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Abstract
Amathematical reaction-diffusion model is defined to describe the gradual decomposition

of polymer microspheres composed of poly(D,L-lactic-co-glycolic acid) (PLGA) that are

used for pharmaceutical drug delivery over extended periods of time. The partial differential

equation (PDE) model treats simultaneous first-order generation due to chemical reaction

and diffusion of reaction products in spherical geometry to capture the microsphere-size-

dependent effects of autocatalysis on PLGA erosion that occurs when the microspheres are

exposed to aqueous media such as biological fluids. The model is solved analytically for the

concentration of the autocatalytic carboxylic acid end groups of the polymer chains that

comprise the microspheres as a function of radial position and time. The analytical solution

for the reaction and transport of the autocatalytic chemical species is useful for predicting

the conditions under which drug release from PLGA microspheres transitions from diffu-

sion-controlled to erosion-controlled release, for understanding the dynamic coupling

between the PLGA degradation and erosion mechanisms, and for designing drug release

particles. The model is the first to provide an analytical prediction for the dynamics and spa-

tial heterogeneities of PLGA degradation and erosion within a spherical particle. The analyt-

ical solution is applicable to other spherical systems with simultaneous diffusive transport

and first-order generation by reaction.

PLOS ONE | DOI:10.1371/journal.pone.0135506 August 18, 2015 1 / 14

a11111

OPEN ACCESS

Citation: Ford Versypt AN, Arendt PD, Pack DW,
Braatz RD (2015) Derivation of an Analytical Solution
to a Reaction-Diffusion Model for Autocatalytic
Degradation and Erosion in Polymer Microspheres.
PLoS ONE 10(8): e0135506. doi:10.1371/journal.
pone.0135506

Editor: Zhen Jin, Shanxi University, CHINA

Received: January 26, 2015

Accepted: July 22, 2015

Published: August 18, 2015

Copyright: © 2015 Ford Versypt et al. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: The authors acknowledge the support of
the National Institutes of Health (NIBIB
5RO1EB005181) and the National Science
Foundation (Grant #0426328). A. N. Ford Versypt
acknowledges the support of the U.S. Department of
Energy Computational Science Graduate Fellowship
Program of the Office of Science and National
Nuclear Security Administration in the Department of
Energy under contract DE-FG02-97ER25308.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0135506&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
Poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres are biodegradable polymeric devices
that are widely studied for controlled-release drug delivery [1–4]. Compared to conventional
drug dosage forms, controlled-release drug delivery can provide enhanced control of drug con-
centrations and biodistribution, reduce side effects, and improve patient compliance.

Drug molecules dispersed in the bulk polymer are released by diffusion by two main path-
ways: through the nondegraded polymer bulk and through aqueous pores that form in the
polymer bulk as the polymer undergoes hydrolysis. Between microsphere size range extremes,
drug release may transition from the diffusion-controlled regime (diffusive release through the
nondegraded polymer bulk is faster through smaller microspheres that have shorter diffusion
lengths than in larger microspheres) to the erosion-controlled regime (diffusive release through
aqueous pores is faster through larger microspheres that have eroded porous interiors than in
smaller microspheres). The drug release rates for drug molecules with different sizes and water
solubilities depend strongly on the release regimes. Small, poorly water-soluble molecules are
known to diffuse more easily through the nondegraded polymer bulk so are released more
quickly in the diffusion-controlled regime [5, 6]. Conversely, small, highly water-soluble mole-
cules and macromolecules are known to diffuse more easily through aqueous pores so are
released more quickly in the erosion-controlled regime [7]. Thus, drug release is coupled to
polymer degradation by the dynamics and spatial distribution of developing pores. To describe
the development of the pore structure in the microspheres, it is first necessary to consider how
the polymer reacts and forms pores.

PLGA degrades chemically by acid-catalyzed ester hydrolysis in the polymer bulk rather
than from the surface inward because the water penetrates into the polymer matrix faster than
the rate of hydrolysis [8]. The carboxylic acid end groups of the PLGA polymer chains can
donate protons to autocatalyze the hydrolytic degradation, which accelerates the reaction
kinetics. The amount of autocatalyst increases as polymer chains are broken to produce smaller
chains because each of the smaller chains includes an autocatalytic end group. Small polymer
fragments up to and including nonamers are water-soluble [9–11]. The water-soluble frag-
ments dissolve in water and diffuse out of the polymer through water-filled pores, which leads
to polymer erosion (mass loss) and increases pore volume in the microspheres. Autocatalytic
hydrolysis is more substantial in the interior of large microspheres where the diffusion of deg-
radation products is limited, leading to accumulation of acidic polymer end groups [7, 12–14].

Although many models have been proposed for drug release from PLGA microspheres [15–
18], the mathematical formulation needed to accurately predict microsphere-size-dependent
drug release is still unclear [18, 19]. Here, we focus on the clarifying the complex effects of
autocatalysis on simultaneous polymer degradation and erosion in microspheres of different
sizes. By considering the polymer in isolation without encapsulated drug molecules, we aim to
contribute to the understanding of the development of porous domains in the microspheres,
which can then be used incorporated into future models that include drug transport to describe
the entire process of drug release from these types of dynamic porous materials.

The autocatalytic PLGA degradation reaction has been modeled previously [20, 21]; how-
ever, the models treated homogeneous degradation before the start of erosion, and the analyti-
cal solutions of the models do not depend on the microsphere size or spatial heterogeneities
within the microspheres. Models using reaction-diffusion equations have been applied to a
comparable drug delivery system: covalently bonded polymer-drug conjugates in solid poly-
mers. The models included first-order cleavage of polymer-drug bonds followed by diffusive
release of drug from polymer matrices [22, 23]. While the models for the polymer-drug conju-
gates treated a drug delivery system involving reaction and diffusion, the models cannot be
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applied directly to PLGA because the reaction kinetics in those models were independent of
the drug diffusion dynamics. The reaction and diffusion processes for PLGA microspheres are
coupled and should not be treated independently.

A reaction-diffusion model has been proposed previously [24] to treat autocatalytic degra-
dation and erosion in the polymer plates and cylinders composed of chemically similar poly
(lactic acid) (PLA), and the numerical predictions were compared to experimental data from a
study on the degradation of PLA plates of different thicknesses [25]. While the model in [24]
can be extended to other geometries using finite element analysis to solve the equations numer-
ically, the influence of the relationship between diffusion and reaction parameters on the zones
where diffusion and degradation have strong or weak influences was only presented for one-
dimensional planar and cylindrical geometries. We aim to derive an analytical solution to a
reaction-diffusion model specifically for the case of spherical geometry that can assess the rela-
tive dominance of the reaction and diffusion phenomena through a single dimensionless
parameter.

Reaction-diffusion equations have commonly been used to model spherical catalyst pellets
that experience simultaneous reaction and diffusion, and analytical solutions to the equations
are available [26, 27]. Despite the similarities in the reaction-diffusion equations for the two
systems, the catalyst pellets and PLGA microspheres differ in ways that are critical for their
mathematical treatment: (1) the reaction term in PLGA is a generation term instead of a con-
sumption term and (2) the directions of diffusion are reversed for PLGA microspheres and cat-
alyst pellets. In catalyst pellets, the reactant diffuses into the sphere where it is consumed by a
reaction. In contrast, the autocatalytic carboxylic acid end groups in PLGA microspheres are
distributed throughout the sphere where more are generated by the degradation reaction, and
some fraction of the autocatalyst diffuses out of the sphere. These differences between the phys-
ics of reaction and diffusion in spherical catalyst pellets and PLGA microspheres must be care-
fully accounted for during the analogous mathematical analyses of the reaction-diffusion
equations used to model the systems.

Here, we derive an analytical expression for the transient, radial concentration of the auto-
catalytic carboxylic acid end groups of PLGA by simultaneously treating degradation and ero-
sion of the polymer. Quantifying the transient, spatial distribution of the autocatalyst within
the polymer is important for understanding how different conditions may contribute to accel-
erating hydrolysis in the interior of large microspheres and for preventing adverse effects of the
acidic conditions within a microsphere on the drug stability or bioactivity [28]. Additionally,
such a mathematical treatment provides insights into how the coupling between autocatalysis
and drug diffusion may trigger transitions between diffusion-controlled and erosion-controlled
drug release regimes.

Methods

Mathematical model for the autocatalyst concentration
The conservation equation for a chemical species subject to reaction and diffusion within a
radially symmetric sphere is

@c
@t

¼ 1

r2
@

@r
r2

D
R2

@c
@r

� �
þ RV ; ð1Þ

where c(r, t) is the concentration, 0� r� 1 is the normalized radial position defined as
r ¼ r̂=R, r̂ is the the radial distance from the center of the sphere, R is the radius of the sphere,
t� 0 is time, D is the diffusion coefficient, and RV is the net rate of generation of species per
volume. We assume that the microsphere volume is constant for bulk-eroding PLGA,
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neglecting any effects of possible microsphere swelling. The chemical species of interest is the
autocatalytic carboxylic acid end groups of the polymer chains or autocatalyst. PLGA degrada-
tion is often treated with pseudo-first-order kinetics [13, 18], where the autocatalyst undergoes
first-order growth while the concentrations of water, cH2O and ester bonds in the polymer, cE,
are assumed to remain constant, giving

RV ¼ kc; ð2Þ
where the rate constant k for random ester bond hydrolysis incorporates the constant concen-
trations cH2O and cE (the applicability of the assumption of constant cE is checked in the Results
and discussion section). PLGA erosion is treated by assuming that all carboxylic acid end
groups have a uniform constant diffusion coefficient D independent of the length of the poly-
mer chain to which they are attached; with this assumption, diffusion of degradation products
can be included in the analytical expression for autocatalyst concentration.

Substituting α = D/R2 and (Eq 2) into (Eq 1) yields

@c
@t

¼ a
r2

@

@r
r2
@c
@r

� �
þ kc: ð3Þ

for k> 0, and α> 0. The boundary conditions are

@cð0; tÞ
@r

¼ 0; t � 0 ð4Þ

and

cð1; tÞ ¼ cr1 ; t � 0; ð5Þ

and the initial concentration distribution is

cðr; 0Þ ¼ ct0ðrÞ; 0 � r < 1; ð6Þ

where cr1 � 0 and ct0 > 0. Note that cr1 � ct0 for flux toward the exterior of the sphere.

Analytical solution for the autocatalyst concentration
By substituting v(r, t) = rc(r, t), the partial differential equation (PDE) (Eq 3) and its initial and
boundary conditions are transformed to a linear, nonhomogeneous second-order PDE with a
source term and nonhomogeneous Dirichlet boundary conditions:

@v
@t

¼ a
@2v
@r2

þ kv; ð7Þ

with boundary conditions

vð0; tÞ ¼ 0; t � 0 ð8Þ
and

vð1; tÞ ¼ cr1 ; t � 0 ð9Þ

and initial condition

vðr; 0Þ ¼ rct0ðrÞ; 0 � r < 1: ð10Þ
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The PDE for v(r, t) can be solved by superposition of the solutions to two related problems
[29]: (i) the complementary steady-state boundary value problem,

0 ¼ a
d2u
dr2

þ ku ð11Þ

with boundary conditions u(0) = 0 and u(1) = cr1, where u(r) is the equilibrium steady-state dis-
tribution, and (ii) the PDE for the function w(r, t)� v(r, t) − u(r),

@w
@t

¼ a
@2w
@r2

þ kw ð12Þ

with homogeneous boundary conditions

wð0; tÞ ¼ wð1; tÞ ¼ 0; t � 0 ð13Þ

and initial condition

wðr; 0Þ ¼ rct0ðrÞ � uðrÞ; 0 < r < 1: ð14Þ

The steady-state solution, u(r), and the solution to (Eq 12) for w(r, t) by the method of eigen-
function expansion are derived below and then combined to obtain the solutions for v(r, t) and
c(r, t).

Steady-state solution for u(r). The steady-state boundary value problem (Eq 11) can be
rewritten as

0 ¼ d2u
dr2

þ F2u; 0 � r � 1; ð15Þ

where the Thiele modulus, F, for this first-order reaction-diffusion system is

F ¼ ffiffiffiffiffiffiffiffi
k=a

p
: ð16Þ

The Thiele modulus characterizes the relative importance of diffusion and reaction and is
defined as the ratio of the characteristic times for diffusion (1/α) and reaction in the absence of
mass transfer limitations (1/k). The solution is of the form [30]

u ¼ A cos ðFrÞ þ B sin ðFrÞ: ð17Þ

The boundary condition u(0) = 0 for finite values of c requires that A = 0. At the surface,

uð1Þ ¼ cr1 ¼ B sinF; ð18Þ

so B = cr1/ sinF. The solution to the steady-state ordinary differential equation (ODE) with
nonhomogeneous boundary conditions is

uðrÞ ¼ rcðrÞ ¼ cr1 sin ðFrÞ
sinF

: ð19Þ

Method of eigenfunction expansion solution for w(r, t). The linear, nonhomogeneous
PDE with homogeneous boundary conditions given by (Eq 12) can be solved using the method
of eigenfunction expansion [29], which consists of expanding the unknown solution w(r, t) in a
series of the eigenfunctions for the related homogeneous problem:

wðr; tÞ ¼
X1
n¼1

anðtÞ�nðrÞ; ð20Þ
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where an(t) are the time-dependent, generalized Fourier coefficients and ϕn(r) are the eigen-
functions of the homogeneous PDE for diffusion without a source term with homogeneous
Dirichlet boundary conditions,

�nðrÞ ¼ sin ðnprÞ: ð21Þ

The eigenfunction expansion of the source term is

kwðr; tÞ ¼
X1
n¼1

bnðtÞ�nðrÞ; ð22Þ

where bn(t) = kan(t) since the source term is first-order in the linearized concentration.
The Fourier sine series can be differentiated term by term since w(r, t) and sin(nπr) satisfy

the same boundary conditions [29]. Inserting the eigenfunction expansions for w(r, t) from
(Eq 20) and the source term from (Eq 22) into the PDE in (Eq 12) yields

X1
n¼1

dan
dt

�n ¼
X1
n¼1

�an2p2ð Þan�n þ
X1
n¼1

kan�n: ð23Þ

For each n = 1, 2, . . .,

dan
dt

þ an2p2 � kð Þan ¼
dan
dt

þ n2p2 � F2
� �

aan ¼ 0: ð24Þ

The solution to (Eq 24) is

anðtÞ ¼ anð0Þ exp ð�ðn2p2 � F2ÞatÞ; ð25Þ

where the an(0) can be derived by multiplying (Eq 20) by ϕm for t = 0, considering the orthogo-
nality of the eigenfunctions, and integrating over the spatial domain to give

anð0Þ ¼
R 1

0
wðr; 0Þ�ndrR 1

0
�2
ndr

¼ 2

Z 1

0

ðvðr; 0Þ � uÞ sin ðnprÞdr

¼
Z 1

0

2rct0ðrÞ sin ðnprÞdr þ
2cr1npð�1Þn
n2p2 � F2

ð26Þ

In the specific case of uniform initial distribution, ct0(r) = ct0 and

anð0Þ ¼
�2ct0ð�1Þn

np
þ 2cr1npð�1Þn

n2p2 � F2 : ð27Þ

Substituting the expressions for ϕn from (Eq 21), an from (Eq 25), and an(0) from (Eq 26)
into (Eq 20) yields the solution to the nonhomogeneous PDE with homogeneous boundary
conditions (Eq 12):

wðr; tÞ ¼
X1
n¼1

Z 1

0

2rct0ðrÞ sin ðnprÞdr þ
2cr1npð�1Þn
n2p2 � F2

� �

� exp ð�ðn2p2 � F2ÞatÞ sin ðnprÞ:
ð28Þ

Solution for v(r, t). Substituting the expressions for u from (Eq 19) and w from (Eq 28) into
v = u+w yields the solution to the nonhomogeneous PDE with nonhomogeneous boundary
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conditions (Eq 7):

vðr; tÞ ¼ cr1 sin ðFrÞ
sinF

þ
X1
n¼1

Z 1

0

2rct0ðrÞ sin ðnprÞdr þ
2cr1npð�1Þn
n2p2 � F2

� �

� exp ð�ðn2p2 � F2ÞatÞ sin ðnprÞ:

ð29Þ

Solution for c(r, t). The concentration of the autocatalyst in radial coordinates is

c ¼ v
r
: ð30Þ

The indeterminate form at r = 0 is resolved by

lim
r!0

sin ðxrÞ
r

¼ lim
r!0

x cos ðxrÞ ¼ x; ð31Þ

where x denotes a constant. The autocatalyst concentration at r = 0 is

cð0; tÞ ¼ cr1F

sinF

þ
X1
n¼1

np
Z 1

0

2rct0ðrÞ sin ðnprÞdr þ
2cr1npð�1Þn
n2p2 � F2

� �
exp ð�ðn2p2 � F2ÞatÞ;

ð32Þ

and at 0< r< 1 is

cðr; tÞ ¼ cr1 sin ðFrÞ
r sinF

þ
X1
n¼1

Z 1

0

2rct0ðrÞ sin ðnprÞdr þ
2cr1npð�1Þn
n2p2 � F2

� �

� exp ð�ðn2p2 � F2ÞatÞ sin ðnprÞ
r

:

ð33Þ

With uniform initial distribution, (Eq 32) and (Eq 33) become

cð0; tÞ ¼ cr1F

sinF

þ 2
X1
n¼1

cr1n
2p2

n2p2 � F2 � ct0

� �
ð�1Þn exp ð�ðn2p2 � F2ÞatÞ

ð34Þ

and

cðr; tÞ ¼ cr1 sin ðFrÞ
r sinF

þ 2
X1
n¼1

cr1np

n2p2 � F2 �
ct0
np

� �
ð�1Þn exp ð�ðn2p2 � F2ÞatÞ sin ðnprÞ

r
:

ð35Þ
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Numerical solution for the autocatalyst concentration
The partial differential equation for the autocatalyst concentration Eqs (3)–(6) can also be
solved by numerical methods. The method of lines [31, 32] reduces the PDE to a system of
ODEs by discretizing the radial dimension onto a finite grid with equal spacing Δr and coordi-
nates ri = iΔr for i = 0, 1, . . ., N. Using the boundary conditions and the second-order centered
finite difference approximations for spherical coordinates [33] to approximate the spatial
derivatives, the semi-discrete ODE for the concentration at each grid point, ci(t), is

dci
dt

¼

6a
Dr2

c1 � c0ð Þ þ kc0; if i ¼ 0;

0 if i ¼ N;

a
iDr2

ðiþ 1Þciþ1 � 2ici þ ði� 1Þci�1

� �þ kci; otherwise:

ð36Þ

8>>>>>><
>>>>>>:

The system of ODEs was solved using the function ode45 in MATLAB. The numerical solution
gives suitable accuracy when compared with the analytical solution.

Results and Discussion

Transient autocatalyst profiles
Our analytical expressions for the transient radial concentration of the autocatalyst Eqs (32)–
(35) quantify the importance of the Thiele modulus, F, for determining whether PLGA degra-
dation and erosion are enhanced by accumulation or diminished by diffusion. The results pre-
sented here are all for the case of uniform initial distribution ct0(r) = ct0 given by Eqs (34)–(35).
For small values of F (Fig 1a-1b), diffusion dominates the conservation equation, so any
amount of the autocatalyst generated by the reaction diffuses away quickly and a steady state
can be reached. Such a microsphere experiences homogeneous erosion without substantially-
catalyzed degradation (Fig 2a). Small microspheres, fast diffusion, or slow reaction can give
small values of F. For intermediate values of F on the order of π (Fig 1c-1d), the autocatalyst
accumulates in the center of the microsphere forming a hollow interior (Fig 2b). For large val-
ues of F (Fig 1e), the first-order reaction generation dominates the conservation equation, so
the autocatalyst accumulates in the interior faster than it can diffuse from the sphere. Autocata-
lytic degradation is severe throughout the microsphere (Fig 2c), and the entire particle may
erode rapidly. The predicted autocatalyst concentration profiles (Fig 1) and the illustrations of
the spatial distribution of the autocatalyst in microspheres of different sizes where small sizes
correspond to small values of F (Fig 2) are consistent with experimental visual evidence of the
microspheres-size-dependent spatial distribution of the acidic microclimate within degrading
PLGA microspheres [34].

Transition between regimes
To assess the bounds on the concentration profiles in different ranges of F, the maximum val-
ues of the concentration profiles, which occur at the microsphere center r = 0, are compared
(Figs 3 and 4). The upper and lower bounds are the reaction-dominant limit and the diffusion-
dominant limit, respectively.

Considering only the degradation reaction without diffusion, the autocatalyst concentration
is described by

@crxn
@t

¼ kcrxn; ð37Þ
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which has the solution

crxnðr; tÞ ¼ ct0 exp ðktÞ; ð38Þ

where crxn is referred to as the reaction-dominant limit. This limit is the commonly treated
case for autocatalytic hydrolysis kinetics [13], where the concentration at each position is inde-
pendent of its neighbors. As F!1, c(r, t)! crxn(t) (Fig 3), so values in the range F� π are
in the erosion-controlled regime.

Fig 1. Dimensionless autocatalyst concentration profiles. Autocatalyst concentration c/ct0 profiles as
functions of the characteristic time (αt for Thiele modulusΦ� π and kt forΦ > π) and dimensionless position
r for cr1 = 0: (a)Φ = 0.1π, (b)Φ = 0.75π (c)Φ = π, (d)Φ = 1.25π, (e)Φ = 5π. The vertical axes of the plots are
shown at different scales to zoom in on the full range of change in c/ct0 over the time period. The coloring is
consistent between the plots to facilitate comparisons.

doi:10.1371/journal.pone.0135506.g001

Fig 2. Sketch of spatial distribution of the autocatalyst in microsphere cross-sections in different
ranges of Thiele modulus. (a) diffusion throughout for Thiele modulusΦ < < π, (b) diffusion near edges and
accumulation/enhanced degradation in the center forΦ� π, (c) accumulation/enhanced degradation
throughout forΦ > > π. The autocatalyst is illustrated in white, and the polymer bulk is shown in black.

doi:10.1371/journal.pone.0135506.g002
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Fig 3. Dimensionless autocatalyst concentration profiles at r = 0 for large Thiele modulus values. Autocatalyst concentration c/(ct0+cE) profiles at r = 0
as functions of time scaled by the maximum reaction time tmax for cr1 = 0 and large values of Thiele modulusΦ:Φ = π (red open circles),Φ = 1.25π (blue solid
diamonds),Φ = 1.5π (green solid squares),Φ = 1.75π (black solid triangles),Φ = 2π (red solid circles),Φ = 2π (blue open diamonds),Φ = 3π (green open
squares),Φ = 5π (black open triangles). The solution approaches the reaction-dominant limit crxn (red solid curve) asΦ!1.

doi:10.1371/journal.pone.0135506.g003

Fig 4. Dimensionless autocatalyst concentration profiles at r = 0 for intermediate Thiele modulus values. Autocatalyst concentration c/ct0 profiles at
r = 0 as functions of the characteristic time for diffusion for cr1 = 0 and intermediate values of Thiele modulusΦ:Φ = 0.25π (red open triangles),Φ = 0.5π (blue
open circles),Φ = 0.75π (green open diamonds),Φ = 0.9π (black open squares),Φ = 0.99π (red solid triangles),Φ = π (blue solid circles). The solutions are
bounded by the diffusion-dominant limit cdiffn (black dotted curve) asΦ! 0 and the reaction-dominant limit crxn (red solid curve) asΦ!1.

doi:10.1371/journal.pone.0135506.g004
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In a PLGA microsphere, the degradation reaction cannot continue infinitely because the
hydrolysis reaction only proceeds as long as ester bonds can be cleaved in the polymer. The
maximum time for the reaction occurs when all of the ester bonds have been converted to
monomers, so crxn(r, tmax) = ct0 + cE and

tmax ¼ 1

k
ln

ct0 þ cE
ct0

¼ 1

k
ln

Mn0

M1

; ð39Þ

whereMn0 is the initial number-average molecular weight andM1 is the average weight of a
monomer. As t! tmax the assumption of constant ester bond concentration is violated. At
t = 1/k, t/tmax � 1–2% for PLGA 50:50 withM1 = 65.05 Da,Mn0 = 10–1000 kDa, and
k = 0.012–0.08 day−1 [7], thus the constant ester concentration assumption is valid within the
characteristic time for the reaction (kt = 1 gives t� 12–80 days).

Considering only diffusion without the degradation reaction, the autocatalyst concentration
is described by

@cdiffn
@t

¼ a
@2cdiffn
@r2

; ð40Þ

with boundary and initial conditions given by Eqs (5)–(6), which has the solution [33] for r = 0

cdiffnð0; tÞ ¼ cr1 þ 2ðcr1 � ct0Þ
X1
n¼1

ð�1Þn exp ð�n2p2atÞ ð41Þ

and for 0< r< 1

cdiffnðr; tÞ ¼ cr1 þ
2ðcr1 � ct0Þ

pr

X1
n¼1

ð�1Þn
n

exp ð�n2p2atÞ sin ðnprÞ; ð42Þ

where cdiffn is referred to as the diffusion-dominant limit. As F! 0, c(r, t)! cdiffn(r, t) (Fig 4),
so values in the range F< π are in the diffusion-controlled regime. For intermediate values of
F, the autocatalyst concentration is bounded by the diffusion- and reaction-dominant limits;
the concentration peaks due to early accumulation and enhanced degradation in the center
and later decays due to diffusion. F = π is the tipping point between the diffusion- and ero-
sion-controlled regimes characterized by exponential decay and exponential growth of the
autocatalyst, respectively.

Steady-state autocatalyst profiles
The autocatalyst concentration, c(r, t), exhibits exponential growth due to the first-order
hydrolysis reaction and exponential decay due to diffusion. The steady-state limit is
approached as the rates of diffusion and generation by reaction offset each other or when the
reacting species has diffused out of the system completely. For the concentration to reach a
steady state, the time derivative of c(r, t) must be zero; either the exponential term must (i) be
constant or (ii) approach 0 as t!1. Therefore,

n2p2 � F2 � 0; n ¼ 1; 2; . . . : ð43Þ

In the most restrictive case of n = 1, F� π.
The constant surface boundary condition cr1 determines the magnitude of the diffusion driv-

ing force and indicates the concentration of species in the medium assuming no mass transfer
limitations at the surface; this is consistent with a buffered medium where the autocatalyst
released from the microsphere is perfectly absorbed by the medium. If cr1 = 0, values of F< π
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have trivial steady-state solutions c(r, t)/ct0 ! 0 as t!1 where the species diffuses completely
out of the sphere preventing runaway of the first-order, autocatalytic reaction, while F = π has
a stable nontrivial solution c(r, t)/ct0 ! 2 as t!1, balancing the contributions from the reac-
tion and diffusion. If cr1 > 0, the steady-state solutions for F =mπ are nontrivial (Fig 5), and
neither the steady-state linearized solution, u, nor the analytical solution, c, are defined for F =
mπ,m = 1, 2, . . .. The transient profiles forF =mπ can be approximated by the numerical solu-
tion even though steady-state solutions do not exist in these cases. The case of cr1 > 0 is inter-
esting from a mathematical perspective but may only be physically appropriate for media that
have high concentrations of strong acid that augment the carboxylic acid end groups in catalyz-
ing the degradation. The boundary condition cr1 = 0 is valid assuming no autocatalyst in a
weakly acidic buffered medium and is used for the results shown in Figs 1, 3, and 4.

Conclusions
An analytical expression was derived for the transient, radial concentration of a species under-
going simultaneous diffusion and first-order reaction generation with constant, but not neces-
sarily zero, surface boundary concentration. The expression differs from the common
reaction-diffusion case treated in the spherical catalyst literature as we treat a generation rather
than consumption reaction term. To our knowledge, this is the first application of such an ana-
lytical expression for the reaction-diffusion equation to PLGA microspheres to model degrada-
tion and erosion of the polymer. Treating the diffusive transport of the autocatalytic species to
capture spatial heterogeneities during degradation is a unique contribution of this work.

A limitation of the analytical expression for the autocatalyst concentration is the assumption
that the diffusion coefficient is independent of the lengths of the polymer chains to which the
autocatalytic carboxylic acid end groups are attached. In reality only a fraction of the polymer
chains are small enough to be water-soluble and able to diffuse through the aqueous pores. To
account for the overestimation of autocatalyst mobility in the assumption needed to simplify

Fig 5. Steady-state dimensionless autocatalyst concentration profiles. Steady-state dimensionless autocatalyst concentration lim
t!1

cðr; tÞ=cr1
profiles as

functions of dimensionless position r for boundary condition cr1 > 0 and Thiele modulusΦ < π:Φ = 0.25π (red open triangles),Φ = 0.5π (blue open circles),
Φ = 0.75π (green open diamonds),Φ = 0.9π (black open squares). At r = 0, c/cr1 !1 asΦ! π.

doi:10.1371/journal.pone.0135506.g005
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the mathematical formulation, a smaller value for the diffusion coefficient than the value for
just the soluble chains should be used to represent the average diffusivity of soluble and insolu-
ble polymer chains. A more detailed model distinguishing between the diffusivities of soluble
and insoluble autocatalyst populations would require a numerical solution to the PDE for each
population.

The analytical expression for autocatalyst concentration indicates that the Thiele modulus
is a key parameter for predicting the transition between the diffusion- and erosion-controlled
release regimes. With the coupling between reaction and diffusion of the autocatalyst treated
by this model, size-dependent effects on autocatalysis can be explored and incorporated into
detailed predictive models for drug delivery from autocatalytic PLGA microspheres, which
could ultimately contribute to the in silico optimal design of controlled drug release particles.
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