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Simple Summary: Increased genetic diversity in plants is probably associated with greater ambient
temperatures. To test this hypothesis, we studied genetic diversity and differentiation of weedy rice
populations occurring in the early- and late-season rice cultivation fields in Leizhou of southern
China. Data collected from 10-year climatic records showed a higher average temperature in the
late rice-cultivation seasons than in the early rice-cultivation seasons. Results obtained based on
27 SSR (simple sequence repeat) loci indicated greater genetic diversity in the late-season weedy
rice populations, in addition to the considerable genetic differentiation between the early- and
late-season weedy rice populations. We therefore conclude that a higher ambient temperature
might be an important factor to promote the formation of genetic diversity in the late-season weedy
rice populations.

Abstract: Hypotheses regarding the association of increased species or genetic diversity with gradu-
ally warmer regions as a global pattern have been proposed, but no direct and solid experimental data
are available to approve the association between plant genetic diversity and ambient temperatures.
To test the diversity-temperature hypothesis, we studied genetic diversity and genetic differentiation
of weedy rice (Oryza sativa f. spontanea) populations occurring naturally in early- and late-season rice
fields that share nearly the same ecological conditions but with slightly different temperatures. Data
collected from 10-year historical climatic records indicated a ~2 ◦C higher average air temperature in
the late rice-cultivation seasons than in the early seasons. Results based on molecular fingerprints of
27 SSR (simple sequence repeat) loci showed a higher level of genetic diversity in the late-season
weedy rice populations than in the early-season populations. In addition, a positive correlation was
detected between the increased proportion of genetic diversity (∆He) and genetic differentiation
among the weedy rice populations, suggesting limited gene flow. Therefore, we conclude from this
study that increased genetic diversity in the late-season weedy rice populations is probably caused
by the higher ambient temperatures. This finding provides evidence for the possible association
between genetic diversity and ambient temperatures.

Keywords: gene flow; genetic divergence; increased diversity; temperature effect; temporal isolation; weed

1. Introduction

Biodiversity plays an important role in maintaining the balance of the biosphere
and sustaining human livelihood [1,2]. To address the questions regarding how biodi-
versity is created and maintained still remains challenging [3]. It is generally considered
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that biodiversity is distributed heterogeneously around the globe due to the tremendous
differences in the ecological habitats where organisms inhabit. Such differences include
temperature variation with latitudinal gradients [4–7], altitudinal gradients [8], and vertical
gradients in the oceans [9]. To determine the reason concerning how such patterns are
formed has long been a hot research topic in ecology and evolution fields [5]. A veritable
explosion of studies has focused on the large-scale spatial patterns and species levels of
biodiversity [10–13]. However, only a few studies focused on the examination of asso-
ciations between the temperature gradient and biodiversity at the genetic level within
populations or species [14,15].

Genetic diversity is the fundamental sources of biodiversity at the genic level [16,17].
The major task of genetic diversity is to quantify the magnitude of genetic variability within
a given population or species. Theoretically, the creation of genetic diversity results from
the ability of a population or species of organisms to respond to the changes of the envi-
ronmental factors [18,19], such as climate and temperature. For example, the relationships
between temperature and mutation rates have been well-described in many genetic and
molecular studies [20,21]. There is a hypothesis that higher temperatures can promote
higher metabolic and mutational rates, which, as a consequence, may increase biodiversity,
including genetic diversity [4,22,23]. In other words, this hypothesis emphasizes that
genetic diversity could become higher in warmer regions than in the cold regions, which
is referred to as “diversity-temperature hypothesis” in this article. However, no solid
experimental data are available to approve such a correlation between genetic diversity
and the ambient or habitat temperature.

Weedy rice (Oryza sativa f. spontanea, also referred to as red rice, Figure 1) is a noxious
weed infesting worldwide rice fields [24,25]. As a conspecific weed, weedy rice belongs
to the same biological species of cultivated rice (O. sativa), but with strong competition,
seed shattering, and prolonged seed dormancy. Consequently, weedy rice is extremely
difficult to control, causing great yield and quality losses of cultivated rice [25]. Weedy
rice comprises a relatively high level of genetic diversity, probably due to consecutive
gene flow and introgression from its co-occurring and diverse rice cultivars, although
with extremely low frequencies in each generation (0.008–0.25%) [26]. A previous study
including 20 weedy rice populations from northeastern China down to Sri Lanka across a
large latitudinal gradient indicates the gradual increases in genetic diversity, estimated by
the fingerprints of 20 SSR (simple sequence repeat) loci, with the decreases in latitudes and
increases in temperatures [14]. This finding partially supports the hypothesis of increased
genetic diversity being associated with higher temperature. However, the conclusion
has its limitation to approve the diversity-temperature hypothesis because the increased
genetic diversity might also be affected by other factors (e.g., soil types and moisture)
across such a large latitudinal span at different sites where the weedy rice materials were
collected. Therefore, the most suitable method to test this hypothesis should be generating
solid evidence based on the experiments conducted at the same sites with nearly the same
environmental conditions but different temperatures.

China has a long history of rice cultivation, and weedy rice infestation of rice fields
is a continued problem for rice production [27–29]. In the typical tropic rice cultivation
regions, such as the Guangdong, Guangxi, and Hainan Provinces, rice is cultivated for two
seasons, namely the early- and late rice-cultivation seasons. According to our previous
surveys of rice fields in Leizhou of the Guangdong Province, we found abundant weedy
rice in rice fields for both seasons [30]. Generally, temperatures between the two seasons
are considerably different. Therefore, we believe that such environments with different
temperatures and abundant weedy rice populations at the same sites provide an ideal sys-
tem to study the association of genetic diversity with temperature variation. As an efficient
molecular tool to estimate genetic diversity in plant populations, SSR fingerprinting has
been extensively used in estimating genetic diversity, differentiation, and structures of
weedy rice populations effectively [14,24,31–34].
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Figure 1. Panicle morphology of weedy rice in a rice field. 
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from ~40 individuals were randomly collected to represent each weedy rice population. 
The distance intervals between weedy rice individuals were >10 m to avoid sampling of 

Figure 1. Panicle morphology of weedy rice in a rice field.

The primary objectives of this study are to address the following questions: (1) Is
the abundance of genetic diversity in the two-season weedy rice populations affected by
temperature differences between the two rice-cultivation seasons? (2) Does genetic differ-
entiation occur between the corresponding early- and late-season weedy rice populations?
(3) Is there any correlation between genetic diversity and genetic differentiation in weedy
rice populations? The answers to these questions will facilitate our understanding of the
relationships between genetic diversity of plant populations and the ambient temperatures,
in addition to explaining the possible reasons regarding how genetic diversity can be
maintained in plant populations, particularly between the early- and late-season weedy
rice populations.

2. Materials and Methods
2.1. Plant Materials

A total of 18 weedy rice populations were collected from nine different rice fields in
Leizhou, the Guangdong Province of China in 2018 (Supplementary Materials Table S1).
The 18 weedy rice populations occurred, respective, in the early- (code as WR-E) and
late-season (WR-L) rice cultivation fields in Leizhou. Two populations collected from each
field site, corresponding to the early- and late-season rice cultivation fields (with the same
lateritic type of soils), were treated as a pair. Consequently, nine population pairs were
formed for further comparison (Supplementary Materials Table S1). The spatial distances
between the sampled sites of weedy rice population pairs were >5 km. Matured panicles
from ~40 individuals were randomly collected to represent each weedy rice population.
The distance intervals between weedy rice individuals were >10 m to avoid sampling of
similar genotypes. The average duration of the early rice-cultivation seasons was from
1 March to 25 June, with ~141 mm of the monthly precipitation; whereas that of the late
rice-cultivation seasons was from 20 July to 5 November, with ~208 mm of the monthly
precipitation [35].

2.2. DNA Extraction and Polymerase Chain Reaction Amplification

Total genomic DNA was extracted from weedy rice seedlings at about the four-leaf
stage, following the CTAB protocol [36]. All rice seedlings were obtained from germinated
seeds in a green house in the summer of 2019. Twenty-seven highly polymorphic primer
pairs of SSR markers of cultivated rice were selected from the Gramene Database [37]
and used as fingerprints (Supplementary Materials Table S2). FAM (blue), ROX (red), or
JOE (green) fluorescently labeled the forward primers [32,38]. PCR (polymerase chain
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reactions) amplification was carried out with a total volume of 10 µL containing 1 µL
(20 ng) total genomic DNA, 0.2 µL of 10 mmol/L forward and reverse primer, 0.5 U DNA
Taq polymerase, 0.8 µL of 25 mmol/L dNTP, 1 µL of 1 mmol/L reaction buffer with MgCl2,
and 6.7 µL ddH2O in the 2720 Thermal Cycler (Applied Biosystems, Foster, CA, USA).

The PCR products were separated and analyzed on a capillary electrophoresis analyzer
(ABI 3130, Applied Biosystems). Amplified DNA fragments were scored as genotype data
(size of the SSR fragments) for each weedy rice sample, owning to the co-dominant feature
of the SSR markers [14,32,38,39]. The amplified fragments were scored based on fragment
length (bp), using the software GeneMapper version 4.1 (Applied Biosystems).

2.3. Estimation of Temperature in the Early and Late Seasons

The data of air temperatures, including the minimum and maximum daily values in
Leizhou, were collected from the Tianqi Weather Database [40] from the period of 2011–2020.
The 10-year average values of minimum and maximum air temperature were calculated for
estimating differences in temperature between the early and late rice-cultivation seasons.
The significant differences in air temperature between the early and late rice-cultivation
seasons were estimated based on student t-test [41].

2.4. Estimation of Genetic Diversity

The genotypic data matrix based on the 27 SSR loci of 720 weedy rice individuals
representing nine population pairs were analyzed to examine the genetic diversity. The
following parameters were calculated: (i) the number of effective alleles per locus (Ne);
(ii) the percentage of polymorphic loci (P); (iii) Shannon’s information index (I, Shannon
1948); and (iv) Nei’s expected heterozygosity (He). The analysis of molecular variance
(AMOVA) was carried out to estimate the partition of genetic diversity within and among
populations, at a level of p < 0.001 and 9999 permutations. The statistical analyses were
conducted in the software GenAlEx version 6.5 [42].

2.5. Analyses of Genetic Divergence and Correlation

The F-statistics (Fst, Wright 1978) and number of private alleles (PAS) were computed
to estimate genetic differentiation between the early- and late-season weedy rice popula-
tions. The statistical analyses were carried out using the software GenAlEx version 6.5 [42].
To estimate the relationship between the abundance of genetic diversity and genetic dif-
ferentiation among weedy rice populations, correlations of the increased proportion of
genetic diversity (∆He) with the Fst values and difference in number of private alleles
(∆PAS) between the early- and late-season weedy rice populations were analyzed, using
the software Prism 8 [43] by selecting the method ‘Pearson’. The ∆He was estimated based
on the calculation of absolute values obtained from He of the late-season weedy rice popu-
lations subtracting He of the corresponding early-season weedy rice populations; whereas
the ∆PAS was estimated based on the calculation of absolute values obtained from PAS of
the late-season weedy rice populations subtracting PAS of the corresponding early-season
weedy rice populations.

2.6. Analysis of Genetic Structure

The genetic structure of weedy rice populations was analyzed in the Bayesian clus-
tering algorithm-based program STRUCTURE version 2.3.4 [44] to visualize the genetic
component differences between the early- and late-season weedy rice populations. The
analysis was based on the SSR genotypic data matrix and the running parameters were
set as 100,000 burn-in period, and 200,000 replicates. The admixture model was selected
to analyze the genetic components with the correlated allele frequencies [45]. Number of
clusters (K) from 2 to 8 were tested with 10 iterations, respectively. The Evanno method was
used to detect the number of K groups that best fit the dataset by the Structure Harvester
online program [46]. The software CLUMPP version 1.1.2 was used to determine the
optimal alignment of the 10 replicates with the ‘Greedy’ algorithm (GREEDY_OPTION = 2,
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REPEATS = 10,000) [47]. The alignment results were visualized using the software Distruct
version 1.1 [48].

3. Results
3.1. Differences in Air Temperature between the Early and Late Rice-Cultivation Seasons

Analytical results indicated that the 10-year average air temperatures (2011–2020) was
about 1.4–1.8 ◦C higher in the late rice-cultivation seasons than in the early rice-cultivation
seasons in the collected region (Table 1). The average differences in air temperature were
estimated based on the calculation of the daily climate data (10 years) of Leizhou in the
Guangdong Province, China.

Table 1. The 10-year (2011–2020) average values of the minimum and maximum air temperatures in
early and late rice-cultivation seasons in Leizhou in the Guangdong Province, China (Numbers in
parentheses following averages indicate standard deviation, SD).

Year
Minimum Temperature (◦C) Maximum Temperature (◦C)

Early 1 Late Early Late

2011 20.6 (4.51) 23.5 (2.12) 27.3 (5.82) 30.5 (2.59)
2012 22.5 (4.15) 23.5 (2.12) 28.8 (5.19) 30.4 (2.32)
2013 22.2 (3.26) 23.3 (2.32) 28.8 (3.95) 30.0 (2.03)
2014 22.6 (3.56) 23.8 (2.19) 28.7 (4.88) 31.0 (2.19)
2015 23.0 (3.49) 24.0 (2.27) 30.1 (4.59) 30.8 (2.72)
2016 22.7 (4.14) 25.1 (1.60) 29.1 (5.06) 31.8 (2.24)
2017 22.9 (3.41) 24.9 (2.67) 29.0 (4.03) 31.8 (2.60)
2018 22.8 (3.65) 23.4 (2.35) 29.4 (3.89) 30.3 (1.93)
2019 23.3 (3.04) 24.3 (2.20) 29.9 (3.74) 31.3 (2.25)
2020 22.9 (3.64) 24.0 (2.43) 29.8 (4.79) 30.6 (2.94)

10-year average 22.6 (0.75) 24.0 (0.62) 29.1 (0.80) 30.9 (0.62)
p-value 2 <0.001 <0.001

Difference 3 1.4 1.8
1 Early: the early rice cultivation season from 1 March to 25 June; Late: the late rice cultivation season from 20 July
to 5 November. 2 Comparison was made between the 10-year average values of the minimum and maximum air
temperatures of early and late rice-cultivation seasons using the Student t-test [41]. 3 Difference in the 10-year
average values of temperature between the early and late rice-cultivation seasons.

The 10-year average values of the maximum and minimum air temperatures in the
late rice-cultivation seasons varied between ~30.9 and ~24.0 ◦C, respectively. However,
the 10-year average values of the maximum and minimum air temperatures in the early
rice-cultivation seasons varied between ~29.1 and ~22.6 ◦C, respectively. Noticeably,
the 10-year average air temperature at the initial stage of rice growth (seedling) was
substantially higher (7.7–8.7 ◦C) in the late rice-cultivation seasons than in the early seasons
(Supplementary Materials Table S3). This observation probably indicated the potential
influences of changes in temperatures, which might play a considerable role in weedy rice
growth and development at the initial stage.

3.2. Genetic Diversity of Weedy Rice Populations and Differentiation between the Early- and
Late-Season Populations

The average level of genetic diversity, as indicated by the number of effective alleles
(Ne), the percentage of polymorphic loci (P), Shannon’s information index (I), and expected
heterozygosity (He), was obviously higher in the late-season weedy rice populations than
that in the early-season weedy rice populations (Table 2). This estimation was made
based on a total of 720 weedy rice individuals in nine population pairs, using 27 SSR loci
as fingerprinting.
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Table 2. Genetic diversity parameters in nine weedy rice population pairs for comparison from
the early and late rice-cultivation seasons in Leizhou in the Guangdong Province, China, based
on 27 simple sequence repeat (SSR) loci (Numbers in parentheses following averages indicate the
standard error, SE).

Location Population Ne
a P/% I He

Banjiu Banjiu-E b 1.78 (0.14) 88.90 0.66 (0.09) 0.35 (0.05)
Banjiu-L 2.36 (0.15) 96.30 0.93 (0.08) 0.51 (0.04)

Chidou
Chidou-E 1.79 (0.15) 96.30 0.69 (0.08) 0.37 (0.04)
Chidou-L 1.92 (0.12) 96.30 0.77 (0.07) 0.42 (0.04)

Dongcun Dongcun-E 2.14 (0.18) 96.30 0.84 (0.07) 0.47 (0.04)
Dongcun-L 1.84 (0.12) 96.30 0.72 (0.07) 0.40 (0.04)

Dadong Dadong-E 1.26 (0.07) 85.19 0.31 (0.06) 0.16 (0.03)
Dadong-L 1.64 (0.12) 92.59 0.65 (0.07) 0.35 (0.04)

Hejia Hejia-E 1.88 (0.14) 92.59 0.71 (0.08) 0.40(0.04)
Hejia-L 2.07 (0.15) 96.30 0.82 (0.07) 0.45 (0.04)

Leigao1 Leigao1-E 1.54 (0.11) 88.89 0.57 (0.07) 0.31 (0.04)
Leigao1-L 1.95 (0.14) 96.30 0.77 (0.07) 0.42 (0.04)

Leigao2 Leigao2-E 1.73 (0.13) 92.59 0.69 (0.07) 0.37 (0.04)
Leigao2-L 1.60 (0.09) 92.59 0.61 (0.06) 0.32 (0.04)

Shanwei
Shanwei-E 1.09 (0.03) 70.37 0.15 (0.03) 0.07 (0.02)
Shanwei-L 1.52 (0.09) 96.30 0.56 (0.06) 0.29 (0.03)

Xiachu
Xiachu-E 2.32 (0.16) 96.30 0.93 (0.07) 0.51 (0.04)
Xiachu-L 2.51 (0.22) 96.30 1.00 (0.08) 0.52 (0.04)

Average WR-E c 1.73 (0.13) 89.71 (0.03) 0.62 (0.08) 0.33 (0.05)
WR-L 1.93 (0.11) 95.47 (0.01) 0.76 (0.05) 0.41 (0.03)

a Ne = No. of effective alleles per locus; p = Percentage of polymorphic loci; I = Shannon’s information index
(Shannon, 1948); He = expected heterozygosity. b E indicates the early season, L indicates the late season. c WR-E,
weedy rice populations in the early rice-cultivation seasons; WR-L, weedy rice populations in the late rice-
cultivation seasons. Bolded numbers indicate significant differences between the early- and late-season weedy
rice populations at p < 0.05 level based on student t-test [41].

In general, the average levels of these parameters, Ne, P, I, and He, were higher in the
late-season weedy rice populations (WR-L, Table 2), although considerable variation in
these parameters was observed among the populations. Of the nine population pairs, seven
showed higher levels of genetic diversity in the late-season weedy rice populations than
those in their corresponding early-season weedy rice populations. Four of these late-season
weedy rice populations (Banjiu-L, Dadong-L, Leigao1-L, and Shanwei-L) showed signifi-
cantly higher levels of genetic diversity than their corresponding early-season populations
(Table 2). However, there were two early-season weedy rice populations (Dongcun-E and
Leigao2-E) showed a slightly higher level of genetic diversity than their corresponding
late-season populations. In addition, the AMOVA result indicated an unexpectedly high
proportion of genetic diversity (~80%) within weedy rice populations (Table 3), probably
owning to frequent gene flow from their diverse accompanied rice cultivars. Altogether,
these results indicated that weedy rice populations infesting the two-season rice fields in
Leizhou possessed a relatively high level of within-population genetic diversity, in addition
to enhanced genetic diversity in the late-season weedy rice populations.

Table 3. Results of AMOVA (analysis of molecular variance) from 18 weedy rice populations based
on 27 simple sequence repeat (SSR) loci (p < 0.001, 9999 permutations).

Source d.f. SS MS Est. Var. %

Among populations 17 2030 119.428 1.42 20%
Within populations 1422 8123 5.712 5.71 80%

Total 1439 10153 7.13 100%
d.f., degrees of freedom; SS, sum of squared deviations; MS, mean of squared deviations; Est. var., variance
component estimates; %, percentage of total variation.
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The results also indicated that the early- and late-season weedy rice populations had
considerable genetic differentiation based on the fingerprints generated from 27 SSR loci.
The fixation index (Fst) between the corresponding early- and late-season weedy rice popu-
lations varied from 0.032–0.103 (Table 4), suggesting the minor to moderate level of genetic
differentiation in the population pairs. In addition, the number of private alleles (PAS) was
detected in the corresponding early- and late-season weedy rice populations (Table 4). The
detected total number of population-specific PAS was 14 in the early-season weedy rice
populations, whereas that of population-specific PAS was 25 in the late-season weedy
rice populations. The late-season weedy rice populations showed an obviously greater
number of population-specific private alleles. Noticeably, one season-specific private allele
(RM246-126) was found to be shared by all the late-season weedy rice populations, but no
such season-specific private allele was found in the early-season populations. This result
may suggest adaptive evolution between the early- and late-season weedy rice populations
in different rice-cultivation environments.

Table 4. Number of private alleles (PAS) and genetic differentiation (Fst) of nine pairs of weedy rice populations from early
and late rice-cultivation seasons in Leizhou in the Guangdong Province, China, based on 27 simple sequence repeat (SSR)
loci (Numbers in parentheses indicate the standard error, SE).

Locations Population Pairs No. of PAS Average Freq. of
PAS

Season-Specific
PAS Fst

Banjiu Banjiu-E a 17 0.19 (0.05) /
0.103Banjiu-L 28 0.14 (0.06) /

Chidou
Chidou-E 23 0.13 (0.06) /

0.058Chidou-L 22 0.11 (0.04) /

Dongcun Dongcun-E 19 0.10 (0.05) /
0.055Dongcun-L 13 0.16 (0.09) /

Dadong Dadong-E 9 0.16 (0.07) /
0.084Dadong-L 35 0.09 (0.03) /

Hejia Hejia-E 12 0.05 (0.02) /
0.032Hejia-L 24 0.06 (0.02) /

Leigao1 Leigao1-E 17 0.09 (0.03) /
0.067Leigao1-L 28 0.10 (0.05) /

Leigao2 Leigao2-E 17 0.07 (0.02) /
0.054Leigao2-L 18 0.11 (0.07) /

Shanwei
Shanwei-E 3 0.33 (0.17) /

0.092Shanwei-L 37 0.08 (0.03) /

Xiachu
Xiachu-E 9 0.11 (0.04) /

0.057Xiachu-L 23 0.06 (0.01) /

Average WR-E b 14 (2.1) 0.14 (0.03) /
0.067WR-L 25 (2.5) 0.10 (0.01) RM246-126 c

a E indicates the early season, L indicates the late season. b WR-E, weedy rice populations in early rice-cultivation seasons; WR-L, weedy
rice populations in late rice-cultivation seasons. c RM246-126, seasonal-specific private allele among all WR-L, locate in SSR locus RM246.

3.3. Correlation between Genetic Diversity and Differentiation in Weedy Rice Populations

To estimate relationships between genetic diversity and differentiation, we analyzed
the correlation between genetic diversity and differentiation of the weedy rice popu-
lations from Leizhou. Positive correlations were detected between the increased pro-
portion of genetic diversity (coded as ∆He) and genetic differentiation (Fst), as well as
between ∆He and differences in PAS (∆PAS) in the early- and late-season weedy rice
populations (Figure 2A,B).

A significant positive correlation (r2 = 0.70, p = 0.008) was found between the increased
proportion of genetic diversity (∆He) and genetic differentiation (Fst) in the early- and late-
season weedy rice populations (population pairs, Figure 2A). In addition, a significant
positive correlation (r2 = 0.58, p = 0.0175) was also detected between ∆He and the differ-
ences in the number of private alleles (∆PAS) in the corresponding early- and late-season
population pairs (Figure 2B). These results probably suggested that a higher level of genetic
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differentiation, as estimated by Fst and ∆PAS, between the early- and late-season weedy rice
populations might give rise to a greater proportion of increased genetic diversity. In other
words, the level of increased proportion of genetic diversity between the corresponding
early- and late-season weedy rice populations might be closely associated with the level of
their genetic differentiation.
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3.4. Genetic Structure of the Early- and Late-Season Weedy Rice Populations

Results from the STRUCTURE analysis exhibited an obvious association between the
corresponding early- and late-season weedy rice populations, although these populations
showed great variation and considerable degrees of genetic differentiation, as indicated
by their complex genetic components (Figure 3). The genetic structure of the weedy rice
populations was obtained on the basis of the estimated best fit K-value as 5 according to the
Structure-Harvester analysis, in addition to its neighboring K-values of 4 and 6 (Figure 2,
Supplementary Materials Figure S1).

When the K-value was determined as 5 (Figure 3, middle panel), weedy rice demon-
strated considerable variation among populations collected from different sites in Leizhou,
as illustrated by different genetic components. The corresponding early- and late-season
weedy rice populations in the same pairs showed a relatively closer genetic association than
those in the other pairs with distinct genetic components. However, the distinct genetic
components were also found between some of the early- and late-season population pairs.
For example, the BJ-E population possessed a main genetic component (indicated by the
blue color), but its corresponding counterpart BJ-L population possessed another main
genetic component (indicated by the green color). The similar situation was also found in
other pairs of weedy rice populations, such as the CD-E vs. CD-L, DD-E vs. DD-L, and
SW-E vs. SW-L populations (Figure 3, middle panel). When the K-value was determined
as 4 and 6, the early- and late-season weedy rice populations demonstrated comparable
patterns in terms of the genetic structures illustrated by their genetic components (Figure 3,
upper and lower panels).

In addition, genetic structures of the weedy rice populations showed an obvious
admixture in terms of the genetic components in nearly all weedy rice populations, no
matter the K-value was determined as 4 or 5 or 6 (Figure 3, upper, middle, and lower
panels). These results suggested strong genetic introgression of the weedy rice populations,
most likely from the rice cultivars. Noticeably, a generally more complicated pattern of the
genetic structures was detected in many of the late-season weedy rice populations, which
was apparently associated with their higher level of within-population genetic diversity.



Biology 2021, 10, 71 9 of 15

Biology 2021, 10, x  9 of 15 
 

 

showed great variation and considerable degrees of genetic differentiation, as indicated 
by their complex genetic components (Figure 3). The genetic structure of the weedy rice 
populations was obtained on the basis of the estimated best fit K-value as 5 according to 
the Structure-Harvester analysis, in addition to its neighboring K-values of 4 and 6 (Figure 
2, Supplementary Materials Figure S1).  

 
Figure 3. Genetic structure of nine early/late season pairs of weedy rice populations from Leizhou, based on the STRUC-
TURE analysis of 27 simple sequence repeat (SSR) loci, with the best fit K value (k = 5). The numbers along the vertical 
axis represent the probability of assignment of the components. Population pairs are isolated by black bold solid lines, 
and black dotted lines in each population pair separate early- and late-season weedy rice populations. BJ-E and BJ-L, early- 
and late-season populations at Banjiu; CD-E and CD-L, early- and late-season populations at Chidou; DC-E and DC-L, 
early- and late-season populations at Dongcun; DD-E and DD-L, early- and late-season populations at Dadong; HJ-E and 
HJ-L, early- and late-season populations at Hejia; LG1-E and LG1-L, early- and late-season populations at Leigao1; LG2-E 
and LG2-L, early- and late-season populations at Leigao2; SW-E and SW-L, early- and late-season populations at Shanwei; 
XC-E and XC-L, early- and late-season populations at Xiachu. 

When the K-value was determined as 5 (Figure 3, middle panel), weedy rice demon-
strated considerable variation among populations collected from different sites in Lei-
zhou, as illustrated by different genetic components. The corresponding early- and late-
season weedy rice populations in the same pairs showed a relatively closer genetic asso-
ciation than those in the other pairs with distinct genetic components. However, the dis-
tinct genetic components were also found between some of the early- and late-season pop-
ulation pairs. For example, the BJ-E population possessed a main genetic component (in-
dicated by the blue color), but its corresponding counterpart BJ-L population possessed 
another main genetic component (indicated by the green color). The similar situation was 
also found in other pairs of weedy rice populations, such as the CD-E vs. CD-L, DD-E vs. 
DD-L, and SW-E vs. SW-L populations (Figure 3, middle panel). When the K-value was 
determined as 4 and 6, the early- and late-season weedy rice populations demonstrated 
comparable patterns in terms of the genetic structures illustrated by their genetic compo-
nents (Figure 3, upper and lower panels). 

In addition, genetic structures of the weedy rice populations showed an obvious ad-
mixture in terms of the genetic components in nearly all weedy rice populations, no matter 
the K-value was determined as 4 or 5 or 6 (Figure 3, upper, middle, and lower panels). 
These results suggested strong genetic introgression of the weedy rice populations, most 

Figure 3. Genetic structure of nine early/late season pairs of weedy rice populations from Leizhou, based on the STRUC-
TURE analysis of 27 simple sequence repeat (SSR) loci, with the best fit K value (k = 5). The numbers along the vertical
axis represent the probability of assignment of the components. Population pairs are isolated by black bold solid lines, and
black dotted lines in each population pair separate early- and late-season weedy rice populations. BJ-E and BJ-L, early- and
late-season populations at Banjiu; CD-E and CD-L, early- and late-season populations at Chidou; DC-E and DC-L, early-
and late-season populations at Dongcun; DD-E and DD-L, early- and late-season populations at Dadong; HJ-E and HJ-L,
early- and late-season populations at Hejia; LG1-E and LG1-L, early- and late-season populations at Leigao1; LG2-E and
LG2-L, early- and late-season populations at Leigao2; SW-E and SW-L, early- and late-season populations at Shanwei; XC-E
and XC-L, early- and late-season populations at Xiachu.

4. Discussion
4.1. Increased Genetic Diversity of Weedy Rice Associated with Higher Ambient Temperature

Our results based on the molecular fingerprints of 27 SSR loci clearly indicated a
greater level of genetic diversity in weedy rice populations occurring in the late-season rice
fields with nearly 2 ◦C higher temperature than that in the early-season rice fields, although
two early-season weedy rice populations showed a slightly higher level of genetic diversity
than their two corresponding counterparts occurring in the late seasons. The unexpected
results could be explained by the histories of rice cultivation and emergence of weedy rice in
those particular fields, where the accumulation of genetic variation might not be sufficient
to exhibit an increased level of genetic diversity in the late-season weedy rice populations.
Nevertheless, the average data from all populations used in this study demonstrated a
generally higher level of genetic diversity in the late-season weedy rice populations.

In addition, our results from the genetic structure analysis in this study also demon-
strated a more complicated pattern of genetic components in many weedy rice populations
occurring in the warmer seasons for late rice cultivation. These results also support our
conclusion that higher temperature promotes the creation of greater genetic diversity
from another angle. Likewise, similar patterns regarding the association between more
complicated genetic structure and genetic diversity were detected in other plant species,
such as in cultivated rice [49], wild rice [50], and maize [51]. Altogether, these results
support our findings regarding the higher level of genetic diversity in the late-season
weedy rice populations.

The increased level of genetic diversity is more likely associated with the higher aver-
age air temperature in the late-season rice fields. In other words, the ambient temperature
can considerably affect the abundance of genetic diversity in weedy rice, probably also
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in other plant species [18]. This conclusion is based on the fact that the major difference
between the two-season rice fields at the same sites was the higher temperature (~2 ◦C) in
the late rice-cultivation seasons. Particularly, the difference in the average air temperature
(~9 ◦C) in the rice seedling period was more pronounced between the two seasons, which
may have a role in the creation of greater genetic diversity through accelerating metabolic
and mutation rates at the initial stage for the growth and development of rice. Previous
studies already indicated that the higher ambient temperature can affect the metabolic
and mutation rates of organisms, resulting in more abundant genetic diversity [4,52]. In
addition, higher ambient temperature can accelerate molecular-evolutionary speed of
organisms [53], also affecting the abundance of genetic diversity. Given that the major, if
not only, difference in environmental conditions for weedy rice populations occurring at
the same sites was the temperature between the two seasons, it is reasonable to suggest
based on results from this study that higher ambient temperature is likely one of the
important ecological factors promoting genetic diversity, although this conclusion needs
further investigations to approve.

The above finding may address the first question raised in the Introduction section
regarding increased genetic diversity in weedy rice that is associated with the higher tem-
perature. The hypotheses about the formation of biodiversity (including genetic diversity)
in association with temperature, such as the latitudinal biodiversity gradient model were
proposed [4,22,52,53]. However, these hypotheses were proposed based on the global
scale, where many ecological factors, except for temperature, may also affect the formation
of genetic diversity. Also, Wang et al. (2019) [14] found a large latitudinal gradient for
genetic diversity in weedy rice populations from northeastern China down to Sri Lanka,
and supported the hypothesis of increased genetic diversity to be associated with higher
temperature. Similarly, we believe that other environmental factors such as soil types,
amount of precipitation and rice farming styles at different sites across such a large scale
also have influences on genetic diversity.

Results from the above studies may have not provided sufficient evidence to approve
the diversity-temperature hypothesis at a small scale. In contrast, findings provided by
this study are based on the experimental assessment of genetic diversity of early- and
late-season weedy rice populations occurring in exactly the same rice fields. At the same
sites, many ecological factors are the same, but temperatures are different between the
early and late rice-cultivation seasons. Therefore, the results obtained from this study
provided direct and relatively solid evidence for the hypothesis that the higher ambient
temperature can promote the formation of genetic diversity, although other factors also
play important roles.

Weedy rice is a strictly self-pollinating taxon [31,54]. Usually, self-pollinating species
are expected to have relatively low level of genetic diversity, particularly within-population
genetic diversity [55–57]. However, we detected unexpectedly high level of genetic diver-
sity of weedy rice in this study, particularly within populations (80%, based on AMOVA).
The relatively high level of genetic diversity found within weedy rice populations is proba-
bly due to historically accumulated allele exchange through gene flow and introgression
from different rice cultivars adopted at different period of time, although the same varieties
or landraces were commonly used in the early- and late-season rice fields at the same period
of time [58]. The admixture found in genetic structure of the weedy rice populations in this
study and other studies [14,31,32,34] supported introgression of weedy rice populations
from rice cultivars. Similarly, weedy rice populations from other studies [14,32,34] and
other self-pollinating plant species such as cultivated barley [59], and the forage grass
Elymus species [60] were also reported to have an unexpectedly higher level of genetic
diversity owning to pollen- or seed-mediated gene flow.

4.2. Limited Gene Flow Promotes the Maintenance of increased Genetic Diversity in the
Late-Season Weedy Rice Populations

Our results further indicated considerable genetic differentiation between most of the
corresponding early- and late-season weedy rice populations, based on both the fixation
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index (Fst) and differences in the number of private alleles (∆PAS). This finding clearly
demonstrates limited gene flow between the early- and late-season weedy rice populations.
Limited gene flow between weedy rice populations is commonly reported, as indicated by
Fst values or the mixed mating models generated form molecular fingerprints [14,31,61,62].
Also, limited crop-to-weed gene flow (0.008–0.25% per generation) was observed between
rice cultivars and weedy rice populations, as indicated by the pollen-mediated gene
flow experiments [26,54,63–65]. All these findings confirm the strictly self-pollination
mating system of weedy rice, causing limited gene flow [31,54]. Therefore, our finding
regarding genetic differentiation between the corresponding early- and late-season weedy
rice populations is reasonable. In other words, weedy rice populations occurring in the
early- and late-seasons at the same field sites are not identical in terms of their genetic
components. Namely, there are two cryptic early- and late-season populations in the same
rice field. This conclusion is first reported from this study.

Generally, limited gene flow can effectively reduce the exchange of genetic materials,
causing genetic heterogeneity of plant populations. In contrast, excessed gene flow can in-
crease the exchange of genetic materials, causing genetic homogeneity of plant populations.
Consequently, the observed phenomenon of genetic heterogeneity between the early- and
late-season weedy rice populations may cause the reduced exchange of genetic materials,
which may play an important roles in maintaining the increased proportion of genetic
diversity formed in the late-season weedy rice populations. It is therefore interesting to
understand the relationships between genetic differentiation and the increased proportion
of genetic diversity (∆He) in the studied weedy rice populations. As expected, signifi-
cant positive correlations were detected between genetic differentiation, as represented
by the fixation index (Fst) and differences in the number of private alleles (∆PAS), and
the increased proportion of genetic diversity (∆He). In other words, the observed high
proportion of increased genetic diversity might be maintained in the late-season weedy
rice populations by limited gene flow between the weedy rice populations occurring in
different seasons at the same field sites.

All results from this study approved our expectation that the relatively higher level
of genetic diversity maintained in the late-season weedy rice populations is probably
caused by the limited gene flow between the early- and late-season weedy rice populations.
Previous studies generally indicated that limited gene flow causes genetic divergence or
differentiation of plant populations [66–68], although sufficient gene flow was observed
to cause genetic homogeneity [69]. In addition, those studies also indicated that the
maintenance of genetic diversity requires the presence of stronger genetic barriers to restrict
gene exchanges between populations to resist the homogenization effect caused by gene
flow [70–74]. Results from all the previous studies support our expectation that limited
gene flow would help to maintain newly formed genetic diversity in plant populations.

Based on our study, we propose a hypothesis—the maintenance of genetic diversity, no
matter high or low, formed in the early- and late-season weedy rice populations depends
on limited gene flow between these populations. This is probably true to other plant
populations/species with limited gene flow. For example, Sagnard et al. (2011) [75]
provided an evidence of low level of genetic differentiation (Fst = 0.037) of Sorghum
(Sorghum bicolor) in the cultivated gene pool and wild gene pool among different climatic
zones. As a result, no obvious differences in genetic diversity (He, 0.530–0.606) were
detected within cultivated gene pool and wild gene pool. However, the authors detected a
high level of genetic differentiation (Fst=0.40) among different racial sorghum types, and
consequently, considerable differences in genetic diversity (He, 0.325–0.614). These findings
clearly suggested that the limited gene flow, as indicated by genetic differentiation, played
a certain role in maintaining genetic diversity within Sorghum populations. In addition,
Jacquemyn et al. (2010) [76] also reported the limited gene flow between populations of a
rare thistle (Cirsium acaule) in the calcareous grassland area, which has played an active
role in maintaining a low level of genetic diversity within populations. Likewise, evidence
was also found in many other plant species, such as the tropical tree Copaifera langsdorffii
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Desf [77] and walnut (Juglans regia) [78]. Therefore, we propose a hypothesis that limited
gene flow may play a considerable role in maintaining genetic diversity created during the
evolutionary process of plant populations. Whether this hypothesis is a general pattern to
explain the formation and maintenance of genetic diversity needs further approval based
on more population genetic and evolution studies.

5. Conclusions

In this study, we found a relatively high level of genetic diversity in the late-season
weedy rice populations exposed to slightly higher ambient temperatures compared with the
early-season populations from the same field sites with lower temperatures. This finding
provided direct experimental evidence to support the diversity-temperature hypothesis
in which the higher ambient temperature can promote greater genetic diversity. We also
found considerable genetic differentiation between the corresponding early- and late-
season weedy rice populations collected from the same fields, probably caused by limited
gene flow. The positive correlation between the increased proportion of genetic diversity
and genetic differentiation suggests a low level of the exchange of genetic materials, which
probably acts as a factor to maintain genetic diversity within the early- or late-season
weedy rice populations during the evolutionary processes. Whether or not the richness
and maintenance of genetic diversity in plant populations/species follow such underlying
mechanisms still needs further investigations.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-7
737/10/2/71/s1, Figure S1: Delta-K value of each K (2–8) was used to determine the appropriate
estimated numbers of the genetic components (K values) by the STRUCTURE HARVESTER online
program. True number of populations (K) is often identified using the maximal value of Delta-K [46].
Table S1: Locations of nine pairs of weedy rice populations each containing 40 individuals collected
from Leizhou in the Guangdong Province, China. Table S2: The 27 simple sequence repeat (SSR)
primer pairs used in this study with detail information on their DNA sequences and motifs. Table S3:
The daily average minimum and maximum temperature at different growth stages of cultivated rice
in the early and late rice-cultivation seasons in Leizhou from 2011 to 2020.
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