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Abstract

Look-ahead selection is a sophisticated yet effective algorithm for genomic selection, which optimizes not only the selection of breeding
parents but also mating strategy and resource allocation by anticipating the implications of crosses in a prespecified future target genera-
tion. Simulation results using maize datasets have suggested that look-ahead selection is able to significantly accelerate genetic gain in the
target generation while maintaining genetic diversity. In this paper, we propose a new algorithm to address the limitations of look-ahead
selection, including the difficulty in specifying a meaningful deadline in a continuous breeding process and slow growth of genetic gain in
early generations. This new algorithm uses the present value of genetic gains as the breeding objective, converting genetic gains realized
in different generations to the current generation using a discount rate, similar to using the interest rate to measure the time value of
cash flows incurred at different time points. By using the look-ahead techniques to anticipate the future gametes and thus present value
of future genetic gains, this algorithm yields a better trade-off between short-term and long-term benefits. Results from simulation experi-
ments showed that the new algorithm can achieve higher genetic gains in early generations and a continuously growing trajectory as
opposed to the look-ahead selection algorithm, which features a slow progress in early generations and a growth spike right before
the deadline.
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Introduction
The core of plant breeding is in the selection of breeding parents
to improve traits of interest, such as yield, tolerance to environ-
mental stress, resistance to pests, most of which are quantita-
tively inherited (Wricke and Weber 2010). Traditional selection
strategies used to focus on observable phenotype or a handful of
assisting markers related to the desired traits. However, these
methods are not applicable to polygenic traits, i.e. traits consist-
ing of many small-effect alleles for which effects are scattered
and difficult to determine reliably (Jannink et al. 2010). With the
development of high-throughput genotyping and single nucleo-
tide polymorphism (SNP) effect estimation (Heffner et al. 2009;
Jannink et al. 2010) shedding lights on the field, genomic predic-
tion emerged as a technique for linking genomic information of
quantitative traits to phenotypic values. Genomic selection (GS)
is an approach to exploiting genomic markers to cater to novel
breeding programs and evaluation. In this technique, the geno-
mic estimated breeding value (GEBV), i.e. the sum of the esti-
mated marker effects for a specific individual becomes a popular
criterion to evaluate the breeding potential for certain traits with-
out relying on individual’s phenotype (Goddard 2009).

Improvements in genomic prediction models for complex pat-
terns, such as genotype by environment interactions (G�E), have
received great attention. Much of the work on GS has been on the

design and execution of field trials (Heslot et al. 2015; Crossa et al.
2017; Hickey et al. 2017). What appears to be missing in the body
of literature is computational algorithms that use genomic pre-
diction to intelligently select individuals or groups worthy of
breeding. These algorithms should be able to not only select opti-
mal breeding parents but also strategically determine the num-
ber of crosses to make and progenies to produce under resource
and time constraints.

Conventional genomic selection (CGS) selects the individuals
with the highest GEBVs as breeding parents (Meuwissen et al.
2001), which are assumed to be most likely to produce superior
offspring. CGS has been widely adopted in both plant and animal
breeding practices due to its simplicity and effectiveness.
However, this truncation approach often leads to loss of genetic
diversity after only a few breeding cycles. Several more sophisti-
cated selection algorithms have been proposed to address such
limitations. Weighted genomic selection modifies the SNP effects
with weights to render the inheritance of favorable alleles with
low population frequencies (Heffner et al. 2010). Optimal haploid
value (OHV) evaluates a breeding parent not by its own genetic
value but by the genetic value of the best gamete that it can pro-
duce in the immediate next generation (Daetwyler et al. 2015).
OHV also aggregates adjacent SNP markers as recombination
blocks distributed across chromosomes to accelerate the
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computation. Optimal population value (OPV) introduces the

concept of group selection and selects a group of breeding

parents that possess favorable alleles in complementary loci,

thus can produce the best progeny in the long term (Goiffon et al.

2017). Look-ahead selection (LAS) extends the concept of OHV

and OPV by anticipating the implications of crosses in the current

generation on the progeny produced in a prespecific future gener-

ation. By selecting optimal crosses to maximize the long-term

performance, LAS has been found to be able to not only acceler-

ate genetic gains but also preserve genetic diversity (Moeinizade

et al. 2019).
Building on the prior work, we propose an algorithm to over-

come 2 limitations of LAS, which are the challenges to specify an

appropriate deadline in the context of continuous genetic im-

provement and the weak performance before the deadline. The

new algorithm borrows the concept of present value (PV) from

the field of finance and uses it to define a new breeding objective,

which converts genetic gains in different future generations over

a planning window back to the current time using a discount

rate, and the trade-off between short-term and long-term per-

formances can be adjusted using the parameters of window

length and discount rate. Details of this method are developed in

the next section.

Materials and methods
Nomenclature
Here, we define some of the parameters and variables used for

modeling GS.

Formulation of GS
GS benefits from high-density markers used in whole-genome
prediction models, which pave the way for effect estimation of
quantitative trait locus for the traits of interest. Here, we use
SNPs data, which are a common type of genetic variation among
the population. With assumptions of linear additive SNP effects
and appropriate high-dimensional point estimation methods,
one can model the quantitative relationship between b and the
GEBV of individual i as vi ¼ lþ

P
l bl
P

m Gl;m;i; 8i 2 f1; . . . ;Ng,
where l is overall mean (Desta and Ortiz 2014).

With the aforesaid definitions, the goal of GS is to select S
pairs of breeding parents to achieve specific breeding goals. The
general program can be formulated as

max
x

f ðx;GÞ (1)

s:t:
XN

i¼1

xi ¼ 2S (2)

xi 2 f0; 1g i 2 f1; . . . ;Ng: (3)

Here,

• Objective function f ð�Þ represents the genetic breeding value
or other appropriately defined breeding objectives. For exam-
ple, CGS uses the total GEBVs of all selected breeding parents
as its objective function: f ðx;GÞ ¼

P
i xivi.

• Decision variables x ¼ ðxiÞ for all i 2 f1; . . . ;Ng are a binary
variable that indicates whether individual i is selected ðxi ¼ 1Þ
or not ðxi ¼ 0Þ, as shown in constraint (3).

Review of the look-ahead selection algorithm
LAS presents an efficient framework for selecting breeding
parents that maximize genetic gain of future progeny in a user-
defined deadline generation. It takes into account not only parent
selection but also mating, time management, and resource allo-
cation (number of progeny from each cross; Moeinizade et al.
2019). The formulation of LAS is shown as follows

max
x;Y

u (4)

s:t: Pr½gðx;Y;G; b; r;T � tÞ 5 u� 5 1� c (5)

1
N

XN

j¼1

yi;j 4 xi 4
XN

j¼1

yi;j i 2 1; . . . ;Nf g (6)

XN

i¼1

XN

j¼1

yi;j ¼ 2S (7)

yi;j ¼ yj;i i; j 2 f1; . . . ;Ng (8)

xi; yi;j 2 f0; 1g i; j 2 f1; . . . ;Ng: (9)

Here,

• decision variable xi indicates whether individual i is selected
as a breeding parent (xi ¼ 1) or not (xi ¼ 0);

• decision variable yi;j indicates whether individual i is mated
with j (yi;j ¼ 1) or not (yi;j ¼ 0);

• parameter t 2 f1; . . . ;Tg represents the current generation
number;

• u is the GEBV of the best progeny in the final generation that
has a probability of occurrence of at least 1� c;

• parameter c is a risk tolerance parameter, a larger (smaller)
value of which will incentivize the model to maximize the
performance in more (less) optimistic scenarios; and

• gð�Þ is the GEBV of a random progeny in the final generation T,
created using the breeding decisions x and Y through a look-
ahead simulation proposed in Moeinizade et al. (2020).

The introduction of the additional decision variable Y allows
the model to further accelerate genetic responses by optimizing
mating strategies of the selected individuals (Toro and Varona
2010; Wang et al. 2018). Constraint (5) defines u, which is the c

quantile of g, the GEBV of a random progeny in the final genera-
tion T. This constraint also interprets the objective function (4),
which is to maximize the genetic gain in the best possible sce-
nario with a probability of at least 1� c. Constraint (6) ensures
that only selected individuals be mated with each other.
Constraints (7) and (8) make sure that a total of S crosses are
made and that the mating is symmetric. Constraint (9) requires
all decision variables to be binary.

N Number of the individuals in a population, a scalar
L Number of SNPs of an individual, a scalar
T Number of generations in a breeding program, a scalar
S Number of breeding parents to be selected, a scalar
G Genotype of a population, a binary matrix G 2 B

L�2�N, with
element Gl;m;i indicating whether the allele in the first (m¼ 1)
or second (m¼ 2) chromosome of diploid individual i at locus
l is a major allele (Gl;m;i ¼ 1) or a minor allele (Gl;m;i ¼ 0)

b SNP effect, a vector b2 RL, with bl being the allele effect for
locus l

r Recombination frequencies, a vector r 2 RL�1, with rl being the
recombination frequency between loci l and lþ 1

v GEBVs, a vector v 2 RN, with vi being the GEBV of individual i
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Motivation for improvement
Despite the effectiveness of the LAS algorithm in accelerating

genetic gain while preserving genetic diversity, it has 2 major

limitations that motivated the design of the proposed algorithm.
First, it is challenging to determine an appropriate value for

the breeding deadline, since the goal of breeding projects is usu-

ally to achieve continuous genetic improvements. To address this

limitation, we replace the fixed deadline with a rolling horizon,

which restarts its planning timeline over an adjustable time in-

terval. The interval acts as a sliding window to smooth the vari-

ability in future offspring and consider the dependence along the

breeding process.
Second, the LAS algorithm focuses exclusively on maximiz-

ing genetic gain in the terminal generation without considering

earlier performance, potentially resulting in unacceptably low

short-term genetic gains. In the proposed model, we redefine

the breeding objective as the PV of genetic gains over the roll-

ing horizon, which takes a user-defined discount rate, k, ac-

counting for the time value of genetic gains and the market

value of successful release of new commercial lines from the

breeding program. A genetic gain achieved in generation s

would be only 1
ð1þkÞs times as valuable as the same genetic gain

would have in generation 0. A larger k assigns a higher time

value of genetic gain, putting higher weights on shorter-term

performances.
As a result, the new method is expected to achieve higher ge-

netic gains in earlier generations albeit at the cost of a weaker

performance in the final generation, as illustrated in Fig. 1. This

is achieved by maximizing the PV of genetic gains in all genera-

tions, with earlier gains having higher values than later ones,

similar with the financial concept of “time value of money.”

Similar with the compound interest rate, the discount rate can be

used to adjust the trade-off between short-term and longer-term

genetic gains.

PV-based look-ahead selection algorithm
We propose to use the PV of GEBVs as the new objective for maxi-
mization. In finance (Weitzman 1998; �Zi�zlavskỳ 2014), for a series
of cash flows fs over certain time period 8s 2 f1; . . . ;Tg, the PV of
these cash flows is the summation of their discounted values at

time 0:
PT
s¼1

fs
ð1þkÞs, where k is the compound interest rate, indicating

the time value of money. In the context of GS, if we use ws to de-
note the GEBV of a progeny in the sth future generation, W the
number of generations that we look ahead to, and k the discount
rate that indicates the “time value of genetic gains,” then the new

objective becomes
PW
s¼1

ws
ð1þkÞs. As such, the proposed method, which

we refer to as PV-LAS, can be formulated as follows:

max
x;Y

fðx;YÞ ¼
XW
s¼1

ws

ð1þ kÞs (10)

s:t: Constraints ð6Þ; ð7Þ; ð8Þ; ð9Þ (11)
Pr½gðx;Y;G; b; r; sÞ 5 ws�5 1� c; s 2 f1; . . . ;Wg: (12)

Here,

• parameter W is the length of the sliding window, indicating
the number of generations to look ahead;

• parameter k is the discount rate, indicating the time value of
genetic gains. Specifically, the genetic gain ws in s generations
is as valuable as ws

ð1þkÞs in the current generation; and
• ws is the c quantile of a random progeny’ GEBV in the sth fu-

ture generation given the current decision variables x and Y.

The model introduces 2 additional parameters: the length of
the sliding window W and the discount rate k. The window length
defines the longest term that the breeders look ahead in the plan-
ning horizon, whereas the discount rate determines the trade-off
between short-term and long-term genetic gains. A larger

Fig. 1. Expected trajectories of genetic gains using the proposed new method, CGS and LAS. The curve for the new method is illustrative, whereas those
for the latter 2 methods are from Moeinizade et al. (2019). Compared with LAS, the new method is expected to achieve higher genetic gains in earlier
generations at the cost of later performance.
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(smaller) k places a higher emphasis on shorter-term (longer-
term) performances.

PV-LAS can be seen as an extension of LAS with a modified ap-
proach to looking ahead. LAS maximizes the performance at a
predefined target deadline, which gradually reduces the planning
horizon as the breeding process progresses toward the deadline.
In contrast, a moving horizon is used in PV-LAS, where the plan-
ning horizon is always the length of the sliding window, W. As
such, PV-LAS is more applicable to breeding programs with goals
for continuous genetic improvement. The change in planning ho-
rizon requires a different formula to calculate the recombination
frequency in a future generation. In particular, equation (13) for
LAS in Moeinizade et al. (2019) should be modified as the follow-
ing for PV-LAS.

For all l 2 f1; . . . ; L� 1g

~Rl ¼
0; if s 2 f1; 2g
ðS� 1Þ½1� ð1� rlÞs�

S
; if s 2 f3; . . . ;Wg:

8<
: (13)

Optimization framework
We propose a heuristic search approach to find optimal selection
and mating decisions for PV-LAS by iteratively searching the so-
lution space. The workflow of this heuristic algorithm is de-
scribed as follows:

• Input: G, b, r, W, k, S, K, and c.
• Step 1: Identify a feasible solution ðx�;Y� Þ and use it as the in-

cumbent solution. Denote the corresponding objective value
of the incumbent as f�.

• Step 2: Randomly choose ð̂i; ĵÞ such that yî ;̂j ẑi ;̂j ¼ 1.
For all k 2 f1; . . . ;Ng, evaluate the new solution ðx̂; ŶÞ,

which is defined as x̂j ¼
0 if j ¼ ĵ
1 if j ¼ k
x�j otherwise

; 8j

8><
>:

and

ŷi;j ¼
0 if i ¼ ĵ or j ¼ ĵ
1 if i ¼ k̂ or j ¼ k̂
y�i;j otherwise

; 8ði; jÞ

8><
>:

. If ðx̂; ŶÞ is feasible and has

a better objective value than the incumbent, then update the

incumbent solution ðx�;Y� Þ  ðx̂; ŶÞ and its corresponding ob-

jective value f�  fðx̂; ŶÞ. Repeat this step until no further im-
provement of the incumbent can be made.

• Output: the locally optimal x and Y.

From our computational experiences, the LAS algorithm al-
most always found selfing as the optimal breeding strategy for
the last generation. Our explanation for this observation is that
when the breeding goal is to maximize the genetic gain in the im-
mediate next generation, the value of a breeding parent can be
largely determined by its best gamete that can be produced
(within certain risk tolerance). As such, selfing the top #1 breed-
ing parent would be more likely to produce a better progeny than
crossing the top #1 with top #2. While this strategy has produced
satisfactory results for the case study, it is unnecessarily the opti-
mal strategy for all breeding programs.

Illustrative example
We use a toy example to illustrate the difference between LAS
and PV-LAS. Suppose we aim to make S¼ 3 crosses from a group
of N¼ 8 diploid individuals, each genotyped with L¼ 10 SNPs.
The breeding deadline in LAS and the length of sliding window in

PV-LAS were both set as T ¼W ¼ 3. The arbitrarily simulated SNP
effect b, recombination frequency and finalized selection and
mating results for LAS and PV-LAS are showed in Fig. 2. For each
of these 3 future generations, K¼ 500 future gametes have been
simulated. We used c ¼ 0:8.

Figure 2 illustrated the solutions given by the 2 methods. Both
methods included a cross between the second and the eighth
individuals from the left, whereas the remaining 2 crosses were
different. Figure 3 shows vertical histograms of GEBVs of 500 ran-
dom progeny in 3 generations using LAS and PV-LAS, which dem-
onstrated the major differences of these algorithms: LAS resulted
in higher genetic gains in the final generation, whereas PV-LAS
improved the growth in the first 2 generations with a slightly
compromised performance in the third.

Results and discussion
Data sources
We conducted computational experiments using the same data
set as Moeinizade et al. (2019): the genotypic data G contains gen-
otypes of 369 maize inbred lines consisting of L¼ 1,406,757 SNPs
distributed across 10 maize chromosomes (Goiffon et al. 2017).
These SNPs were aggregated into 10,000 blocks to increase the
computational speed. SNP effects were estimated on the basis of
369 shoot apical meristem phenotypes using the BayesB model
(Meuwissen et al. 2001; Leiboff et al. 2015). Recombination rates
were based on the genetic map developed from maize nested as-
sociation mapping (Yu et al. 2008). We assume that the marker
effects b̂ and recombination rates r̂ have been estimated reason-
ably accurately and they stay fixed in our simulations. As a ca-
veat for this simplifying assumption, however, we point out that
LAS and PV-LAS are more sensitive to the accuracy of allele
effects and recombination frequencies than CGS, because the for-
mer 2 extract more information from such data to make more so-
phisticated decisions.

Simulation setting
The aim of the simulation was to evaluate the performance of 3
algorithms: CGS, LAS, and PV-LAS with respect to genetic im-
provement throughout multiple breeding generations. For a
group of offspring G with a size of N in at the end of the breeding
program, the following criteria were used for evaluating the 3
algorithms:

• Mean of GEBV: 1
N

P
i

P
l

P
mðGl;m;iblÞ. This criterion measures

the average performance of genetic gains.
• Lower potential of GEBV: 2

P
l minm;iðGl;m;iblÞ. This criterion

gives the theoretical lower bound of GEBV based on the
remaining genetic diversity.

• Upper potential of GEBV: 2
P

l maxm;iðGl;m;iblÞ. This criterion
gives the theoretical upper bound of GEBV based on the
remaining genetic diversity.

• PV of GEBV:
PT

s¼1 maxi
P

l

P
m

Gs
l;m;ibl

ð1þkÞs. This criterion measures
the PV of GEBVs over a period of T generations for a given dis-
count rate k.

Each of the simulations consisted of 3 steps: initialization, se-
lection, and reproduction. In the initialization step, N¼ 200 indi-
viduals were randomly selected among the given 369 maize
inbred lines. In the selection step, GS algorithms were used to se-
lect the optimal crosses. In the reproduction step, crosses from
the previous step are made, each producing N¼ 200 progeny, and
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then it goes back to the selection step for the next generation un-

til the final generation T¼ 10. Each algorithm was tested for 500

independent simulations. Parameters k ¼ 0:1 and c ¼ 0:8 were

used for all experiments.

• For CGS, S ¼ 10 pairs of individuals with the highest GEBVs

were selected and randomly mated to make 10 crosses, each

producing 20 progenies.
• For LAS, S ¼ 10 pairs of individuals were selected and mated.
• For PV-LAS, S ¼ 10 pairs of individuals were selected and

mated.

Performance comparison
Results for genetic gain comparison are shown in Fig. 4. The

GEBV mean in Fig. 4b matched our expected trajectory in Fig. 1.

Figure 4, a and c showed how PV-LAS compromised genetic diver-

sity, with respect to LAS, to achieve higher growth in early gener-

ations, although PV-LAS still largely outperformed CGS in both

genetic gain and genetic diversity. Figure 4, d–f showed mean,

lower potential, and higher potential of GEBV together for the 3

selection methods. Although LAS and PV-LAS use a more

forward-looking selection strategy than CGS, they have narrower

ranges between upper and lower bounds in the first 2 genera-

tions. This counter-intuitive result is because they only select

parents whose favorable alleles can be aggregated within time

and resource constraints, which means that some otherwise

high-performing parents may be discarded if their favorable

alleles require more time or resources than available to be inte-

grated with the selected ones. On the other hand, CGS will select

all high-performing parents without anticipation of their future

progeny, which may lead to higher genetic diversity in the first

generations but inevitable loss of genetic gain and diversity in the

longer term.
Figure 5 compares the empirical cumulative distribution func-

tions of the PVs of GEBVs resulted from different selection meth-

ods. We observe that PV-LAS is on the right-hand side of LAS in

Fig. 2. Optimal selection and mating solutions using LAS and PV-LAS for the toy example.

Fig. 3. Vertical histograms of GEBVs of 500 random progeny in 3 generations using LAS vs PV-LAS algorithms.

Z. Zhang and L. Wang | 5



almost all quantiles, which indicates the stochastic dominance

of PV-LAS over LAS in terms of the PV of genetic gains. This was

expected because PV-LAS was designed to optimize the PV of

GEBVs.

Sensitivity analysis on PV-LAS parameters
Sensitivity analysis was performed to test the influence of win-

dow length W and discount rate k on the performance of PV-LAS.

Figure 6 shows the average (over 500 independent experiments)

differences in genetic gains between the benchmark case of
W¼ 1 and other window lengths. When W¼ 1, the model focused
on genetic gain in the immediate next generation; as a result,
GEBVs jumped to a plateau after the first selection and lost diver-
sity and potential for future growth. The figure shows that the
effect of W is not monotonic and that a balance between short-
term and long-term growth requires a window length that is nei-
ther too short nor too long. For this particular case study, W¼ 3
achieved the best performance between generations 6 and 10,
but it is unnecessarily optimal for other studies or datasets. In
general, the sensitivity analysis should be done for each new
dataset to identify the best set of parameters.

Figure 7 shows the differences in genetic gains between the
benchmark case of k¼ 0 and other discount rates, with window
length fixed at W¼ 3. When k¼ 0, the model focused on the nom-
inal genetic gain and ignored its time value. Larger (smaller) k val-
ues put higher (lower) emphasis on the time value of genetic gain
and led to higher (lower) growth in the short-term and weaker
(stronger) performance in later generations.

Conclusion
The introduction of the PV concept to GS is central to this work.
PV-LAS uses the PV of GEBVs over a certain window period as the
breeding objective by discounting genetic gain in future genera-
tions back to the current time. As such it balances the short-term
and long-term benefits of genetic growth and provides a

Fig. 4. Comparison of CGS, LAS, and PV-LAS over 10 generations with respect to 3 criteria calculated based on the average of 500 simulations: (a) GEBV
lower potentials, (b) GEBV mean, and (c) GEBV higher potential. All 3 criteria were also plotted together in subfigures (d), (e), and (f) for the 3 selection
methods.

Fig. 5. Cumulative distribution functions of PVs for CGS, LAS, and PV-
LAS.
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continuous growth trajectory. At the same time, PV-LAS makes a
moderate compromise on genetic diversity in order to achieve
a higher growth in early generations.

Computational results demonstrated the effectiveness of
the new algorithm. Optimal window length W and discount
rate k for specific data sets can be determined using sensitive
analyses.

Several research directions are worthy of future investigation.
First, the simulations in this paper were based on the assumption
that the estimates of additive effects of SNPs and recombination
frequencies are reasonably accurate. Analysis should be con-
ducted to assess the effects of inaccurate estimations and how
to mitigate such effects. Second, we can extend PV-LAS to accom-
modate both additive and nonadditive effects, such as

Fig. 6. Differences in genetic gains between the benchmark case of W¼ 1 and other window lengths for PV-LAS, averaged over 500 independent
experiments.

Fig. 7. Differences in genetic gains between the benchmark case of k¼ 0 and other discount rates for PV-LAS, averaged over 500 independent
experiments. Window length is fixed at W¼ 3.
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dominance and epistasis effects. Third, PV-LAS does not explic-
itly address G�E, which can often be substantial and create
problems in finding consistently superior genotypes, leading to
reduced heritability and overall genetic gain. Future research
should focus on the convergence of crop modeling and machine
learning approaches to explore more advanced strategies to ad-
dress G�E in the breeding process.

Data availability
The datasets used the computational experiments were derived
from sources in the public domain as described in Data Sources.
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