS spectra for the substrate buserelin and the metabolite M2-684 (score: 953, matches: 25,

mismatches: 1) are shown along with the SB structures of the four highest matching fragments

from substrate and metabolite, one metabolite fragment and one mismatching fragment. This

metabolite structural assignment is reliable because the mass score is greater than 500, there

are several matching fragments with only one mismatch, and the difference between the

observed and theoretical or exact m/z was less than 3 ppm.

Fig 6. Proposed metabolites of buserelin and oxytocin found in 120 min incubations with chymotrypsin.

https://doi.org/10.1371/journal.pone.0186461.g006
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The previous algorithm processes one sample (protease or time point) at a time. However,

an experiment typically has multiple time points and/or matrices. To be able to compare the

multiple samples of an experiment, the metabolites from each sample should be grouped

together with the metabolites from the other samples. We have termed this type of grouping

“analysis clustering”.

When metabolic stability is an issue for obtaining good pharmacokinetics, understanding

the disappearance of the parent compound over time (that determines the clearance) and the

appearance of metabolites can be used in the drug discovery process. The information about

the structure of the first-formed metabolite may help to understand the major metabolic clear-

ance pathway and aid in designing a new compound that is hopefully more metabolically sta-

ble. This is similarly done in the soft-spot analysis by Mass-MetaSite/WebMetabase for small

molecule, but in that case the rate of formation of the metabolite is reported back as a color

intensity in the parent molecule [25, 35]. To show an example in the peptide arena, the metab-

olite time profile for the major metabolites of buserelin and oxytocin incubated with chymo-

trypsin for 120 minutes is shown in Figs 9 and 10, respectively. To minimize injection-to-

injection differences we used an internal standard during all incubations and so the peak area

ratios of parent or metabolites to internal standard are shown in Figs 9 and 10. It is worth men-

tioning that the concentration of the metabolite cannot be directly correlated with the signal

shown if a calibration line is not computed with an authentic standard of the metabolite. We

did not have authentic standards of the metabolites and so these curves were evaluated

Fig 7. Full scan/data-dependent MS/MS fragment analysis of oxytocin substrate and metabolites.

a) Oxytocin substrate

b) Metabolite M1-38

c) Metabolite M2-56

d) Metabolite M3+18.

https://doi.org/10.1371/journal.pone.0186461.g007
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Fig 8. The fragmentation pattern for the M2-684 metabolite of buserelin in incubations with chymotrypsin 120 min.

a) Full scan/data-dependent MS/MS spectra for the buserelin and M2-684

b) Fragments structures

Red peaks—correlated with fragments that match between metabolite and fragment;

Blue peaks—describe peaks correlated only with parent;

Orange peaks—correlate only with metabolite.

https://doi.org/10.1371/journal.pone.0186461.g008

Fig 9. Peak area over time for buserelin, its metabolites and internal standard with chymotrypsin. X

axis—MS Area, Y axis—Time (hr).

https://doi.org/10.1371/journal.pone.0186461.g009
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qualitatively. The first generated metabolite usually has an exponential shape when the metab-

olites are starting to be formed, for example M1-786 and M4-434 in Fig 9 and M1+18 and

M3-56 in Fig 10. If the metabolites are further metabolized, the signal of the metabolite will

decrease since the metabolite has been consumed to generate a second generation one. Typi-

cally, the second-generation metabolite has a sigmoidal shape since it needs the first-genera-

tion metabolite to form and then be further metabolized, example being M2-684 in Fig 9 and

M2-38 in Fig 10. In some cases, metabolites could be detected in the sample labeled as t = 0,

for example M1+18 and M3-56 in Fig 10. This is potentially due to insufficient mixing of the

quench solution and t = 0 incubation sample prior to addition of the peptide substrate. Other

results are in supporting information listed in SFiles.

We evaluated the metabolism of dataset-1 that contained ten peptide drugs and four pep-

tide substrates in SIF with chymotrypsin, trypsin or pancreatic elastase and from the second

dataset that contained four peptide drugs in DPP-4 and NEP. We compared the percent parent

peptide remaining with respect to time for all investigated peptides. We used percent parent

peptide remaining for the proteases marker substrates for serine proteases in dataset-1 and for

both proteases in dataset-2 as a reference for the comparison (Figs 11a–11c, 12a and 12b).

All compounds from dataset-1 were hydrolyzed by chymotrypsin and trypsin with the

same velocity compared to the proteases marker substrates. Pancreatic elastase acted slower

than the other serine proteases. All LHRH analogues were digested with the similar speed by

chymotrypsin and trypsin except leuprolide, which was hydrolyzed slower (Fig 11a and 11b).

Also, histrelin clearance by the elastase was slower than for leuprolide (Fig 11c). In addition,

oxytocin (the smallest peptide, MW 1007.187) was digested slower than calcitonin (the biggest

peptide, MW 3429.713) by the chymotrypsin and trypsin (Fig 11a and 11b). Also, oxytocin

was hydrolyzed slower than all other peptides in the trypsin incubations (Fig 11a). For the elas-

tase protease, the smaller peptide octreotide (MW 1019.239) was digested significantly faster

than the larger secretin and calcitonin, but it was slower than oxytocin (Fig 11c).

We next set out to examine the effect of small chemical changes in peptide structures for a

set of 5 synthetic analogues for the luteinizing-hormone releasing hormone along with natural

gonadorelin, and they were analyzed with respect to the protease-catalyzed reactions (Table 1).

All LHRH analogues were digested at similar rates by both chymotrypsin and trypsin except

for leuprolide, which was hydrolyzed slower. This may be due to the replacement of Gly6 in

gonadorelin with the non-natural amino acid, D-Leu to form leuprolide. Our approach here

revealed not only the rates of metabolism but also the site of catalysis. We found that elastase

Fig 10. Peak area over time for oxytocin, its metabolites and internal standard with chymotrypsin. X

axis—MS Area, Y axis—Time (hr).

https://doi.org/10.1371/journal.pone.0186461.g010
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Fig 11. Metabolic stability of peptides from dataset-1 with serine proteases.

a) Trypsin

b) Chymotrypsin

c) Elastase.

https://doi.org/10.1371/journal.pone.0186461.g011
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cleaved the Ser-Tyr bond and trypsin cleaved the Arg-Pro bond, except when D-Ser(tBu) was

positioned in buserelin and goserelin on P2-prime, and also when the C-terminal Pro was

modified to Pro-NHNHCONH2 in goserelin instead of Pro-NHet (Fig 11a–11c).

The effect of small chemical changes in peptide structures was also analyzed in dataset-2

with respect to the proteases DPP-4 and NEP (Table 1). DPP-4 and NEP hydrolyzed exenatide

slower as compared to liraglutide and taspoglutide. This may be related to the substitution of

Lys34 for arginine in exenatide and the addition of a C16 fatty acid at the ε-amino group of

Lys26 using a γ-glutamic acid spacer in liraglutide. Liraglutide was digested faster than the

other compounds in both matrices. For liraglutide, NEP acted slower as compared to DPP-4.

Our approach revealed that liraglutide and GLP-1 were cleaved at the Ala-Glu linkage. On one

hand, exenatide was not cleaved at the same site due to the amino acid change in the parent

where Ala8 was modified to Gly. On the other hand, taspoglutide was cleaved despite the mod-

ification Ala8 to α-aminoisobutyric acid (Aib) (Fig 12a and 12b).

The analysis of dataset-1 resulted in 104 metabolites, while dataset-2 gave a total of 28

metabolites that were annotated in the database. All the metabolites identified were produced

by amide hydrolysis. All these metabolite structural assignments were checked manually and

were considered as reliable because the fragmentation was adequate, isotope pattern was as

expected, the m/z small differences between the m/z of observed and theoretical (<3 ppm),

and the mass score was high. For three positive control substrates (for trypsin, elastase and

pepsin) the expected metabolites, coming from losing the leaving group, were detected

(7-amino-4-methylcoumarin or 4-nitroanilide, depending on substrate). In the case of chymo-

trypsin, we observed the loss of parent signal over time, but no metabolites were identified

automatically or manually. We hypothesize that this may be related to fast degradation of the

metabolites.

The approach to identify metabolite products is validated by literature and the experimental

evidence collected (i.e. fragmentation). As an example, for buserelin main metabolites M1-786

and M3-434 were produced by the amide hydrolysis of the Trp-Ser bond and M2-684 from

amide hydrolysis of the Tyr-D-Ser(tBu) bond. The identified SoC agreed with the expected

actual SoC for chymotrypsin from the literature such as Tyr-|-Xaa, Trp-|-Xaa, Phe-|-Xaa, Leu-

|-Xaa, and Met-|-Xaa, where Xaa is any amino acids [7, 31]. Our observations of SoC for oxyto-

cin are also in line with these literature reports. We found the main metabolites produced by

chymotrypsin were generated through the cleavage of Leu-Gly (M1-38 and M2-56) and the

Tyr-Ile (M1-38, cycle opening). GLP-1 and liraglutide were mainly metabolized by DPP-4 at

the SoC Ala-Glu [32, 33]. While in the case of taspoglutide the Aib—Glu SoC was cleaved as

Fig 12. Metabolic stability of peptides in dataset-2 with a) DPP-4 and b) NEP.

https://doi.org/10.1371/journal.pone.0186461.g012
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reported in the literature [34]. All the other identified SoC in the tested incubations with inves-

tigated proteases are shown in supporting information listed in SFiles.

We have used the new developed algorithm to perform a frequency analysis of the metabo-

lized chemical moieties for each protease. The frequency analysis considered 55 and 22 metab-

olized bonds from the first and second datasets respectively.

The frequency analysis performed on dataset-1 revealed that the most frequent amide bond

to be cleaved was the Trp-Ser and was so for all four proteases. Moreover, several bonds were

selectively cleaved by each of the proteases: 1) for the pancreatic elastase—Ser-Tyr; 2) for the

trypsin—Lys-Leu, Leu-Ser; 3) for the chymotrypsin—Leu-Ser, Phe-Thr, and Gly-Leu; and 4)

for the pepsin—Pro-Trp, Glu-Leu, and Gly-Leu. Therefore, to improve stability in chymotryp-

sin, elastase, trypsin or pepsin incubations, the design team should focus at starting point on

the common SoC: Trp-Ser.

The frequency analysis performed on dataset-2 revealed that for both proteases (DPP-4 and

NEP), the most frequent actual SoC was between the Ala-Glu including the cleavage of taspo-

glutide where Ala was modified to α-aminoisobutyric acid. Moreover, several SoCs were selec-

tive for each of the proteases: 1) DPP-4—Tyr-Leu, Ala-Ala, Ala-Lys and His-Ala and 2) NEP—

Tyr-Leu and Ser-Tyr. Therefore, to improve the stability in this family of peptides, the design

should consider the Ala-Glu modification, although the other more specific cleavage sites

might also be considered.

The results from the SoC frequency analysis were compared with literature results and spec-

ificity models described in MEROPS and ExPASy ENZYME databases [11, 13] in Table 2.

The results of the frequency analysis were compared with the occurrence matrices in the

MEROPS database. The frequency is a percentage defined as how many times a pair of amino

acids at the P1-P1’ positions is registered as cleaved in the database divided by the total number

of times the same pair is registered in the database. In the MEROPS database, we can find an

occurrence of each of the natural amino acids on the positions from P4 to P4´ in the active

site. The MEROPS-derived occurrence is a number of times an amino acid is found at a certain

position from P4 to P4’ in the cleavage site of the investigated peptides, independently of what

are at the amino acids at the other positions. This occurrence calculation is based on the avail-

able literature data and publicly available experimental information and it cannot be custom-

ized to the set of peptides of interest in a drug design project. It is important to mention that

the MEROPS-derived occurrence is not considering combinations of the amino acids in the

site of cleavage (only looks for amino acid in the pockets (P1, P2, P1’, P2’, etc) independently

from each other). Moreover, we compared our results with the catalyzed reaction appearance

rules described for each of the investigated proteases in the ExPASy ENZYME database where

the search of the protease was performed using EC number. It was found that for serine prote-

ases, only occurrence of specific amino acids in P1 position was considered to generate the

catalysis reaction appearance rules. For pepsin and neprilysin reactions, catalysis rules consid-

ered amino acids’ properties at position P1 and P1´ such as hydrophobicity and aromaticity of

the side chain. These rules are based on the recommendations of the Nomenclature Commit-

tee of the International Union of Biochemistry and Molecular Biology (IUBMB) and addi-

tional data extracted from the available literature. Therefore, the conclusions from these

databases would represent the general rules for a peptide that may or may not be applicable to

a concrete series of compounds. In contrast, our method used information coming from the

database of the experiments and this database can be enriched with new experimental data.

Moreover, the frequency analysis considers appearance of the pair of the monomers at the

SoC.

The catalytic activity matrix from MEROPS was compared to the frequency analysis pro-

posed in our work. In this comparison, the most frequent SoC found in our analysis matched
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the amino acids in P1 with highest occurrence in the catalytic matrix from MEROPS for tryp-

sin and chymotrypsin cases. Nevertheless, in the case of pancreatic elastase, pepsin, DPP4 and

neprilysin the most frequent SoC found did not match with information extracted from the

MEROPS database. This may be related to the fact that the SoC (pair of amino acids) frequency

analysis is compared to an amino acid occurrence and therefore it is more specific, because the

SoC frequency method considers the amino acids at P1 and P1’ pocket at the same time as

compared to the occurrence in MEROPS that only consider them independently.

During this comparison with ExPASy ENZYME database we revealed several matches for

trypsin, chymotrypsin, pepsin, and neprilysin frequency analysis results matched with the

Table 2. Frequency analysis results performed and compared with MEROPS and ExPASy ENZYME databases.

Protease The most frequent SoC MEROPS ExPASy ENZYME

P1 P1’ P1 P1’ P1 P1’

Dataset-1

Trypsin Trp Ser Lys, Arg Leu, Ala Arg-|-Xaa, Lys-|-Xaa

Lys Leu

Lue Ser

Chymotrypsin Trp Ser Tyr, Phe, Leu Lys, Leu, Ser Tyr-|-Xaa, Trp-|-Xaa, Phe-

|-Xaa, Leu-|-Xaa, Met-|-Xaa,

His-|-Xaa

Leu Ser

Phe Thr

Gly Leu

Pepsin Trp Ser Phe, Leu Leu, Ala Hydrophobic, preferably

aromatic, residues in P1 and

P1’ position

Pro Trp

Glu Leu

Gly Leu

Pancreatic elastase Trp Ser Ala, Val Ser, Leu, Val Ala-|-Xaa*

Ser Tyr

Dataset-2

DPP-4 Tyr Leu Pro Leu, Val, Tyr Release of an N-terminal

dipeptide, Xaa-Yaa-|-Zaa-,

from a polypeptide,

preferentially when Yaa is Pro,

provided Zaa is neither Pro

nor hydroxyproline

Ala Ala

Ala Lys

His Ala

Neprilysin Tyr Leu Gly, Pro, Arg Phe, Leu Preferential cleavage of

polypeptides between

hydrophobic residues,

particularly with Phe or Tyr at

P1’

Ser Tyr

Bold—P1 or P1´ of the most frequent bond coincide with protease catalytic activity indicated in ExPASy ENZYME database;

Italic—P1 or P1´ of the most frequent bond coincide with protease specificity rules indicated in MEROPS database;

Bold and italic- P1 or P1´ of the most frequent bond coincide with protease specificity rules indicated in ExPASy ENZYME and MEROPS databases;

*Xaa—unknown amino acid;

https://doi.org/10.1371/journal.pone.0186461.t002
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reaction catalysis rules described in ExPASy ENZYME database. No matches were found for

the pancreatic elastase and DPP4, possibly due to the high specificity of these rules generated

from limited data.

Though the current number of peptide analysis does not allow us to define a statistical sig-

nificance for predicting the SoC, as the datasets grow, so will the statistical significance. We

did find that the most frequently cleaved bonds were comparable with the literature, demon-

strating the usability of the developed methods and approach. Nevertheless, the proposed

methodology compared to existing databases (i.e. ExPASy) can be applied in the case of non-

natural amino acid and/or cyclic peptides. This approach can be used to derive cleavage site

appearance rules for the specific peptide family (i.e. GLP-1 and analogues) or for specific

experimental condition (i.e. individual protease or complex matrix as plasma). Moreover,

since the system used to derive the cleavage site appearance rules (frequency analysis), could

be linked to the software assisted metabolite structure elucidation based on MS data, the data-

base could be enriched by the new experiments. Rules can then be refined to tune the system

for the experimental conditions and/or peptide families of interest.

Conclusions

We have developed an approach based on Mass-Metasite and WebMetabase to process high

resolution mass spectrometry data from in vitro incubation samples, to predict specific meta-

bolic cleavage sites of peptides, to store the results in a database and to analyse on this stored

information. The first step involves reading peptide MSMS data, finding the chromatographic

peaks related to the parent compound and elucidating the structure of the metabolites. The

second step is storing of the peptide information and its metabolites within a database system.

The developed approach stores peptide and metabolite structures in a database, annotating

structural blocks of amino acids between amide bonds and their connectivity. In this way, the

database is chemically aware and can be used to search for chemistry/structural-based algo-

rithms, which are independent of the peptide structure (natural or non-natural amino acids,

linear or cyclic structure etc.) and substructures of any size. The advantage of this new

approach is that the database is not restricted to the more traditional approaches like the theo-

retical mass spectrum or sequence alignment. Finally, frequency analysis—the third step—

reveals the most metabolically labile SoC in the studied peptides for the specific protease

tested.

Using this approach, we processed high-resolution, mass-spectrometry data from incuba-

tion of fourteen peptide drugs incubated with different proteolytic media: trypsin, chymo-

trypsin, pancreatic elastase, DPP4 and NEP. The results were then stored in a database and

available for SoC frequency analyses within WebMetabase. The advantages of this new

approach are that the database is not restricted to the more traditional approaches like the

theoretical mass spectrum or sequence alignment. The database is chemically aware and

suited for chemistry/structural based searching algorithms which are independent of the

peptide structure (natural or non-natural amino acids, linear or cyclic structure etc.) and sub-

structures of any size. As we have shown with our selected fourteen peptide drugs, the data-

base can be enriched with new experimental data and subsequently customized for peptides

of interest.

Finally, we compared results of our database with the results available for investigated pro-

teases in the MEROPS and ExPASy ENZYME databases. Generally, the results agreed with the

publicly available data from MEROPS and/or ExPASy ENZYME databases. In conclusion, the

presented approach could be useful to optimize properties of peptide drugs with regards to

cleavage sites, stability, metabolism and degradation products in drug discovery.
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