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1  | INTRODUC TION

Climate change and human land use pose major challenges for bi‐
ological conservation globally (Jetz, Wilcove, & Dobson, 2007; 
Newbold et al., 2015; Walther et al., 2002). For this reason, agencies 
and organizations are increasingly investing in long‐term, large‐scale, 
multispecies wildlife monitoring programs (Ahumada, Hurtado, & 

Lizcano, 2013; Furnas & Callas, 2015; Nielsen, Haughland, Bayne, & 
Schieck, 2009). Unlike many species of birds, mammals, and amphib‐
ians which can be sampled using automated survey equipment in‐
cluding cameras and sound recorders (Blumstein et al.., 2011; Burton 
et al., 2015), reptiles are often much more difficult to detect, in part 
because of their typically cryptic behavior and generally small body 
sizes (Griffiths, Foster, Wilkinson, & Sewell, 2015). Therefore, there 
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Abstract
Multispecies wildlife monitoring across large geographical regions is important for 
effective conservation planning in response to expected impacts from climate change 
and land use. Unlike many species of birds, mammals, and amphibians which can be 
efficiently sampled using automated sensors including cameras and sound recorders, 
reptiles are often much more challenging to detect, in part because of their typically 
cryptic behavior and generally small body sizes. Although many lizard species are 
more active during the day which makes them easier to detect using visual encounter 
surveys, they may be unavailable for sampling during certain periods of the day or 
year due to their sensitivity to temperature. In recognition of these sampling chal‐
lenges, we demonstrate application of a recent innovation in distance sampling that 
adjusts for temporary emigration between repeat survey visits. We used transect 
surveys to survey lizards at 229 sites throughout the Mojave Desert in California, 
USA, 2016. We estimated a total population size of 82 million (90% CI: 65–99 million) 
for the three most common species of lizards across this 66,830 km2 ecoregion. We 
mapped how density at the 1‐km2 scale was predicted to vary with vegetation cover 
and human development. We validated these results against independent surveys 
from the southern portion of our study area. Our methods and results demonstrate 
how multispecies monitoring programs spanning arid ecoregions can better incorpo‐
rate information about reptiles.
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is a need for improved survey and analytical methods for estimat‐
ing occupancy, diversity, and abundance of reptiles for inclusion in 
multispecies monitoring projects (Gibbons et al., 2000; Griffiths et 
al., 2015).

Diurnal lizards may be particularly vulnerable to climate change 
in desert ecoregions throughout the world, in part because shelter‐
ing from lethal temperatures may limit foraging and reproductive 
activities which in turn may impact population levels (Sinervo et 
al., 2010; Sow, Martínez‐Freiría, Dieng, Fahd, & Brito, 2014; Vale & 
Brito, 2015). Ecological niche models and evidence of recent extinc‐
tions suggest that lizards are already exceeding physiological limits 
in North American deserts (Barrows, 2011; Sinervo et al., 2010). 
Furthermore, lizards may be good indicators of ecological change 
in arid environments with respect to both climate and land use 
(Barrows, Hoines, Vamstad, Murphy‐Mariscal, & K, Lalumiere, and 
J. Heintz., 2016). Specifically, researchers have found lizard diversity 
or abundance to be associated, either positively or negatively, with 
rainfall, temperature changes along elevation gradients, fluctuations 
in arthropod abundance, spatial heterogeneity of vegetation com‐
munities, livestock grazing, land degradation due to mining, urban 
development, and numerous other factors (Ackley, Wu, Angilletra, 
Myint, & Sullivan, 2015; McCain, 2010; Thompson, Thompson, & 
Withers, 2008; Waudby & Petit, 2015; Whitford & Creusere, 1977).

Compared to other desert reptiles, many lizard species tend to 
be more active during the day which makes them easier to detect 
using visual encounter surveys (Parker & Pianka, 1975; Pianka, 1970; 
Pianka & Parker, 1975). However, accurate population or distribution 
assessments of any wildlife species typically require robust analyt‐
ical methods that explicitly model site‐ and survey‐level heteroge‐
neity in detection probability (Kery & Royle, 2016; MacKenzie et 
al., 2006). A related problem is that lizards may be unavailable for 
sampling during parts of the day or year that are either too cold or 
too hot (Jacome‐Flores, Blazquez, Sosa, & Maya, 2015; Whitford & 
Creusere, 1977; Wone & Beauchamp, 2003). This issue necessitates 
more complex hierarchical models that allow for the assumption that 
some proportion of a population is not available for sampling during 
surveys (Chandler, Royle, & D. I. King., 2011). The failure to consider 
imperfect availability may lead to underestimation of density as 
has been noted for distance sampling of lizards (Rodda & Campbell, 
2002; Smolensky & Fitzgerald, 2010). The issue of availability bias 
is not unique to lizards; it is also a problem for distance sampling 
of sharks (Nykanen et al., 2018) marine mammals (Danilewicz et al., 
2010), terrestrial mammals (Poole, Cuyler, & Nymand, 2013), birds 
(Gale et al.., 2009), and other reptiles (Couturier, Cheylan, Bertolero, 
Astruc, & Besnard, 2013).

Perhaps due to the difficulties in surveying reptiles, there are 
very few estimates of lizard density from the Mojave Desert in 
North America, and those studies that have been attempted were 
for small areas within this region (Kaufmann, 1982; Turner, Medica, 
Lannom, & Hoddenbach, 1969). To address this information gap, we 
provide the first robust estimates of density and total population 
size for three species of common lizards [Common Side‐blotched 
Lizard (Uta stansburiana), Western Whiptail (Aspidoscelis tigris), and 

Zebra‐tailed Lizard (Callisaurus draconoides)] throughout the Mojave 
Desert within the State of California, USA (66,830 km2). We did this 
by adding visual encounter surveys along transects to a program of 
multispecies surveys (i.e., birds and mammals) at widespread sam‐
pling sites throughout the study area. We demonstrate application of 
a recent innovation in distance sampling that adjusts for temporary 
emigration between repeat survey visits (Chandler et al., 2011; Kery 
& Royle, 2016). We show how this survey and analytical approach 
combined with model‐based inference (Gregoire, 1998) across the 
study area facilitates efficient estimation of population size as well 
as coarse‐scale mapping of density for each species. We validate our 
results through comparison with independent surveys conducted in 
the southern portion of the study area in the same year. We discuss 
how our results could be used to inform region‐level planning in re‐
sponse to expected climate change and land use impacts, and con‐
sider the value of common lizards as an indicator of those stressors 
in an arid environment.

2  | STUDY ARE A

Our 66,830 km2 study area includes the Mojave Desert ecoregion 
within California. Average elevation is 796 m which is lower than 
the Great Basin to the north and higher than the Sonoran Desert to 
the south; however, elevations in the study area range from −83 m 
in Death Valley to 2,405 m along borders with adjacent mountain 
ranges. Average annual precipitation over the past 30 years ranged 
from 46 to 695 mm (x̄ = 146 mm). Vegetation communities included 
those dominated by Larrea tridentata at lower elevations, Yucca 
brevifolia at middle elevations, and Juniperus osteosperma at higher 
elevations. Based on multispecies surveys, we conducted at the 
same sites, the most common wildlife were black‐tailed jackrabbit 
(Lepus californicus), kit fox (Vulpes macrotis), and coyote (Canis latrans) 
among mammals >0.5 kg, and black‐throated sparrow (Amphispiza 
bilineata), common raven (Corvus corax) and horned lark (Eremophila 
alpestris) among passerine birds (California Department of Fish and 
Wildlife, unpublished data). Military bases covered 16% of the study 
area, whereas nonmilitary federal government lands covered an ad‐
ditional 63%, including 19,700 km2 of designated wilderness that 
receive a higher level of protection than other federal lands. Most 
of the wilderness lands were in the eastern half of the study area. 
Besides military exercises, increasing development mostly in the 
western part of the study area, agriculture, surface mining, off‐road 
vehicle recreation, and renewable energy development are potential 
activities impacting lizards and other wildlife.

3  | METHODS

3.1 | Study design

We surveyed 229 sites throughout the study area between April and 
July 2016 (Figure 1). We determined survey locations by first select‐
ing a spatially balanced random sample of hexagons from the USDA 
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Forest Inventory and Analysis program's hexagon grid (Bechtold & 
Patterson, 2005, hexagon radius is ~2.6 km). We then randomly se‐
lected 1–3 survey locations within each hexagon, which were spaced 
by 1–2 km apart and stratified by vegetative community based on 
the National Vegetation Classification System (Sawyer, Keeler‐Wolf, 
& Evans, 2009, Supporting Information Table S1). In some cases, we 
were not able to gain access to a particular hexagon or site within 
a hexagon. In those instances, we adopted an iterative process, 
whereby we either selected a nearby hexagon or selected the next 
site from a sequential list of random locations from a hexagon. We did 
not explicitly address these site selection details in our density esti‐
mation methods because our modeling did not assume random site 
selection (Gregoire, 1998). However, model‐based inference requires 
sampling over the range of conditions used in extrapolation. We ex‐
cluded sampling from the Owens Valley, shown as the northwest ap‐
pendage in our study area, due to logistical limitations (Figure 1), but 
we did not expect this omission to substantially bias our population 
estimates because this subregion constituted <3% of the study area. 
We also excluded sampling at elevations above 1,630 m, but these 
elevations amounted to only 0.75% of the study area.

3.2 | Wildlife surveys

A two‐person team conducted a visual encounter survey for liz‐
ards and other taxa along an approximately 400‐m transect at 
each site. Two overlapping approximately 200‐m transect legs 
were established at each site. They generally formed a cross‐
centered on the vegetation type from our stratified selection of 
survey sites. However, alternative configurations (e.g., T‐junction, 
single long transect) were sometimes adopted instead, when the 
terrain prohibited the desired transect configuration. One person 

devoted their full attention to surveying all lizard species and esti‐
mating initial perpendicular distance from the transect to each ob‐
servation with the aid of a laser range finder. Binoculars were not 
used for surveying lizards. A second person who was also survey‐
ing for birds and other taxa recorded all the lizard detections, ob‐
served by the first person, on a data sheet. Surveys were repeated 
on up to three occasions (3 visits = 212 sites, 2 visits = 16 sites, 
1 visit = 1 site) one to four weeks apart during visits when sur‐
veys for other taxa occurred (e.g., sounds recorders for birds and 
bats, camera stations for mammals >0.5 kg). However, the visual 
encounter surveys were always conducted first to avoid flushing 
of lizards during the other survey activities. No survey information 
was collected when travelling between the end point of the first 
transect leg and the start point of the second transect leg. An am‐
bient air temperature measurement was made before commencing 
each transect leg. This measurement was made 30–35 cm above 
the soil surface using a thermometer that was shaded from the sun 
using either the surveyor's body or a clipboard.

We used the repeated surveys to create detection histories 
for the three most common lizard species (A. tigris, U. stansburi‐
ana, and C. draconoides). Specifically, we tallied the total number 
of adult lizards observed along the transect at each site on each 
survey occasion within each 1‐m distance increment out to 13 m. 
We chose this truncation threshold consistent with recommen‐
dations for distance sampling because it was the distance within 
which 95% of our observations were made (Buckland et al., 2001). 
Furthermore, to address unintentional “heaping” of distance ob‐
servations in the 5‐m and 10‐m categories, we reclassified dis‐
tances in to 6 heterogeneous categories (Buckland et al., 2001): 
0–0.5 m, 0.5–1.5 m, 1.5–2.5 m, 2.5–3.5 m, 3.5–6.5 m, and 6.5–
13.5 m. We acknowledge a small area of survey overlap because 

F I G U R E  1   Locations of visual encounter transect surveys which occurred in the Mojave Desert within California, USA, April–July 
2016. Shaded area on southern boundary represents the portion of Joshua Tree National Park that lies within the study area. We used 
independent surveys from this park to validate our model predictions of lizard density based on the transect surveys
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of the crossing of transect legs. Given the general infrequency of 
lizard detections (Supporting Information Table S2), we believe 
any potential bias due to double counting was low. However, we 
removed the area of overlap ([2 × 13.5 m]2) from the area denomi‐
nator used in our density calculations.

3.3 | Site and survey covariates

We expected lizard densities to vary with environmental condi‐
tions across the study area. Vegetation communities in the Mojave 
Desert are strongly associated with elevation gradients of tem‐
perature and precipitation (Schoenherr, 1992). Higher elevations 
tend to support greater vegetation cover and floristic diversity 
(Sawyer et al., 2009). Some researchers have found an associa‐
tion between lizard diversity and intermediate vegetation cover 
often found at middle elevations in arid environments (McCain, 
2010). Others have found vegetation composition or density to 
be an important predictor of lizard occurrence in deserts (Heaton, 
Kiester, & Meyers, 2006). Therefore, we used a 1‐km raster of a 
normalized difference vegetation index (NDVI) from June 2016 to 
represent vegetation cover to predict lizard abundances at sur‐
vey sites (Cohen & Goward, 2004). Other researchers have shown 
this index to be a good proxy for vegetation cover for modeling 
the distribution of biodiversity in arid environments (Dubinin, 
Svoray, Dorman, & Perevolotsky, 2018; Macías‐Duarte, Panjabi, 
Pool, Ruvalcaba‐Ortega, & Levandoski, 2018). We also decided to 
use NDVI because we had access to its values across the entire 
study area which facilitated extrapolation of population size using 
model‐based inference. To augment the value of NDVI as an indi‐
cator of vegetation cover, we coerced all negative values gener‐
ally indicative of water or bare earth to zero (Almanza, Jerrett, 
Dunton, Seto, & Pentz, 2012). We did not include elevation in the 
modeling because it was highly correlated with NDVI (r = 0.69).

Lizards have been shown to be negatively impacted by and to 
be good indicators of anthropogenic development (Ackley et al., 
2015; Thompson et al., 2008; Waudby & Petit, 2015). To predict liz‐
ard abundances at survey sites, we used a 30‐m raster land use land 
cover layer, which we aggregated as a binary raster (1 or 0) to rep‐
resent either urban, agricultural, transportation, or mining‐related 
development or none of these categories from the most recent year 
available (CalFIRE, 2015). Finally, lizard activity is strongly affected 
by temperature (Huey & Pianka, 2018; McCain, 2010). We used 
the average of the two ambient temperature measurements made 
during each survey to represent average temperature as a survey‐
level covariate predicting lizard activity.

We rescaled the two site‐level, abundance covariates (NDVI and 
development) to their average values within a 1‐km raster grid (66,812 
cells) covering the entire study area. Therefore, NDVI was interpreted 
as average vegetation cover within 1 km2 and development as the total 
proportion of 1 km2 in one of the development categories considered. 
We chose the 1‐km scale because it matched the minimum distance 
between survey sites in the same sampling hexagon, and represented 
landscape conditions appropriate for extrapolating coarse‐scale 

average abundances across a large region. The grid also allowed us to 
use model‐based inference (Gregoire, 1998) to predict lizard densities 
throughout the study area instead of relying on the representative‐
ness of our survey locations as a stratified random sample. We calcu‐
lated the values of site‐level covariates at survey sites by intersecting 
the centroid of the transect at each site with the 1‐km grids of NDVI 
and development. Lastly, we standardized all covariates.

3.4 | Hierarchical distance sampling

Distance sampling for transects is a method for modeling how detec‐
tion probability [g(x)] of wildlife declines with perpendicular distance 
(x) from an observer in order to get an unbiased estimate of density. 
This is achieved by upwardly adjusting the raw survey counts by di‐
viding them by a measure of total detection probability calculated by 
integrating g(x) across the width of a transect (Buckland et al., 2001). 
A core assumption of classical distance sampling is perfect detection 
along the center line of transect surveys. A recent innovation in hier‐
archical modeling allows relaxation of this assumption via temporary 
emigration between repeat survey occasions (Kery & Royle, 2016). 
Individuals sampled from an open population under this modeling 
approach can be viewed as unavailable for sampling during some 
parts of a sampling season (Chandler et al., 2011). This statistical as‐
sumption matches the ecology of lizards which through thermoregu‐
lation behaviors were expected to be below ground in burrows or 
under other cover during periods of the season, days, or portions of 
days that were either too cold or too hot (Jacome‐Flores et al., 2015; 
Whitford & Creusere, 1977; Wone & Beauchamp, 2003). A hierar‐
chical modeling structure allows generalization of the abundance, 
availability, and detection probability [e.g., g(x)] processes such that 
each can be modeled to vary with covariates by site and survey occa‐
sion and with respect to assumptions about probability distributions 
(Sillett, Chandler, Royle, Kery, & Morrison, 2012).

The hierarchical distance sampling model we used for single spe‐
cies included three levels for sites i and survey occasions k:

Level 1: Total abundance Mi (latent state) and density Di (derived 
quantity).
Di = Mi/Ai, where A are the effective survey areas of transects 

at sites
Mi ~ Negative Binomial (λi,γ), where λ are expected abundances 

and γ is a measure of dispersion
log(λi) = linear model of site covariates

Level 2: Available abundance Ni,k (latent state).
logit(Ni,k)~Binomial(Mi, ϕi,k)
ϕi,k = linear model of survey covariates

Level 3: Detection function. 
yi,k is a vector of observations by distance class 
yi,k ~ Multinomial(Ni,k, πi,k) 
πi,k = f(σ), where f is a function of a distance decay parameter σ.

Greater detail about the model is described elsewhere (Kery & 
Royle, 2016, chapter 9). We assumed a negative exponential function 
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for f(σ) = e−σ*d, where d was the distance measurement for an observa‐
tion. We did not include a covariate model allowing σ to vary with site 
or survey occasion. However, we compared our final models to these 
same models including NDVI as a covariate on σ to rule out the possi‐
bility that any associations we found between NDVI and abundance 
may have been confounded by detection probability varying with veg‐
etation cover.

We fit distance sampling models via maximum likelihood estima‐
tion using the gdistsamp function in the unmarked package (Fiske & 
Chandler, 2011) for the R programming language (R Development 
Core Team, 2017). We evaluated NDVI and anthropogenic develop‐
ment covariates in the Level 1 abundance model component. We 
also evaluated a quadratic term of NDVI to evaluate a possible uni‐
modal relationship. Based on our expectation of lizards being under 
cover during periods of the day or season that were either too cold 
or too hot, we always included ambient temperature and sometimes 
also its quadratic term in the Level 2 availability model component.

We used Akaike's information criterion (AIC) and multimodel in‐
ference principles to evaluate models including all six combinations 
of the abundance covariates and an intercept term which was al‐
ways included (Table 1, Burnham & Anderson, 2002). Prior to fitting 
abundance models, we used model selection for an intercept‐only 
abundance model to evaluate whether both temperature and its 
quadratic term were appropriate covariates in the availability model 
component for each species.

We converted abundance estimates to density by dividing 
abundance from each site in the model by the effective sampling 
area of each transect (i.e., 2 × 13.5 m × transect length – area of 
transect overlap). This varied because transects varied in actual 
length (x̄ = 390 m, SD = 40 m). We applied model‐based inference to 

extrapolate density across the entire study area by calculating pre‐
dicted density of each species at each 1‐km grid location based on 
the covariate values at those locations (Furnas & McGrann, 2018; 
Gregoire, 1998). We used model weights of the top models (i.e., 
AIC weights sum to 0.95, Burnham & Anderson, 2002) to get model 
averaged density predictions at each grid location (Cade, 2015). 
This allowed us to map spatial variation in density for each species 
throughout the study area, and to calculate average density for the 
study area for each species by taking the average of the point es‐
timates from all the 1‐km grid locations. We then computed pop‐
ulation sizes by multiplying these averages by the total area of the 
study area.

We used parametric bootstrapping (20,000 iterations) to get con‐
fidence intervals for our density and population size estimates in a 
fashion that accounted for the multiple sources of uncertainty in our 
modeling (Efron, 1982). Specifically, for each model, we resampled 
all abundance model component parameters from their estimates 
assuming a multivariate normal distribution of the variance‐covari‐
ance matrix from maximum likelihood estimation. A problem aris‐
ing in this step was that sampled parameter values for the quadratic 
term on NDVI were sometimes positive, or insufficiently negative, 
leading to nonsensically large (>1020 lizards/km2) density estimates 
inconsistent with a unimodal relationship with NDVI (e.g., highest 
densities at intermediate level of vegetation cover). We would have 
preferred to solve this problem by using a data bootstrap to refit 
models at each iteration, but this approach was not feasible due to 
the additional computing time required. Therefore, we truncated the 
bootstrap resampled distribution of each model parameter by set‐
ting extreme values (either >95th percentile or <5th percentile) to 
those maximum and minimum thresholds.

To address the effect of survey effort on the precision of our es‐
timates, we took a sample with replacement from the 1‐km grid equal 
to the sample size from our study (n = 229) for each bootstrap re‐
sampling iteration. We calculated density at those locations using the 
resampled model parameter values from the same iteration and the 
covariate values at the selected locations. We then averaged those 
densities to get average density for the study area. We repeated 
bootstrapping for each model and used model weights to get a single 
estimate of average density for the study area for each sampling iter‐
ation (Cade, 2015). Lastly, we calculated the standard deviation of the 
bootstrap‐distributed densities which we treated as the appropriate 
standard error with which to calculate a 90% confidence interval as‐
suming a normal distribution about the point estimate. We adopted 
a Type‐I error rate of 0.1 here and elsewhere in this study in con‐
gruence with a long‐term monitoring objective (Furnas & McGrann, 
2018). We repeated these procedures for each species. Additional 
technical details on our modeling methods including the data and R 
code we used are provided in Supporting Information Data S3 and S4.

3.5 | Evaluation of model fit

For all top models used to extrapolate population size, we assessed 
model fit by means of a parametric bootstrap goodness‐of‐fit test 

TA B L E  1   Candidate models for hierarchical distance sampling 
for common lizards for the Mojave Desert within California, USA, 
April–July 2016

Covariatesa

Abundance model component

dev + ndvi + ndvi2

dev + ndvi

ndvi + ndvi2

dev

ndvi

Null

Availability model component

temp + temp2

temp

Null

Detection model component

Null

adev represented the proportion of the 1‐km2 surrounding a survey site 
that was developed (i.e., urban, agriculture, mining). ndvi represents the 
average normalized difference vegetation index for the 1‐km2 area. temp 
represented air temperature measured on‐site during surveys. 
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using the Chi‐squared test statistic (Kery & Royle, 2016, Section 
7.5.4). For each test, the null hypothesis was that Chi‐squared sta‐
tistic for observed survey detection data under the fitted model was 
equal to Chi‐squared for data generated by the model (e.g., fitted 
values of expected number of detections in each distance bin during 
each survey at each site). We estimated the probability (p‐val) of the 
observed statistic under the null hypothesis by comparing it to the 
distribution of the statistic for 1,000 parametric bootstrap data sets 
using the parboot function in R. We assumed good model fit if we 
could not reject this null hypothesis (i.e., p‐value ≥0.1).

3.6 | Model validation

We compared predictions from our modeling with independent 
measurements of lizard density available from Joshua Tree National 
Park (JTNP) located in the southern portion of the study area 
(Figure 1) To our knowledge, these surveys were the only data avail‐
able for validating our modeling. During the spring of 2016, a team 
of biologists and citizen scientists systematically searched eight 9‐
ha sites within the portion of JTNP overlapping our Mojave Desert 
study area. Each site was surveyed for approximately three hours on 

a single occasion during which a count of adult lizards was tallied for 
each species. The methods which are described in greater detail in 
Barrows et al. (2016) were intended as an exhaustive survey due to 
the length of survey time and numerous surveyors present at each 
site, but modeling was not used to adjust for detection and availabil‐
ity probabilities potentially <1. At each of the eight survey sites, we 
compared the JTNP survey results with predicted densities at these 
locations from distance sampling.

4  | RESULTS

We observed 12 species of lizards, but A. tigris, U. stansburiana, and 
C. draconoides accounted for 89% of all observations (Supporting 
Information Table S2). From distance sampling, we confirmed good 
model fit for all top abundance models used in model averaging (p‐val‐
ues >> 0.1, Table 2). We also confirmed that a NDVI covariate in the 
detection probability model component did not improve model per‐
formance; the top abundance model with this additional covariate on 
detection probability always had a model weight <0.5 when compared 
to the same model without that covariate (Supporting Information 

TA B L E  2   Model selection results from hierarchical distance sampling for common lizards for the Mojave Desert within California, USA, 
April–July 2016

Abundance models

Model selectiona Parameter estimatesb Model fitc

AIC Delta AIC AIC weight Int. dev ndvi ndvi2 p‐Value

A. tigris

dev + ndvi 1507.57 0.00 0.27 6.510 −0.286 0.182 0.488

dev + ndvi + ndvi2 1507.88 0.31 0.23 6.592 −0.286 0.287 −0.099 0.491

ndvi 1508.66 1.10 0.15 6.539 0.183 0.463

ndvi + ndvi2 1508.88 1.31 0.14 6.624 0.293 −0.103 0.495

dev 1508.98 1.42 0.13 6.530 −0.296 0.512

Null 1510.08 2.52 0.08 6.560 0.507

U. stansburiana

ndvi + ndvi2 1,269.45 0.00 0.70 5.935 0.949 −0.260 0.455

dev + ndvi + ndvi2 1,271.39 1.94 0.26 5.930 0.030 0.948 −0.261 0.468

ndvi 1,275.93 6.47

dev + ndvi 1,277.88 8.42

Null 1,299.85 30.39

dev 1,301.46 32.00

C. draconoides

dev + ndvi + ndvi2 889.34 0.00 0.52 4.547 −0.477 −1.085 −0.737 0.508

ndvi + ndvi2 889.64 0.30 0.45 4.597 −1.069 −0.718 0.472

ndvi 896.18 6.84

dev + ndvi 896.23 6.88

Null 907.49 18.15

dev 907.49 18.15
aModel selection based on top models with cumulative weights summing to 0.95. bdev represented the proportion of the 1‐km2 surrounding a survey 
site that was developed (i.e., urban, agriculture, mining). ndvi represents the average normalized difference vegetation index for the 1‐km2 area. cModel 
fit was assessed via bootstrapping and a Chi‐square statistic testing the null hypothesis that the distribution of residuals for model fits from bootstrap‐
ping was different from that expected from our modeling. We considered a p‐value > 0.1 to represent good model fit. 
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Data S4). Detection probability declined quickly with distance from the 
center line of transects (Figure 2). This decline was sharper for A. tigris 
and C. draconoides (~20% at 2 m) than for U. stansburiana (~20% at 4 m). 
We justified inclusion of a quadratic term on temperature in the avail‐
ability model components for A. tigris and U. stansburiana, but not for 
C. draconoides, because model weights for these covariate selections 
in a null abundance model were always >0.5 (Supporting Information 
Data S4). Availability for sampling of all three common species peaked 
at ~25°C. It declined at higher temperature for A. tigris and U. stansbu‐
riana, but remained constant above this threshold for C. draconoides 
(Figure 3). Confidence intervals on estimates of the dispersion param‐
eter in our negative binomial formulation of the abundance model 
component always overlapped zero, except for C. draconoides. This 
suggests that a Poisson distribution may be a reasonable alternative 
assumption for A. tigris and U. stansburiana.

Our proxy for vegetation cover (NDVI) and its quadratic terms 
were in all of the top models for U. stansburiana and C. draconoides. 
Our modeling predicted that density of U. stansburiana was great‐
est at a NDVI value of ~2,020 corresponding to densely vegetated 
areas above 1,000 m in elevation dominated by Yucca spp., Juniperus 
osteosperma, or Pinus monophylla (Supporting Information Table 
S1, Sawyer et al., 2009). Density of C. draconoides was greatest at 
a NDVI value of ~970 corresponding to sparsely vegetated areas 
below 500 m dominated by Atriplex polycarpa. We found a weak neg‐
ative association between anthropogenic development and density 
of A. tigris versus a weak positive association for U. stansburiana. In 
contrast, we found a strong negative association for C. draconoides; 

average density throughout the study area decreased from 111 liz‐
ards in 1 km2 areas with <1% development to 61 lizards in 1 km2 
areas with 5%–10% development.

We obtained reasonably precise estimates of average density 
(and total population size) of adult lizards for each of the three most 
common species (Coefficients of variation [CV] = 0.13–0.27, Table 3). 
These results indicate that the total adult population of common liz‐
ards within the study area in mid‐2016 was 82 million (90%CI: 65–99 
million), corresponding to an average density of 1,224 individuals per 
km2 (90% CI: 967–1,481 per km2). Our mapping of the three species 
indicates there was greater variation in densities within the western 
part of study area due to greater levels of development in this sub‐
region (Figures 4‒6).

Using the JTNP survey results, we validated our modeling results 
for U. stansburiana and C. draconoides (Table 4). Average estimated 
densities for these species obtained from independent methods at 
the eight comparison locations differed by only 16%–17%. In con‐
trast, the average density of A. tigris from the JTNP surveys was 76% 
lower than that predicted by our modeling. For all three species, the 
variability of estimated density at sites was greater for the JTNP sur‐
veys than from modeling.

5  | DISCUSSION

We provide the first robust estimates of density and population size 
of common lizards across a large desert ecoregion. Although the 

F I G U R E  2   Decay in detection probability with distance during 
visual encounter transect surveys from the Mojave Desert within 
California, USA, April–July 2016. Detection probability is the 
average chance on seeing an individual lizard during a survey visit 
along a 400‐m transect if it was present along the transect during 
the visit

F I G U R E  3   Availability of individual lizards for sampling 
as a function of ambient air temperature (30–35 cm above 
surface) along 400‐m transects surveyed from Mojave Desert 
within California, USA, April–July 2016. Lack of availability was 
interpreted as lizards seeking thermal shelter below ground during 
periods of cold or hot weather
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results are specific to a few species within a particular ecosystem 
in North America, our survey and analytical methods may be ap‐
plicable to monitoring of lizard communities in arid environments 
throughout the world. Others have shown that the assumptions of 

closure and perfect detection along the center line of transects can 
negatively bias results from classical distance sampling (Rodda & 
Campbell, 2002; Ruiz de Infante Anton, Rotger, Igual, & Tavecchia, 
2013; Smolensky & Fitzgerald, 2010). We demonstrated how the 

Species

Density (adults/km2) Population size (adults)

Est. 90%CI Est. 90%CI

A. tigris 734 547–920 49,053,220 36,556,010–61,483,600

U. stansburiana 388 215–561 25,930,040 14,368,450–37,491,630

C. draconoides 102 80–125 6,816,660 5,346,400–8,353,750

Total 1,224 967–1,481 81,799,920 64,624,610–98,975,230

TA B L E  3   Estimates of density and 
population size of common lizards for the 
Mojave Desert within California, USA, 
April–July 2016

F I G U R E  4   Estimated densities of 
Western Whiptail (Aspidoscelis tigris) 
throughout the Mojave Desert within 
California, USA, April–July 2016

F I G U R E  5   Estimated densities of 
Common Side‐blotched Lizard (Uta 
stansburiana) throughout the Mojave 
Desert within California, USA, April–July 
2016
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application of hierarchical distance sampling allows relaxation of 
these assumptions (Chandler et al., 2011; Kery & Royle, 2016). In 
particular, we found reduced availability of lizards for sampling at 
temperatures below and above 25°C such that we were able to cor‐
rect for a substantial bias that otherwise would have left us with 
lower density estimates, especially for A. tigris.

Using the JNTP survey results, we were able to validate the 
accuracy of our predicted densities for U. stansburiana and C. dra‐
conoides (see Figure 3). Even though we did not fully validate our 
method against a known true density, the general concordance (e.g., 

16%–17% lower for JTNP estimates) of both estimates for these spe‐
cies bolsters the credibility of our modeling and extrapolation meth‐
ods. On the other hand, average density for A. tigris from the JTNP 
surveys was 76% lower than from our modeling. Consistent with the 
methods for the JTNP surveys, the most likely explanation for the 
discrepancy is the low availability of this species for sampling during 
a single visit. Indeed, both small and large disparities from our vali‐
dation correspond closely to our estimates of availability during in‐
termediate temperature conditions that were reflective of the JNTP 
surveys (25°C; 20% for A. tigris vs. 80% for U. stansburiana). Those 
surveys occurred during spring (March–June) and the scheduling of 
site visits was timed to minimize variation in temperature and maxi‐
mize availability during a single visit (Barrows et al., 2016)

The ability to obtain accurate and reasonably precise population 
estimates of lizards across large regions will be critical for monitor‐
ing trends and identifying the effects of stressors including climate 
change and land use (Gibbons et al., 2000; Griffiths et al., 2015). 
Impacts identified to lizards may provide a good indicator of im‐
pacts to the larger ecosystem, because of this taxon's sensitivity to 
temperature and land use (Thompson et al., 2008; Waudby & Petit, 
2015; Whitford & Creusere, 1977). Common species such as those 
we surveyed may disproportionately reflect ecological processes 
within a region, in part because they represent a large proportion 
of total individuals and biomass (Gaston & Fuller, 2008; Inger et al., 
2015). Furthermore, monitoring common species may allow plan‐
ners to develop effective conservation strategies before a species 
becomes endangered.

Nevertheless, we are cognizant that monitoring of common 
species is not a silver bullet. It can complement, but not replace, 
the need for specialized surveys targeting rare or localized species 
that may already be endangered (e.g., Phyrnosoma mcallii, Grant & 
Doherty, 2007). A need also remains to better monitor other reptile 
taxa that were not well surveyed by our method (e.g., snakes and 

F I G U R E  6   Estimated densities 
of Zebra‐tailed Lizard (Callisaurus 
draconoides) throughout the Mojave 
Desert within California, USA, April–July 
2016

TA B L E  4   Comparison of lizard density model estimates from the 
Mojave Desert, USA, 2016, with independent lizard density survey 
results from Joshua Tree National Park, 2016

Species

Lizards/km2

Model predictiona
Joshua Tree National 
Park surveysb

x̄ ± SD CVc
x̄ ± SD CV

A. tigris 746 ± 125 0.17 178 ± 129 0.72

U. stansburiana 392 ± 260 0.66 329 ± 445 1.35

C. draconoides 105 ± 57 0.55 87 ± 100 1.15

Note. Lizards were surveyed at eight Mojave Desert sites in the park. The 
park survey results were compared against the model predictions at 
these locations.
aWe used 400‐m transect surveys at 229 sites throughout the Mojave 
Desert ecoregion within California to fit a distance sampling model pre‐
dicting density at the 1‐km2 scale throughout the study area. The model 
included vegetation cover (i.e., NDVI) and anthropogenic development 
covariates for how density varied spatially across the study area. bA team 
of wildlife biologists and citizen scientists exhaustively searched each 
9‐ha site an average of 3 hr on a single occasion to get total adult counts 
by species, but modeling was not used to address detection probabilities 
potentially <1. cCoefficient of variation: CV = SD/x̄. 
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Gopherus agassizii). This may be best achieved by a combination of 
survey methods each targeting different groups of species (Garden, 
McAlpine, Possingham, & Jones, 2007). Potential alternative sur‐
vey methods include time‐constrained visual searches of quadrats 
(Barrows et al., 2016) pit‐fall traps (Mengak & Guynn, 1987), and 
environmental DNA (Kucherenko, Herman, Everham, & Urakawa, 
2018).

Multispecies abundance or occupancy modeling is one poten‐
tial approach to using surveys such as ours to simultaneously draw 
inference about both common and rare species (Iknayan, Tingley, 
Furnas, & Beissinger, 2014). We initially attempted to fit a Bayesian 
multispecies abundance model to all 12 species of lizards detected 
(Sollmann, Gardner, Williams, Gilbert, & Veit, 2016), but model fit 
was poor. We suspect this was because random effects assuming 
a normal distribution of separate parameter values among species 
failed to adequately describe differences among common and rare 
species. For this reason, we restricted modeling to common species 
using single‐species models. However, we recommend additional 
investigation in to the feasibility of multispecies models including 
alternative probability distributions governing hyperparameters 
(Iknayan et al., 2014) and integration of data from multiple survey 
methods (Garden et al., 2007; Pacifici et al., 2017).

Our modeling was intended to represent average densities 
at the 1‐km2 scale across an ecoregion. We believe this approach 
was appropriate for estimating population size and identifying gen‐
eral spatial patterns in density. However, we acknowledge that our 
coarse‐scale approach likely missed fine‐scale habitat selection fea‐
tures of importance to lizard conservation. By using spatial covariates 
at the 1‐km2 scale, we may have missed important spatial heteroge‐
neity (i.e., rocky terrain) and climate (i.e., canyons and north facing 
slopes) features important to lizards that are better described at the 
1–10 ha scale. Indeed, whereas comparison of our modeling with in‐
dependent surveys from JTNP confirmed similar average densities 
for U. stansburiana and C. draconoides, there was much less variation 
among sites from our modeling than from the JTNP survey results 
(Table 4). Failure to consider appropriate scales when projecting cli‐
mate change impacts can lead to potentially inaccurate conservation 
implications as illustrated with Y. brevifolia in the southern Mojave 
Desert (Barrows & Murphy‐Mariscal, 2012). Therefore, we recom‐
mend future integration of surveys and modeling that represents 
habitat conditions and population distribution at multiple spatial 
scales (Nichols et al., 2008; Pacifici et al., 2017). Through a double‐
sampling approach, a more intensive spatial capture recapture de‐
sign could be implemented at a subset of the monitoring sites where 
distance sampling transects occur (Dennis, Ponciano, & Taper, 2010; 
Royle, Chandler, Sollmann, & Gardner, 2014). Our multispecies sur‐
veys throughout an ecoregion and comparison of modeling results 
with the JTNP data represent a significant first step toward this goal.

By including on‐site temperature measurements in our model‐
ing, we found that lizard activity peaked at an air temperature of 
about 25°C, above which it declined for A. tigris and U. stansburi‐
ana dropping to close to zero at temperatures above 40°C. These 
findings confirm a behavioral response of lizards to temperature. 

Such a pattern could mean that high “availability” in our modeling 
represents a heightened detection probability when lizards were 
more visible while basking or otherwise present in exposed loca‐
tions. It would be important for a monitoring program to look for 
shifts in availability with respect to temperature. This is important 
because lizards have physiological limits above which high body 
temperature is lethal (Cowles & Bogert, 1944), and there is ev‐
idence that these thresholds are being increasingly exceeded in 
some places in North American deserts due to climate change 
(Sinervo et al., 2010). It is also important because higher tempera‐
tures have been shown to cause mortality in lizard embryos shel‐
tered in nests, which suggests that impacts at this stage of the life 
cycle may have a greater effect on population levels than thermal 
impacts to adults (Levy et al., 2015).

We used a measurement of air temperature in our modeling as a 
proxy for the operative temperatures affecting lizard physiology and 
behavior (Dzialowski, 2005). We expect that direct consideration of 
operative temperatures would improve performance of abundance 
modeling (Angeli, Lundgren, Pollock, Hillis‐Starr, & Fitzgerald, 2018). 
Additionally, incorporation of daily maximum temperature models 
available at the 4‐km scale across the entire study area (Daly et al., 
2008) in to hierarchical modeling of wildlife survey data may facili‐
tate greater inference about behavioral responses of wildlife to cli‐
mate change (McGrann & Furnas, 2016).

Interestingly, A. tigris was the most abundant lizard, but it was 
also more difficult to consistently detect than the other two com‐
mon species. The detectability of this species dropped steeply with 
distance (Figure 2) and it had the lower overall availability for sam‐
pling (Figure 3). We posit that the lower detectability and availability 
of this species may be largely attributed to its spatial and behavioral 
autecology. A. tigris is an active forager with a large home range and 
spends less time basking, and more time actively shuttling between 
microhabitats than the two more territorial species (U. stansburiana, 
C. draconoides) (Parker & Pianka, 1975; Turner et al., 1969).

Urban growth, expansion of industrial, agricultural, recreational, 
and resource extractive activities, and renewable energy develop‐
ment raise concerns for lizard conservation in the Mojave Desert. 
We found evidence that two of the three species of common lizards 
were sensitive to land use. In particular, our maps of predicted den‐
sity show greater variability in habitat quality in the more developed 
western side of the study area (Figures 4‒6). Furthermore, although 
C. draconoides may be relatively well suited to higher temperatures, 
our results suggest it will be impacted by development that removes 
or degrades habitat. Retaining pockets of natural habitat and en‐
hancing the quality of vegetation cover in developed areas may be 
important mechanisms for mitigating impacts to lizards and other 
wildlife (Ackley et al., 2015; Sullivan, Vardukyan, & Sullivan, 2014).

Desert ecosystems and the wildlife they support are vulnerable 
to the combined effects of climate change and habitat degradation 
(Sinervo et al., 2010; Thompson et al., 2008). Although reptiles have 
been difficult to survey and thus often neglected in multispecies 
monitoring efforts (Gibbons et al., 2000), advances in noninvasive 
survey and robust analytical methods are making it more practical 
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to include reptiles and other overlooked taxa in these programs. Our 
results demonstrate this trajectory for lizards and how reasonably 
precise estimates of total population size and maps of density can 
inform conservation. These methods are likely transferable to other 
desert ecosystems throughout the world.
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