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Owing to the ongoing coronavirus disease 2019 (COVID-19) pandemic, we need to pay a
particular focus on the impact of coronavirus infection on breast cancer patients.
Approximately 70% of breast cancer patients express estrogen receptor (ER), and
intervention therapy for ER has been the primary treatment strategy to prevent the
development and metastasis of breast cancer. Recent studies have suggested that
selective estrogen receptor modulators (SERMs) are a potential therapeutic strategy for
COVID-19. With its anti-ER and anti-viral combined functions, SERMs may be an effective
treatment for COVID-19 in patients with breast cancer. In this review, we explore the latent
effect of SERMs, especially tamoxifen, and the mechanism between ER and
virus susceptibility.
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INTRODUCTION

The coronavirus disease 2019 (COVID-19), a type of acute respiratory distress syndrome (ARDS),
pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (1).
Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) are
two crucial proteins that SARS-CoV-2 uses to invade the human body. The host cell entry of SARS-
CoV-2 depends on the binding of the viral spike (S) proteins to ACE2 receptors and S protein
priming by TMPRSS2 (2).In physiological condition, ACE2 via its carboxypeptidase activity
generates Angiotensin 1-9 and Angiotensin 1-7 (Ang 1–9 and Ang 1–7) and plays a critical role
in the renin-angiotensin system (RAS) (3). The renin-angiotensin system (RAS) is a complicated
network of G-protein coupled receptors (GPCRs) regulating many aspects of cardiovascular,
pulmonary, and immune system physiology (4). The downregulation of ACE2 and the loss of
catalytic activity of ACE2 in the RAS system after being engaged by the spike protein of the SARS-
CoV-2, which results in ACE2 cannot transform any more Angiotensin II (AngII) into Ang1–7.
Therefore, the imbalance RAS leads to the systemic pathognomonic features of patients with
COVID-19 (5). Dipeptidyl peptidase 4 (DPP4), also known as CD26, which is widely distributed in
various cells such as lung epithelium, endothelial, lymphocyte, and immune cells. DPP-IV plays an
n.org March 2022 | Volume 13 | Article 8298791
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important role in regulating cardiovascular physiology, immune
response and glucose homeostasis. DDP4 inhibitors are widely
recognized as drugs for the treatment of type 2 diabetes mellitus
(T2DM) (6, 7). Recently, a meta-analysis showed that DPP-IV
inhibitors reduce mortality in patients with COVID-19 (8).
Interestingly, Imbalance of the RAAS and direct effect of DPP4
promote vascular system damage, which result diabetic patients
might be more affected by COVID-19, However, the interaction
mechanism between DPP4 and RAAS (including ACE2) has not
clear (9).

In the context of the COVID-19 pandemic, more attention
should be paid to patients with cancer (10). One clinical study
collated and analyzed 641 COVID-19 cases from 14 hospitals in
Hubei Province, China. A more severe prognosis and higher
mortality due to COVID-19 are seen in patients with cancer than
in patients without cancer. This may be due to the low immune
function of patients with cancer, which makes these patients
more vulnerable to infection (11). A cohort study reporting data
from the COVID-19 and Cancer Consortium Registry database
showed that breast cancer is the most common type of cancer
among 928 COVID-19 patients (12). In another meta-analysis,
COVID-19 patients with breast cancer accounts for 13%
after lung cancer (24.7%) and colorectal cancer(20.5%)
(13).Treatment for COVID-19 has not yet been established,
and breast cancer patients are a particularly fragile population
that requires effective treatment to manage COVID-19. This
review aimed to discuss and evaluate the effect of estrogens,
estrogen receptors (ERs), and ER modulators on managing
COVID-19 in patients with breast cancer.
ESTROGEN RECEPTORS: STRUCTURE
AND ISOFORMS

ER is a ligand-activated transcription factor that belongs to the
steroid and nuclear hormone receptor superfamily (14). ER is
Frontiers in Endocrinology | www.frontiersin.org 2
closely associated with aberrant proliferation, inflammation, and
development of breast cancer (15, 16). ER is classified into ERa
and ERb subtypes, encoded by ESR1 and ESR2 located on
chromosomes 6q25.1 and 14q23.2, respectively (17, 18). The
structure of the full-length product of ERa transcripts is divided
into several functional domains as follows: The N-terminal
domain, the DNA-binding domain (DBD), the ligand-binding
domain (LBD), and two activation domains (AF1 and AF2) (19).
Hormonal therapies are initially effective because they are
dependent on the activation of ERa by estrogen.

Various truncated shorter isoforms of ERa have been
discovered over the past 20 years, among which ERa-46 and
ERa-36 are known best. ERa-46 lacks the first 173 amino acids
in the N-terminus of ERa-66, is transcribed under the control of
promoters E and F, and contains complete exons 2–8, lacking the
AF1 transactivation domain (19). ERa-46 can decrease the
response to E2 and ERa-46 expression, and the size of ERa+

tumors is negatively correlated with its expression (19, 20). ERa-
36 is a typical ERa-66 truncated isomer, which is transcribed
from an unknown promoter located in the first intron of ESR1
and encoded by exons 2–6 and 9. Compared with ERa-66, ERa-
36 lacks the transcription activation domains AF1 and AF2, but
still retains the DBD, hinge domain, and LBD, and contains a
new structural domain composed of 27 amino acids at the C-
terminal (21). This specific C-terminal domain amino acid sequence
of ERa36 plays an important role in the interaction between ERa36
and p-ERK2, and may also change the LBD, resulting in different
binding affinities (22). Recently, a new 30-kDa ERa variant was
identified, called ERa-30. ERa-30 is encoded by complete exons 1–
3 and 8 and partial exons 4 and 6. ERa-30 is different from ERa-66.
ER-a30 has a partial hinge domain and lacks the C-terminal LBD/
AF2 transactivation domain, but has complete AF1 and DBD, with
a specific domain composed of 10 amino acids at the C-terminal.
Furthermore, this structural difference may also cause ERa-30 to
induce a distinctly different set of transcriptional procedures (23).
However, there are still no clinical data from trials considering
ERa-30 expression in breast cancer patient (Figure 1).
FIGURE 1 | Scheme of ERa, ERa-46, ERa-36 and ERa-30 structure.
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ENDOCRINE THERAPY AND BREAST
CANCER

Breast cancer is the most frequently diagnosed cancer among
women worldwide, and nearly 630,000 patients with breast
cancer died in 2018 (24, 25). Over 90% of patients are
diagnosed with early-stage breast cancer, and approximately
70% of them are ER-positive (ER+) (26). Anti-estrogen therapy
was the first effective targeted therapy for ER+ breast cancer and
has now become the main adjuvant therapy for ER+ patients
(27). The therapeutic effect of this treatment is due to the
blockade of estrogen receptors or inhibition of estrogen
production (28, 29).

Selective ER modulators (SERMs), selective ER downregulators
(SERDs), and aromatase inhibitors (AIs) are approved for
endocrine therapy in patients with ER+ breast cancer (30).
SERMs act primarily at the receptor level to compete with
estrogen for the activation of ERa (31). For example,
tamoxifen (TAM), the first molecular targeted therapy for
Frontiers in Endocrinology | www.frontiersin.org 3
breast cancer, can reduce the 10-year recurrence rate and
corresponding mortality. TAM is still widely used in
premenopausal patients with ER+ breast cancer (32).
Fulvestrant is a SERD that mainly inhibits ERa dimerization
and induces ER degradation to downregulate ERa levels (33).
Recently, Guan et al. showed that fulvestrant-like antagonists
inhibit ER transcriptional activity mainly by slowing down the
mobility of ER in the nucleus (34). AIs such as letrozole,
anastrozole, and exemestane decrease systemic estrogen levels
by blocking the conversion of testosterone to estrogen (35).
Although TAM has been the standard endocrine therapy for
ER+ patients for decades, AIs have shown better efficacy than
TAM (36). Studies have shown that exemestane combined with
ovarian suppression significantly reduces the recurrence rate in
premenopausal patients compared to that seen with TAM
combined with ovarian inhibition (37). Although most patients
initially receive ERa-targeted hormone therapy, after an average
of 5–20 years, up to 20% of ERa+ patients develop metastatic
lesions (38) (Figure 2).
FIGURE 2 | Mechanism of action of endocrine therapies. Ovaries, the adrenal gland, and other organizations produce testosterone that is transformed into estradiol
by aromatase. In the presence of circulating estrogen, estrogen receptor (ER)a undergoes conformational changes, form homo- or heterodimers and then migrates
to the nucleus, where ERa dimers bind coactivators (CoA) to form a transcriptionally active ERa complex. ERa complex can regulate the transcription and activation
of various genes by binding to the estrogen response element (ERE)-encoding gene or interacting with other transcription factors. Aromatase inhibitors block
estrogen production by inhibiting androgen conversion to estrogens. Selective estrogen receptor modulators (SERMs) competitively inhibit the binding of estrogen to
ERa. SERM-bound ER dimers bind to co-repressors (CoR) inhibiting ER transcriptional activity in breast cancer tissues. Selective estrogen receptor downregulators
(SERDs) downregulate the receptor protein expression by inducing ER degradation.
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The COVID-19 pandemic has changed the breast cancer
treatment approach. The Society of Surgical Oncology and
American Society of Breast Surgeons specifically recommend
elective surgery for patients with ER+ breast cancer and
neoadjuvant endocrine therapy (NET) as a safe alternative to
traditional “surgical priority” (39, 40). A randomized clinical trial
showed that NET successfully improved the surgical decision
from mastectomy to breast-conserving surgery in approximately
80% of patients with ER+ breast cancer, with AIs showing greater
efficacy than TAM (41, 42). Interestingly, a recent study showed
that patients with COVID-19 and breast cancer may benefit from
anti-estrogen or TAM-based therapies (43).
ER AND SARS-CoV-2 INFECTION
SUSCEPTIBILITY

Published global COVID-19 epidemiological data show that a
higher risk of both infection and death is seen in men than in
women (44). Similarly, a previous study showed that male mice
were more likely to be infected with SARS-CoV than female mice
at the same age, and the difference was more obvious with an
increase in age (45). We speculate that hormonal, genetic, and
behavioral contribute to the observed gender differences,
although there is no clear experimental data (46). This sex
difference may be due to the decrease in ACE2 activity by
estradiol, which is independent of sex chromosome
complement (47). A clinical study conducted in Wuhan
showed that non-menopausal female patients with COVID-19
had milder severity, better prognosis, and shorter hospital stays
than in those going through menopause, suggesting that
menopause is an independent risk factor for female patients
with COVID-19 (48).

The immune difference between men and women also leads
to divergence between males and females in response to SARS-
CoV-2. Women have a stronger innate immune system than
men, which provides rapid and extensive protection against viral
infections (49). In the enrichment analysis of normal and SARS-
CoV-2 infected human tissues, it was found that the expression
levels of ERa and ERb were positively correlated with the
enrichment of immune cells (50). Estrogen has a marked effect
on innate and acquired immune responses, and ERs are
expressed in a variety of cell types in various tissues, including
the immune system (51). ERs change the activity of immune cell
types related to the immune response by regulating cells and
pathways in the innate and adaptive immune systems (52).
Estradiol has a dual effect: at low concentrations, it plays a
pro-inflammatory role, and at high concentrations, it plays an
anti-inflammatory role. In particular, estrogen inhibits the
expression of pro-inflammatory IL-6 by directly affecting CD16
expression. In particular, estrogen suppresses the expression of
pro-inflammatory IL-6 and the production of IL-12 from
stimulated macrophages by directly changing the expression of
CD16 (49, 52). Both estrogen and ERa contribute to the
activation and proliferation of T-lymphocytes and lead to high
expression of IFN-g. Researchers have shown that IFN-b and
Frontiers in Endocrinology | www.frontiersin.org 4
IFN-g can effectively inhibit the replication of SARS-CoV, and
the combination of IFN-g and IFN-g can enhance the anti-SARS-
CoV effect. This evidence also supports that estrogen and ERs
may be related to SARS-CoV-2 infection (51).

Interestingly, experimental studies in female mice infected
with SARS-CoV showed that ovariectomy or treatment with
estrogen receptor antagonist in female mice increased death rate,
which indicate estrogen receptor play a protective effect in mice
infected with SARS-CoV and SERMs may decrease females’
mortality (53). The estrogen/ER axis may be a potential target
for the treatment of viral infections, especially for patients with
breast cancer.
EFFECT OF SERMs ON SARS-CoV-2
INFECTION IN BREAST CANCER

ER overexpression plays a critical role in inhibiting viral
replication. SERMs inhibit viral replication through non-
classical pathways associated with ER. Toremifene, the first
generation of nonsteroidal SERMs, demonstrates latent effects
in blocking various virus infections, including SARS-CoV,
Middle East respiratory syndrome-CoV, and Ebola infections
(54). A previous study showed that toremifene may inhibit the S
glycoprotein via perturbation of the fusion core and eventually
inhibit SARS-CoV-2 replication (55). Bazedoxifene can interact
with SARS-CoV-2 main protease, and the effect of raloxifene is
via the attenuation of the combination of SARS-CoV-2 with its
target cells (56, 57). Moreover, a study showed that bazedoxifene
and raloxifene can inhibit interleukin (IL)-6 signaling to prevent
a cytokine storm and ARDS and reduce mortality in patients
with severe COVID-19 (58). Clomiphene is primarily used to
treat female infertility due to anovulation and acts as both an
estrogenic agonist and antagonist (59). Clomiphene may inhibit
SARS-CoV-2 entry by impairing endosome/lysosome function
(60) (Table 1).

Raloxifene
Raloxifene is a second-generation selective benzothiophene
SERM with agonist or antagonist activity on estrogen.
Raloxifene pass through the cytoplasmic and the nuclear
membrane to reach nucleus, then in which the benzothiophene
ring binds to ER and has a similar affinity with E2. The drug is
FDA-approved used to treat and prevention of osteoporosis in
postmenopausal women, and reduction of the risk of invasive
breast cancer in postmenopausal women (62, 63). Recently,
raloxifene has been selected as a clinical candidate against
SARS-CoV-2 by using an integrated approach between the
EXSCALATE platform and predicted the high probability of
the drug to interact with several relevant SARS-CoV-2 by the
virtual screening protocols (64). Raloxifene demonstrates an in
vitro antiviral activity, in terms of inhibition of viral replication
and/or infection, against EBOV, influenza A, and hepatitis C
viruses (HCV) (65, 66).

The possible mechanism of action of raloxifene in viral
infections is directly related to its activity through modulation
March 2022 | Volume 13 | Article 829879
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of ER and the related pathways (67). The young adult men
appear more severe clinical outcome in HCV progresses than
women. And a randomized trial demonstrate that early
menopause women is associated with reduced treatment
efficacy and accelerated progression of HCV-associated liver
fibrosis (67, 68). Moreover, raloxifene showed efficacy in nasal
epithelial cells isolated from female patients infected with
influenza A virus (69). Another possible mechanism is that
raloxifene through direct targeting of viral life cycle (70).
Compared with other SERMs, raloxifene show a low oral
bioavailability. But raloxifene has higher pulmonary
distribution and exerts its pharmacological activity at very low
circulating levels. Although the safety profile of raloxifene in the
treatment of COVID-19 is not yet confirmed, raloxifene
treatment for 22 years in postmenopausal women and not
found additional safety risks (64). Raloxifene is effective in
preventing osteoporosis in menopausal women. It is also found
to be effective in preventing breast cancer. Compared with
tamoxifen, raloxifene does not increase the risk of endometrial
cancer and cardiovascular disease. In view of its potency against
COVID-19, raloxifene is a promising option for the treatment of
breast cancer with SARS-CoV-2 infection.

Tamoxifen
Tamoxifen, first-generation SERM, has been found effective
against HIV, HCV, and herpes simplex virus 1 (HSV-1) (65).
Tamoxifen suppresses HCV genome replication by eliminating
RNA polymerase NS5B -replication complex (RC) association
which is functionally regulated by the ERa (68). In HIV vitro
studies, tamoxifen interferes with HIV replication by inhibiting
the ability of HIV-promoter-driven transactivation in monocytes
and CD4 + T lymphocytes induced by phorbol myristate acetate
(the protein kinase C activator) (71). Recently, a study showed
that tamoxifen and clomiphene may inhibit the production of
SARS-CoV-2 S protein by impeding viral entry (72).

The majority of breast cancer often express androgen receptor
(AR), with 84%to 95% in ER+ breast cancer, 50% to 63% in ER−/
Frontiers in Endocrinology | www.frontiersin.org 5
HER2+ and 10% to 53% in triple negative breast cancer (TNBC)
(73). Emerging clinical data show the downregulation of
TMPRSS2 and ACE2 expression by the androgen receptor (AR)
antagonist GT0918 in prostate and lung cells. TMPRSS2 is
controlled by androgen receptor (AR) signaling and is
considered a requirement for the prime SARS-CoV-2 spike
protein for entry into target cells. These results suggest that
SARS-CoV-2 infection is likely to be androgen-mediated
(74, 75). Therefore, AR inhibitors like nonsteroidal antiandrogen
(enzalutamide, bicalutamide, apalutamide, and darolutamide,
steroidogenesis inhibitors, 5-alpha reductase inhibitors, and
chemical castration with gonadotropin-releasing hormone
analogs could be valid treatment in the COVID-19 patients (76).
Interestingly, the use of high-dose estrogens may be an attractive
way to limit the growth and spreading of prostatic cancer cells
(77). The interplay of ER and AR would suggest in this breast
cancer patients that would likely benefit from both the antitumor
and the anti-COVID-19 effects. Based on this rationale, TAM can
directly bind to the AR and inhibit its activity (61). The clinical
trial NCT04353180 is testing the tamoxifen in combination with
isotretinoin and trimethoprim in COVID-19 patients, but the
specific efficacy is not clear (43). Unlike TAM, AIs can inhibit the
transformation of androgen to estrogen. In patients receiving this
treatment, androgen accumulation may increase the expression of
TMPRSS2 in tissues through AR signal activation, resulting in
increased susceptibility to SARS-CoV-2. Experimental results
show that estrogen upregulates the expression of TMPRSS2
through the ERb2/Src-IGF-1R/NFkB pathway, which means
that AIs may inhibit the production of estrogen and subsequent
TMPRSS2 expression through this pathway rather than androgen/
AR signaling, to promote the upregulation of TMPRSS2 and exert
potent anti-COVID-19 activity (36, 78). In fact, Tamoxifen can
increase the pH value of lysosomes and change the kinetics of
endosomes, thereby potentially interfere with the invasion of
SARS-CoV-2 (79).

A recent clinical study on a group of patients with breast
cancer who subsequently contracted SARS-CoV-2, excluding
TABLE 1 | Effect of SERMs on the biology of SARS−CoV−2.

Drug name Chemical structure Pharmacological action Functional Effects References

Toremifene Antiestrogen/Estrogen agonist Inhibition of virus replication and blocking of virus entry (54)

Raloxifene Antiestrogen/Estrogen agonist blocking of virus entry and inhibit IL-6 signaling (56–58)

Bazedoxifene Antiestrogen/Estrogen agonist Interaction with SARS−CoV−2 main protease and inhibit IL-6 signaling (56–58)

Clomiphene analogue Impair ate endosome/lysosome function (60)

Tamoxifen Antiestrogen/Estrogen agonist bind to AR and inhibit its activity (61)
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patients with potential risk factors, showed that 14 females
treated with TAM were not as sensitive to infection compared
to non-treated patients, and the effect of therapy was elevated in
postmenopausal women. But more clinical trials are needed to
prove its effectiveness due to the small sample size (56). These
results suggest that short-term use of TAM may help to treat
patients with breast cancer and COVID-19, and long-term use of
TAM may decrease susceptibility to SARS-CoV-2. This may be
due to the reduction of ER expression after long-term use of
TAM (80). Studies have shown that there is also a large number
of ERs in the lung tissue, and TAM may have an apoptotic effect
through ER in the lung tissue (81, 82). TAM is a recognized
inhibitor of P- glycoprotein, which is not affected by ERs, and it
inhibits T-lymphocyte function and interferon (IFN) release.
Long-term use of TAM may increase the risk of COVID-19 due
to its anti- estrogen and P-glycoprotein inhibitory effects (83).
CONCLUSIONS

The current COVID-19 pandemic has emphasized the
importance of developing anti-viral drugs. SERMs, such as
Tamoxifen has been selected as a clinical candidate for clinical
studies in COVID-19 patients. Because malignant breast tumors
often express AR, some literature evidence showed that
combination of tamoxifen and anti-AR therapies could be a
potential therapeutic strategy for patients with breast cancer and
Frontiers in Endocrinology | www.frontiersin.org 6
SARS-CoV-2 infection. However, Venous thromboembolism
(VTE) is one of the important side effects of Tamoxifen and
VTE was frequently found in COVID 19 infection. This is a huge
challenge for COVID 19 patients with breast cancer using
Tamoxifen. Although some researchers think that SERMs can
be beneficial in patients with COVID 19, and its safety and
validity of in the treatment of COVID-19 is not yet known. We
need more clinical study to careful monitoring of potential
cardiovascular and thromboembolic risks in the future.
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18. Szostakowska M, Trębińska-Stryjewska A, Grzybowska EA, Fabisiewicz A.
Resistance to Endocrine Therapy in Breast Cancer: Molecular Mechanisms
and Future Goals. Breast Cancer Res Treat (2019) 173:489–97. doi: 10.1007/
s10549-018-5023-4

19. Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, et al.
Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue
Specificity to Medical Implications. Physiol Rev (2017) 97:1045–87.
doi: 10.1152/physrev.00024.2016
March 2022 | Volume 13 | Article 829879

https://doi.org/10.1056/NEJMoa2001316
https://doi.org/10.1016/j.cell.2020.02.052
https://doi.org/10.3390/cells9071652
https://doi.org/10.3390/cells9061336
https://doi.org/10.1016/j.ejim.2020.04.037
https://doi.org/10.1016/j.cmet.2006.01.004
https://doi.org/10.3389/fendo.2019.00080
https://doi.org/10.1016/j.pcd.2021.12.008
https://doi.org/10.1016/j.pcd.2021.12.008
https://doi.org/10.3389/fphar.2020.01161
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1158/2159-8290.CD-20-0422
https://doi.org/10.1158/2159-8290.CD-20-0422
https://doi.org/10.1016/S0140-6736(20)31187-9
https://doi.org/10.1016/j.critrevonc.2020.103032
https://doi.org/10.1111/jne.12488
https://doi.org/10.5625/lar.2012.28.2.71
https://doi.org/10.5625/lar.2012.28.2.71
https://doi.org/10.1038/nrc3093
https://doi.org/10.1038/nrc3093
https://doi.org/10.1016/j.beem.2015.04.008
https://doi.org/10.1007/s10549-018-5023-4
https://doi.org/10.1007/s10549-018-5023-4
https://doi.org/10.1152/physrev.00024.2016
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Hu et al. SERMs Role in COVID19/BC
20. Flouriot G, Brand H, Denger S, Metivier R, Kos M, Reid G, et al. Identification
of a New Isoform of the Human Estrogen Receptor-Alpha (hER-Alpha) That
is Encoded by Distinct Transcripts and That is Able to Repress hER-Alpha
Activation Function 1. EMBO J (2000) 19:4688–700. doi: 10.1093/emboj/
19.17.4688

21. Chantalat E, Boudou F, Laurell H, Palierne G, Houtman R, Melchers D, et al.
The AF-1-Deficient Estrogen Receptor Era46 Isoform is Frequently
Expressed in Human Breast Tumors. Breast Cancer Res (2016) 18:123.
doi: 10.1186/s13058-016-0780-7

22. Wang Z, Zhang X, Shen P, Loggie BW, Chang Y, Deuel TF. Identification,
Cloning, and Expression of Human Estrogen Receptor-Alpha36, a Novel
Variant of Human Estrogen Receptor-Alpha66. Biochem Biophys Res
Commun (2005) 336:1023–27. doi: 10.1016/j.bbrc.2005.08.226

23. Omarjee S, Jacquemetton J, Poulard C, Rochel N, Dejaegere A, Chebaro Y,T,
et al. The Molecular Mechanisms Underlying the Era-36-Mediated Signaling
in Breast Cancer. Oncogene (2017) 36:2503–14. doi: 10.1038/onc.2016.415

24. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P,
et al. Breast Cancer. Nat Rev Dis Primers (2019) 5:66. doi: 10.1038/s41572-
019-0111-2

25. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer
Statistics 2018: GLOBOCAN Estimates of Incidence andMortality Worldwide
for 36 Cancers in 185 Countries. CA Cancer J Clin (2018) 68:394–424.
doi: 10.3322/caac.21492

26. Chien TJ. A Review of the Endocrine Resistance in Hormone-Positive Breast
Cancer. Am J Cancer Res (2021) 11:3813–31.

27. Hanker AB, Sudhan DR, Arteaga CL. Overcoming Endocrine Resistance in
Breast Cancer. Cancer Cell (2020) 37:496–513. doi: 10.1016/j.ccell.2020.03.009

28. Lambertini M, Ceppi M, Poggio F, Peccatori FA, Azim HAJr, Ugolini D, et al.
Ovarian Suppression Using Luteinizing Hormone-Releasing Hormone
Agonists During Chemotherapy to Preserve Ovarian Function and Fertility
of Breast Cancer Patients: A Meta-Analysis of Randomized Studies. Ann
Oncol (2015) 26:2408–19. doi: 10.1093/annonc/mdv374

29. Robertson JF, Lindemann J, Garnett S, Anderson E, Nicholson RI, Kuter I,
et al. A Good Drug Made Better: The Fulvestrant Dose-Response Story. Clin
Breast Cancer (2014) 14:381–89. doi: 10.1016/j.clbc.2014.06.005

30. Aggelis V, Johnston SRD. Advances in Endocrine-Based Therapies for
Estrogen Receptor-Positive Metastatic Breast Cancer. Drugs (2019)
79:1849–66. doi: 10.1007/s40265-019-01208-8

31. Fanning SW, Mayne CG, Dharmarajan V, Carlson KE, Martin TA, Novick SJ,
et al. Estrogen Receptor Alpha Somatic Mutations Y537S and D538G Confer
Breast Cancer Endocrine Resistance by Stabilizing the Activating Function-2
Binding Conformation. Elife (2016) 5:e12792. doi: 10.7554/eLife.12792

32. Tamoxifen for Early Breast Cancer: An Overview of the Randomised Trials.
Early Breast Cancer Trialists' Collaborative Group. Lancet (1998) 351:1451–
67. doi: 10.1016/S0140-6736(97)11423-4

33. Clarke R, Tyson JJ, Dixon JM. Endocrine Resistance in Breast Cancer–An
Overview and Update. Mol Cell Endocrinol (2015) 418 Pt 3:220–34.
doi: 10.1016/j.mce.2015.09.035

34. Guan J, ZhouW, Hafner M, Blake RA, Chalouni C, Chen IP, et al. Therapeutic
Ligands Antagonize Estrogen Receptor Function by Impairing Its Mobility.
Cell (2019) 178:949–63.e18. doi: 10.1016/j.cell.2019.06.026

35. Ma CX, Reinert T, Chmielewska I, Ellis MJ. Mechanisms of Aromatase
Inhibitor Resistance. Nat Rev Cancer (2015) 15:261–75. doi: 10.1038/nrc3920

36. Cuzick J, Sestak I, Baum M, Buzdar A, Howell A, Dowsett M, et al. Effect of
Anastrozole and Tamoxifen as Adjuvant Treatment for Early-Stage Breast
Cancer: 10-Year Analysis of the ATAC Trial. Lancet Oncol (2010) 11:1135–41.
doi: 10.1016/S1470-2045(10)70257-6

37. Pagani O, Regan MM, Walley BA, Fleming GF, Colleoni M, Láng I,
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