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Abstract

Motivation: Transcription factors play a crucial role in gene regulation by binding to specific regu-

latory sequences. The sequence motifs recognized by a transcription factor can be described in

terms of position frequency matrices. When scanning a sequence for matches to a position fre-

quency matrix, one needs to determine a cut-off, which then in turn results in a certain number of

hits. In this paper we describe how to compute the distribution of match scores and of the number

of motif hits, which are the prerequisites to perform motif hit enrichment analysis.

Results: We put forward an improved compound Poisson model that supports general order-d

Markov background models and which computes the number of motif-hits more accurately than

earlier models. We compared the accuracy of the improved compound Poisson model with previ-

ously proposed models across a range of parameters and motifs, demonstrating the improvement.

The importance of the order-d model is supported in a case study using CpG-island sequences.

Availability and implementation: The method is available as a Bioconductor package named

’motifcounter’ https://bioconductor.org/packages/motifcounter.

Contact: kopp@molgen.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcription factors (TFs) play an essential role in the regulation of

gene expression. They function by binding to short sequences known

as transcription factor binding sites (TFBSs) which are typically

located in promoter or enhancer regions (Alberts et al., 2002). Based

on the motif-descriptions of the TFBSs many programs search for

occurrences of the motif in a sequence. Since the motifs typically

lack specificity, the need arises to determine the statistical signifi-

cance of a motif match and to delineate how many matches of a

motif one would expect to find in a sequence by chance. Relative to

this information, TFBSs enrichment can subsequently be inferred for

the sequences of interest, e.g. a set of promoters (Pape et al., 2008;

Thomas-Chollier et al., 2008).

The binding motif of a TF is typically described either as a con-

sensus sequence or as a position frequency matrices (PFMs)

(Stormo, 2000). A PFM tabulates the frequency at which a certain

base has been observed at a position of a transcription factor

binding site. The logo depiction of a PFM is a common tool of visu-

alizing a TF motif (Schneider and Stephens, 1990). PFMs for many

well studied TFs have been collected in different databases, includ-

ing Transfac (Wingender et al., 1996), Jaspar (Sandelin et al., 2004)

or Hocomoco (Kulakovskiy et al., 2013). Many programs are avail-

able to scan a sequence with a PFM (Bailey et al., 2009; Chen et al.,

1995; Cartharius et al., 2005; Thomas-Chollier et al., 2008). These

program are also at the core of the motif enrichment approach,

where a set of sequences is scanned for motifs which in those se-

quences are found more often than expected by chance (Frith et al.,

2004; McLeay and Bailey, 2010; Roider et al., 2009; Zambelli et al.,

2009).

Different applications require different statistical considerations.

When searching for a cutoff for the best matching hits of a PFM in a

sequence, one needs to determine the distribution of the correspond-

ing match score. Once a threshold is chosen, one can count the num-

ber of different hits a PFM has in a sequence and determine the

VC The Author 2017. Published by Oxford University Press. 3929

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 33(24), 2017, 3929–3937

doi: 10.1093/bioinformatics/btx539

Advance Access Publication Date: 28 August 2017

Original Paper

https://bioconductor.org/packages/motifcounter
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx539#supplementary-data
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
https://academic.oup.com/


distribution of this statistic. For consensus strings rather than PFMs

this problem has been studied in depth (for review see Reinert et al.,

2000). Although practically of considerable importance, the prob-

lem of determining the distribution of the number of PFM hits has

found less attention (Pape et al., 2008; Rahmann et al., 2003).

Motif search is often employed in regulatory regions which may

be made up of CpG-islands, which display dependence between ad-

jacent nucleotides. Such dependencies are frequently ignored by

existing methods, including our own earlier method (Pape et al.,

2008), which is restricted to using an order-0, or i.i.d., background

model. However, CpG-islands can only be adequately modeled by

at least an order-1 Markov model which motivates the use of a

higher-order background model (Thomas-Chollier et al., 2008).

A further difficulty that we attend to in this work is the overlap

structure of PFMs. Clearly, when a motif is repetitive, observing the

motif once makes it more likely to find it again, with overlap to the

first occurrence. Such a combined occurrence is called a clump.

While our earlier work put forward an efficient approximation to

compute the statistics for the clumps, we here report an improved

way of computing these probabilities. This allows more accurate es-

timation of the distribution of the number of motif hits, a prerequis-

ite, e.g. for accurate motif enrichment analysis. All these

computations will be done for motif hits on the forward and the re-

verse DNA strand, since in practice one has no prior knowledge

where to expect a hit.

The workhorse of computing hit occurrence counts is called a

compound Poisson model (Reinert et al., 2000; Waterman, 1995).

In contrast to assuming that motif occurrences follow a sequence of

i.i.d. Bernoulli trails (Rahmann et al., 2003; Thomas-Chollier et al.,

2008), the compound Poisson model can capture the self-

overlapping structure of motifs. This aspect renders the compound

Poisson model applicable for self-overlapping as well as non-self-

overlapping motifs. The compound Poisson model can describe the

real distribution accurately as long as the occurrence of a motif is

rare, as is normally assumed in practical applications anyway.

Originally, the compound Poisson model has been adopted for

studying word count frequencies and frequencies of sets of words

(Reinert et al., 2000; Waterman, 1995). The framework was later

adopted by Pape et al. (2008) to study motifs that are given by

PFMs. While, for word-pattern centered approaches the hit counts

distribution may even be determined exactly, they require enumerat-

ing a potentially very large set of words that would gives rise to

TFBSs (so-called compatible words) which may be too time-

consuming to compute (Zhang et al., 2007).

By contrast, the PFM-based approach efficiently bypasses the

enumeration by establishing an approximation which makes it use-

ful even if enumerating all compatible words is too time-consuming.

In this paper, we show how to compute the statistics of motif oc-

currence counts. We use a higher-order background model and shall

demonstrate the importance of higher-order background models in a

case study in human CpG islands. We introduce a refined approach

for determining the clump size distribution, obtaining more accurate

results particularly for self-similar and repeat-like motifs. Unlike

earlier methods, we account for matches on both strands, including

the possible overlap structure of palindromic motifs. We systematic-

ally compare our improved compound Poisson model with the pre-

vious model (Pape et al., 2008) and with a frequently used binomial

model (Rahmann et al., 2003; Thomas-Chollier et al., 2008) across

a range of parameter settings and a large set of motifs. We find that

generally, the improved compound Poisson model yields at least

similar and frequently more accurate results compared to the other

two models, as long as the ‘rare hit’ assumption is met.

2 Materials and methods

2.1 Motifs, background, motif score and motif hits
Let A ¼ fA;C;G;Tg denote the alphabet of DNA letters and

w ¼ w1w2 � � �wN a sequence of length N from this alphabet. The

probability of w is given by a homogeneous order-d Markov model

(the background model), whose transition probabilities are denoted

by pðwi�d � � �wi�1; wiÞ ¼ Pðwijwi�1 � � �wi�dÞ and whose stationary

distribution is denoted by l. In the case d¼0, we set l ¼ p. Thus,

we have

PBðwÞ ¼ lðw1 � � �wdÞ
YN

i¼dþ1

pðwi�d � � �wi�1; wiÞ:

The transition probabilities pða0 � � � ad�1; adÞ are estimated via the

maximum likelihood procedure described in (Reinert et al., 2000)

bpða0 � � � ad�1; adÞ ¼
Nða0 � � � ad�1; adÞP
ad

Nða0 � � � ad�1; adÞ
(1)

with NðaÞ denoting the count of a 2 Adþ1 in w 2 AN and under the

additional constraints that each word occurs equally likely on both

DNA strands and with reversed nucleotide order (from 50 to 30 and

30 to 50). Those constraints are required since both DNA strands are

scanned for motif matches and they are enforced by utilizing the de-

tailed balance condition (see Supplementary Notes Equation (1)–

(3)). They also ensure that under the stationary distribution, a word,

its reverse complement, and the word with reversed nucleotide order

occur equally likely (e.g. lðACÞ ¼ lðGTÞ ¼ lðCAÞ).
We represent the DNA binding affinity by a position frequency

matrix (PFM). A PFM is a jAj �M matrix where jAj denotes the

size of the alphabet and M denotes the length of the TF binding site.

A PFM contains the elements pjðwÞ which correspond to the fre-

quency of observing nucleotide w at position j. We shall further

assume that all elements of the PFM are strictly positive and its

columns are normalized to one such that they represent probabil-

ities. Then, the likelihood of a word w0 2 AM w.r.t. the PFM is

given by

PMðw0Þ ¼
YM
j¼1

pjðw0jÞ:

We adopt the commonly used log-likelihood ratio (Li and Tompa,

2006; Rahmann et al., 2003; Touzet et al., 2007), or motif score, in

order to discriminate likely bound sequences from unbound se-

quences according to

sðw0Þ :¼ log
PMðw0Þ
PBðw0Þ

� �
(2)

where w0 2 AM and assume that d � M for the remainder of this

article.

We leverage the motif score in order to determine motif hits (or

putative TFBSs) by utilizing a pre-determined score threshold.

Position i in a sequence is called a motif hit if sðwi . . . wiþM�1Þ is

greater or equal to the score threshold. According to Neyman and

Pearson (1933), it is reasonable to choose a score threshold ta which

is associated with a desired false positive level a. Hence, motif hits

are called with significance level a. In order to choose ta, we deter-

mine the distribution of the scores PB(S¼ s) using an efficient algo-

rithm where we assume the underlying sequence to be generated by

an order-d background model starting in the stationary distribution

l (see Supplementary Notes). A similar approach was reported in

the RSAT suite (Thomas-Chollier et al., 2008), although the details

of the algorithm were not described there. We obtain the score
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threshold ta associated with significance level a from PB(S¼ s) by

computing PBðS � taÞ ¼ a.

For the remainder of this article we omit the subscript B as we

only focus on distributions that are induced by the background

model.

Finally, we define the number of motif hits X on both strands of

a DNA sequence of length N as

X ¼
XN�Mþ1

i¼1

Yi þ Y 0i

where for convenience we introduced the indicator random variable

Yi :¼ 1½sðwi � � �wiþM�1Þ � ta� to reflect TFBS occurrences in random

DNA sequences. An additional indicator random variable Y 0i reflects

the corresponding reverse strand event at position i.

2.2 Compound Poisson distribution
In this section, we recapitulate the compound Poisson model derived

by Pape et al. (2008).

In the compound Poisson approximation, the distribution of the

number of hits is indirectly approximated by modeling the frequency of

clump occurrences. A clump corresponds to one or more mutually over-

lapping motif hits. More specifically, a c-clump is defined as a clump

which contains exactly c overlapping motif hits (Reinert et al., 2000).

By modeling c-clump occurrence rates, the compound Poisson approach

implicitly accounts for the potentially self-overlapping motif structure.

Formally, the compound Poisson approximation for the number

of motif hits is given by

X ¼
XZ

i¼1

Ci

where Z describes the number of clumps (regardless of how many

hits they contain) and fCig1� i�Z which denote the respective ran-

dom clump sizes. We assume Z to be Poisson-distributed with par-

ameter k and Ci to be i.i.d. random variables. Because, Ci is i.i.d. for

all i, we shall use C to denote the random clump size for any given

clump. The probability that any given clump contains c motif hits is

defined by

hc :¼ PðC ¼ cÞ: (3)

We defer the derivation of hc to Section 2.4.

Importantly, Z and C are assumed to be independent. Thus, the

expected total number of motif hits is given by

E½X� ¼ E
XZ

i¼1

Ci

" #
¼ EZ½Z � EC½C��

¼ EZ½Z� � EC½C�

¼ EZ½Z�
P

c>0 chc:

(4)

This expression can also be written as

E½X� ¼ 2aðN �Mþ 1Þ (5)

using the false positive probability a for obtaining a hit, the length

of the sequence N, the motif length M, and the factor 2, because the

hits are counted on both strands.

Using Equation (4) and (5), the expected number of clump occur-

rences k is

k ¼ E½Z� ¼ E½X�
E½C� ¼

2aðN �Mþ 1ÞP
c>0 chc

: (6)

Finally, employing (Kemp, 1967):

PðX ¼ 0Þ ¼ e�k (7)

PðX ¼ xÞ ¼ k
x

Xx�1

x0¼0

ðx� x0Þhx�x0PðX ¼ x0Þ (8)

recursively evaluates the compound Poisson approximation, where

each time Equation (8) is invoked a clump is added. The summation

in Equation (8) then considers all clump sizes.

2.3 Self-overlapping hit probabilities
We proceed by deriving the probabilities of obtaining overlapping

motif hits, which in turn are necessary for deriving the clump size

probabilities hc. To this end, we start by explaining marginal over-

lapping hit probabilities from which we subsequently derive the

principal overlapping hit probabilities. Finally, we consider overlap-

ping hits due to scanning both DNA strands.

2.3.1 Marginal overlapping hit probabilities

Along the line of Pape et al. (2008), we shall derive overlapping hit

probabilities based on the two-dimensional score distribution PðS
¼ s; S0 ¼ s0Þ where s and s0 may correspond to scores at different pos-

itions (or strands). Assuming that the background model starts in

the stationary distribution l, we propose an extension of the original

algorithm that assumes a general order-d background model (see

Supplementary Notes).

We utilize the algorithm to determine the distribution of the scores

at two respective motif start positions 0 and k 2 f1; . . . M� 1g simul-

taneously from which we obtain

ck :¼ PðYk ¼ 1jY0 ¼ 1Þ ¼ PðSk � ta; S0 � taÞ
a

: (9)

We refer to ck as to the marginal overlapping hit probability of ob-

taining an overlapping motif hit k positions downstream of a pre-

ceding hit Y0 ¼ 1. The adjective ’marginal’ refers to the fact that

events in between Y0 and Yk (e.g. Y1Y2 � � �Yk�1) have been averaged

out.

2.3.2 Principal overlapping hit probabilities

In the word-pattern field, periods refer to the shifts at which a word

potentially overlaps with itself (Reinert et al., 2000; Waterman,

1995). For example, for the word ’AAA’, the periods would be {1,

2}. However, the set of periods potentially explains the overlapping

positions redundantly. For example, for ’AAA’, an overlap with

period 2 is only possible, if there is a hit at period 1 as well. In other

words, period 2, is a consequence of two consecutive hits with

period 1. In order to describe overlapping positions non-

redundantly, principal periods were introduced as such periods that

cannot be explained as a mere consequence of another period (e.g.

as an integer multiple of another period). The only principal period

for ’AAA’ equals one.

Motivated by the discussion about periodicity (Reinert et al.,

2000), we sought to adopt the periodicity concept to PFM-based

motifs in order to non-redundantly account for the probability of

overlapping motif hits. This can be achieved by excluding intermedi-

ate motif hits according to

bk :¼ PðYk ¼ 1;Yk�1 ¼ 0; . . . Y1 ¼ 0jY0 ¼ 1Þ (10)

for k 2 f1; . . . M� 1g. We refer to bk as to the principal overlapping

hit probability of obtaining an overlapping hit k positions after the
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event Y0 ¼ 1. A similar approach was also proposed for motifs as

generalized strings (Marschall and Rahmann, 2010).

Unfortunately, the exact determination of fbkg1�k<M for gen-

eral PFMs and an arbitrary score threshold ta by enumerating DNA

words (e.g. compatible words) would require exponential running

time (Zhang et al., 2007). However, we propose a novel approxima-

tive approach for computing fbkg1�k<M based on fckg1�k<M

derived above (see Supplementary Notes).

2.3.3 Overlapping hits on both DNA strands

In many applications, we do not know in advance on which DNA

strand a TFBS might occur. Therefore, we simply scan both DNA

strands for motif hits. However, this might lead to overlapping hits

not only on the same strand (as described above), but also on the re-

spective complementary strand. We identified three distinct overlap-

ping hit scenarios: 1) Hits might overlap on the same strand, 2) a

forward strand hit Y0 ¼ 1 precedes a reverse strand hit Y 0k ¼ 1 and

3) a reverse strand hit Y 00 ¼ 1 precedes a forward strand hit Y k¼1,

where k denotes the shift between the hits (see Fig. 1). Importantly,

we discriminate between cases 2) and 3), because they are not neces-

sarily the same. Case 2) represents a 30-end overlap of the motif,

whereas case 3) represents a 50-end overlap (see Fig. 1b and c). For

example, consider the words ’TCG’ and ’CGT’: ’TCG’ may overlap

with its reverse complementary sequence on the 30-end, but not on

the 50-end, whereas, the opposite is true for ’CGT’.

For the remainder of this article, we consider the events Yi and Y 0i
in the order Y1Y 01Y2Y 02Y3Y 03 � � � from left to right. This convention en-

sures that each event is considered exactly once. Note that this also

implies that Yi precedes Y 0i for all i.

According to the discussion in this section, we extend the mar-

ginal overlapping hit probabilities to

ck :¼ PðYk ¼ 1jY0 ¼ 1Þ 8k 2 f1; . . . M� 1g (11)

c30 ;k :¼ PðY 0k ¼ 1jY0 ¼ 1Þ 8k 2 f0; . . . M� 1g (12)

c50 ;k :¼ PðYk ¼ 1jY 00 ¼ 1Þ 8k 2 f1; . . . M� 1g: (13)

They are determined analogously as described above using the two-

dimensional score distribution. Depending on the strandedness of

the events, the original or the reverse complemented motif is used to

determine the scores.

The corresponding principal overlapping hit probabilities are

given by

bk :¼ PðYk ¼ 1; fYj ¼ 0;Y 0j ¼ 0g1� j<k;Y
0
0 ¼ 0jY0 ¼ 1Þ (14)

b30 ;k :¼ PðY 0k ¼ 1; fYj ¼ 0g1� j�k; fY 0j ¼ 0g0� j<kjY0 ¼ 1Þ (15)

b30 ;0 :¼ PðY 00 ¼ 1; jY0 ¼ 1Þ (16)

b50 ;k :¼ PðYk ¼ 1; fYj ¼ 0;Y 0j ¼ 0g1� j< kjY 00 ¼ 1Þ (17)

which are approximated based on fckg1� k<M, fc30 ;kg0�k<M and

fc50 ;kg1�k<M (see Supplementary Notes).

For convenience, we compute the probability of an overlapping

hit (across all possible overlap positions) as

b :¼
XM�1

j¼1

bj; b30 :¼
XM�1

j¼0

b30 ;j; b50 :¼
XM�1

j¼1

b50 ;j (18)

which makes use of the fact that (14)–(17) represent mutually exclu-

sive events.

2.4 Distribution of the clump size
Next, we describe a recursive approach of computing the clump size

distribution, fhcgc>0, which is similar to the approach described in

Pape et al. (2008). The main difference relative to the original ap-

proach is that it utilizes Definitions (18), instead of the marginal

overlapping hit probabilities.

2.4.1 Clump size probability when scanning a single strand

We shall first derive the clump size probability for the simple case of

scanning a single strand for TFBSs and discuss an extension to scan-

ning both strands in the next section.

A clump of size one is defined as a single motif hit that does not

overlap any other motif hits (before or after the clump start) (Pape

et al., 2008). Its probability is given by

h1 :¼ PðfYi ¼ 0g1� i<MjY0 ¼ 1; fY�j ¼ 0g1� j<MÞ (19)

where we assume a hit Y0 ¼ 1 and no further overlapping hits up-

stream Y�j and downstream Yj.

Unfortunately, the exact computation of Definition (19) is in-

tractable. However, it is possible to approximate this quantity. To

this end, without loss of generality we order the motif hits that occur

in a clump from left to right such that the first hit is never over-

lapped by any upstream hit. Then, assuming that we start from the

first hit, the probability of observing no further downstream over-

lapping hits equals

~h1 ¼ PðfYi ¼ 0g1� i<MjY0 ¼ 1Þ ¼ 1� b (20)

where we used Definition (18).

Subsequently, we recursively define the proportion of obtaining

a clump of size c>1 by dividing out the original end of the c – 1-

clump, extending an overlapping hit downstream of the last hit and

multiplying in the new end of the clump, which yields

~hc ¼
~hc�1ð1� bÞb

1� b
¼ ~hc�1 � b: (21)

Consequently, note that the clump size is geometrically distributed.

Finally, the clump size probabilities are obtained according to

hc ¼
~hcP
j>0

~hj

(22)

2.4.2 Clump size probability when scanning both strands

Next, we derive the clump size distribution when both DNA strands

are scanned for motif hits.

As above, we start by defining the 1-clump probability, which might

exhibit a respective forward or reverse strand hit with probability

hf
1 :¼ PðfYi ¼ 0;Y 0i ¼ 0g1� i<M;Y

0
0 ¼ 0j

Y0 ¼ 1; fY�i ¼ 0;Y 0�i ¼ 0g1� i<MÞ
(23)

(a) (b) (c)

Fig. 1. Three types of overlapping hit with a shift of k between the motif starts.

The arrows pointing to the right and left represent the (50 ! 30) and (30  50)

directions of the DNA, respectively
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hr
1 :¼ PðfYi ¼ 0;Y 0i ¼ 0g1� i<Mj

Y 00 ¼ 1;Y0 ¼ 0; fY�i ¼ 0;Y 0�i ¼ 0g1� i<MÞ
(24)

Without loss of generality, we order the sequence of events accord-

ing to Y1Y 01Y2Y 02 � � � and count the hits in a clump in that order from

left to right. Assuming that we encounter the first hit in the clump,

the probability that it is not overlapped by any downstream (or pal-

indromic) hits is given by

~h
f

1 :¼ 1� b� b30 and ~h
r

1 :¼ 1� b� b50 : (25)

where we made use of Definitions (18).

We proceed by recursively defining the proportion of obtaining a

clump of size c>1 by dividing out the original end of the c – 1-

clump, extending an overlapping hit downstream of the last hit and

multiplying in the new end of the clump, which leads to the follow-

ing formula

~h
f

c

~h
r

c

24 35 ¼ b
~h1

~h01
b50

~h01
~h1

b30 b

266664
377775 �

~h
f

c�1

~h
r

c�1

24 35: (26)

Finally, we obtain the clump size probabilities hc regardless of the

strandedness of the last hit by

hc ¼
~h

f

c þ ~h
r

cP
i>0

~h
f

i þ ~h
r

i

: (27)

2.5 Comparison between methods
We estimated background models of various orders from a subset of

Dnase-I hypersensitive sites published by the ENCODE consortium

(Thurman et al., 2012) as such sequences are frequently under scru-

tiny when it comes to searching for motif matches.

We compared the models for (i) different sequence lengths, (ii)

different false positive probabilities a of obtaining a motif hit, (iii)

different background model orders d and (iv) various motifs (see

Fig. 2(a–c)). A summary of the setup is given in Table 1.

As a reference for the analysis, we determined an empirical dis-

tribution PE by sampling 100 000 random DNA sequences from the

background models and counted the number of respective motif

hits, which resulted in a highly reproducible empirical distribution.

In order to visualize the sampling noise, we additionally split the

100 000 samples into 100 batches consisting of 1000 sequences each

and determined the 25 and 75% percentiles for each x of PEðX ¼ xÞ
over the batches.

For the comparison, we invoked the new compound Poisson ap-

proximation PN
CP (as described above), the previous compound

Poisson model PP
CP (Pape et al., 2008) and the binomial model PBin,

which is defined by

PBinðX ¼ xÞ ¼
2� ðN �Mþ 1Þ

x

 !
axð1� aÞ2�ðN�Mþ1Þ�x:

In order to allow for a fair comparison, we slightly changed the ori-

ginal compound Poisson model PP
CP (see Supplementary Notes).

The performances of PN
CP, PP

CP and PBin, were measured by the

total variation distance relative to PE using

dðPE;QÞ ¼
X
x�0

jPEðxÞ �QðxÞj (28)

where Q denotes a placeholder for the approximative models.

Additionally, we measure the discrepancy on the 5% significance re-

gion only

d
5%ðPE;QÞ ¼

X
x�q

95%

jPEðxÞ �QðxÞj: (29)

where q
95% denotes the 95%-percentile of PE.

Finally, we compared the previous clump size approximation

(Pape et al., 2008) and the novel approximation (see Section 2.4.2)

by measuring their total variation distances to an empirical clump

size distribution, which was generated by counting clump size occur-

rences in a random 10 Mb sequence drawn from the background.

2.6 Influence of higher-order background models on

motif enrichment
We downloaded human CpG islands from the UCSC genome

browser (Kent et al., 2002) and estimated background models of

order d 2 f0;1; 2g. The SP1SP3 motif was obtained from Transfac

(Wingender et al., 1996) (see Fig. 2d).

We studied the distribution of the number of motif hits for se-

quences of length 10 kb with a ¼ 0:01 for different background

orders d. The compound Poisson approximation with fixed order d,

denoted PN
CP;d, was determined as described above, where d expli-

citly indicates which background order was used. We determined

two different variants of the sampling-based distribution: First, we

computed a sampling-based distribution where the sequences were

generated according to the background orders d 2 f0; 1; 2g, but

where the score is always evaluated w.r.t. order d¼0, denoted by

PE;d;0. This renders PE;d;0 comparable to PN
CP;0 and allows us to

measure the discrepancy between the distributions for different d.

Second, we determined a sampling-based distribution with matched

(a) (b)

(c) (d)

Fig. 2. DNA motifs

Table 1. Comparative analysis

d a seqlen

0 0.01 1 kb

0 0.001 10 kb

1 0.001 10 kb

2 0.001 10 kb

Note: Analysis setup which is used for all motifs.
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background orders d for the sequence generating process and the

score computation, denoted by PE;d;d.

2.7 Comparison of the models on JASPAR motifs
We compared PN

CP; PP
CP and PBin on all JASPAR 2014 motifs with a

minimum length of 6 bps (578 motifs in total). To this end, we esti-

mated an order-1 background model on a subset of ENCODE

Dnase-I hypersensitive sites (as described above). We analyzed the

number of motif hits in sequences of length 10 kb with a ¼ 0:001.

As a reference, we determined the sampling-based distribution PE.

To assess how PN
CP compares to the other models we determined

DdN�P ¼ dðPN
CP;PEÞ � dðPP

CP;PEÞ (30)

DdN�B ¼ dðPN
CP;PEÞ � dðPBin;PEÞ (31)

for each motif.

3 Results

3.1 Comparison between various motif count models
In this Section, we assess the adequacy of the analytic models PN

CP;

PP
CP and PBin with respect to their discrepancy to PE. To this end, we

study a range of motif structures (see Fig. 2a and b) and parameter

settings (see Table 1).

The shape of the distribution of the number of motif hits depends

on the structure of the motif. Accordingly, self-overlapping motifs

(such as palindromes and repeat-like motifs) generally lead to an

increased variance compared to non-self-overlapping motifs (com-

pare PE in Fig. 3b and c) against (a)). Moreover, for palindromic

motifs in particular, the number of hits must be a multiple of two, as

a motif hit is always paired with a hit on the reverse strand (see Fig.

3b).

As described previously (Rahmann et al., 2003), provided that

motif hits occur only rarely, the binomial model establishes an ac-

curate approximation of the PE for non-self-overlapping motifs (see

Fig. 3a). However, due to its inherent independence assumption it is

not suitable for self-overlapping motifs (Pape et al., 2008). PBin sys-

tematically underestimates the variance compared to PE which

would lead to an excess of false positives for the enrichment test

(compare PBin with PE in Fig. 3b and c).

By contrast, PN
CP and PP

CP take the self-overlapping structures ex-

plicitly into account, which in principle makes them suitable for all

motif structures. Therefore, they respond with an increased variance

for self-overlapping motifs (see Fig. 3b and c), while for non-self-

overlapping motifs they lead to a comparably narrow distribution

(see Fig. 3a). While, for non-self-overlapping motifs, all approxima-

tions perform similarly (see Fig. 3a), in particular, for palindromes,

only PN
CP and PP

CP achieve accurate approximations, as they render

odd numbers of hits impossible (see Fig. 3b). On the other hand, we

find a discrepancy between PN
CP and PP

CP for the repeat-like motif.

PP
CP overestimates the variance compared to PE, while PN

CP matches

PE vary closely (see Fig. 3c). This difference can be attributed to the

refined estimation of the clump size probabilities hc via the principal

overlapping hit probabilities as opposed to the inherently redundant

marginal overlapping hit probabilities.

Next, we assess the accuracies of the models across all parameter

settings (see Table 1) using Equation (28). In general, we find largely

concordant results across the parameters (see Tables 2–4). That is,

in most cases, PN
CP achieves equally accurate or better solutions

(a)

(b)

(c)

Fig. 3. Comparison between the methods for different motif types: Each panel

shows the distribution of the number of motif hits in 10 kb sequences gener-

ated from an order-1 background model using a ¼ 10�3 for the motifs de-

picted in Figure 2a, b and c, respectively. For all cases, the empirical (black),

the new (blue) and the previous compound Poisson approximation (red) and

the binomial approximation (gray) are depicted. Moreover, the empirical dis-

tribution was augmented by error bars showing the 25–75% quantiles to de-

pict the sampling noise relative to batches consisting of 1000 sequences

Table 2. Performance comparison for E47 (see Fig. 2a)

D a Seqlen dðPE;P
N
CPÞ dðPE;P

P
CPÞ dðPE;PBinÞ

1 10–2 1000 0.211 0.233 0.0864

0 10–3 10 000 0.0285 0.0291 0.0401

1 10–3 10 000 0.032 0.0325 0.0386

2 10–3 10 000 0.0289 0.0293 0.0411
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compared to PP
CP and PBin. A notable exception to this rule repre-

sents the non-self-overlapping motif for a relaxed significance level

a ¼ 0:01. In that situation, PBin compares favorably to PN
CP and PP

CP,

because the compound Poisson models overestimate the variance

relative to the reference (see row 1 in Table 2). The reason for this is

the violation of the ‘rare hit’ assumption (Reinert et al., 2000).

While, this assumption applies to the binomial and the compound

Poisson model, the compound Poisson model responds more sensi-

tively to its violation. Hence, the discrepancy. Prescribing a stringent

a (e.g. a ¼ 0:001) largely eliminates this effect in which case PN
CP;

PP
CP and PBin yield comparable results (see row 2–4 in Table 2).

Next, we inspect the performance with respect to different back-

ground model orders. We find that the relative accuracies between

the models largely remain preserved across different orders d (see

rows 2–4 in Tables 2–4). This underlines the adequacy of employing

general higher-order background models in our setting.

As the right tail of the distribution influences the motif hit en-

richment test the most, we investigated the accuracy of the approxi-

mation specifically in the tail. Since, the empirical distribution

cannot be used to assess extremely rare events, we chose to assess

the accuracies of the models on the 5% significance region using

Equation (29), for which PE can be estimated highly reproducibly.

We observe that the relative performances are in high agreement

with the assessment of the entire distribution using Equation (28)

(see Supplementary Tables S1–S3 and Tables 2–4). In other words,

we do not find cases, where the discrepancy measured with

Equation (28) and (29) disagree substantially.

Finally, we investigated the accuracy of the clump size approxi-

mations hc that arise from the previous (Pape et al., 2008) and our

new method (see Section 2.4.2). While, the previous model achieves

a slightly more accurate clump size approximation relative to the

new model for the non-self-overlapping and the palindromic motif,

the absolute differences are nevertheless comparable (see

Supplementary Figs S6a–S6b and Table S4). This is in agreement

with the similar results observed for the respective compound

Poisson models (see Fig. 3a and b). On the other hand, for the

repeat-like motif, the previous clump size model clearly overesti-

mates the width of the empirical clump size distribution, whereas

the new model seems to capture its shape more accurately (see

Supplementary Fig. S6c and Table S4).

3.2 Influence of higher order background models
In this section, we address the question of how an inappropriate

background model choice might influence the distribution of the

number of motif hits and thus the statistical enrichment test. To this

end, we count SP1SP3 motif occurrences (see Fig. 2d) in human

CpG regions.

We first emulate the effect of assuming an order-0 background

model while the actual sequence generating process is driven by a

potentially more complex order-d Markov model with

d 2 f0; 1; 2;3g. This scenario simulates the effect of employing a too

simplistic model to recapitulate (perhaps more complicated) real-

world observations (e.g. real promoter sequences).

If the sequence is generated by a simple order-0 model, that is

the model assumption matches the ‘true’ sequence generating pro-

cess, as expected, PE;0;0 and PN
CP;0 are in high agreement (see

Supplementary Fig. S2a). However, if the sequence is generated by a

higher-order background model with d>0 (against the assumption

of observing an order-0 complexity sequence), PE;d;0 and PN
CP;0 be-

come increasingly discordant (see Fig. 4a and Supplementary Fig.

S1). PN
CP;0 underestimates the number of motif hits compared to

PE;d;0, because it ignores higher-order sequence features, and in par-

ticular, commonly occurring ’C’ and ’G’ repeats, which are also

characteristic for the SP1SP3 motif. We notice that the discrepancy

is dominated by ignoring dinucleotide frequencies (see Fig. 4a),

which induces a substantial shift between PN
CP;0 and PE;1;0. Adopting

Table 3. Performance comparison for the palindrome (see Fig. 2b)

D a Seqlen dðPE;P
N
CPÞ dðPE;P

P
CPÞ dðPE;PBinÞ

1 10–2 1000 0.0948 0.119 1

0 10–3 10 000 0.00923 0.016 1

1 10–3 10000 0.0108 0.0214 1

2 10–3 10 000 0.0143 0.0235 1

Table 4. Performance comparison for the repeat-like motif (see Fig.

2c)

d a Seqlen dðPE;P
N
CPÞ dðPE;P

P
CPÞ dðPE;PBinÞ

1 10–2 1000 0.0656 0.824 0.735

0 10–3 10 000 0.0177 0.467 0.605

1 10–3 10 000 0.0191 0.464 0.611

2 10–3 10 000 0.0194 0.5 0.63

(a)

(b)

Fig. 4. Motif hit count distribution under the influence of assuming an order-0

and order-1 background model to investigate CpG islands. (a) The compound

Poisson approximation (black) assumes an order-0 background, while the

empirical distribution (red) was generated by an order-1 background model,

This introduces a discrepancy between the distributions explained by com-

monly occurring dinucleotide which are ignored by the order-0 background.

(b) The compound Poisson approximation (black) accounts for the order-1

background, which leads to a more accurate compound Poisson approxima-

tion relative to the empirical distribution
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even higher-order models (d¼2 and d¼3) lead to only a slight fur-

ther increase in the shift (see Supplementary Fig. S1a and S1b).

Therefore, if PN
CP;0 is used as the basis for an enrichment test, an ex-

cess of false positive predictions would be incurred as the number of

hits is substantially underestimated by the order-0 background.

In contrast, properly accounting for higher-order sequence fea-

tures, by generating the sequence for PE;d;d and PN
CP;d with matched

background orders eliminates the discrepancy between the distribu-

tions even for orders d>0 (see Fig. 4b and Supplementary Fig. S2

for d¼1 and d>1, respectively).

3.3 Differences in performance for Jaspar motifs
In this section, we compare PN

CP; PP
CP and PBin on all 578 known

Jaspar 2014 motifs (Sandelin et al., 2004). First, we measured the

total variation for all motifs according to (28) between approxima-

tive models and PE. As expected, for the majority of the motifs, the

models reach similar conclusions and therefore similar discrepancy

measures (see Supplementary Fig. S3). Next, to quantify the relative

accuracies of PP
CP and PBin compared to PN

CP we measured the differ-

ences of the total variances according to Equation (30) and (31).

Using the Wilcoxon rank sum test, we found that across all Jaspar

motifs, PN
CP significantly improves over PBin (P-value< 2:2e� 16)

as well as over PP
CP (P-value¼ 0:00028).

Motifs for which the models disagree the most correspond to

self-overlapping motifs. Examples of which include palindromes,

like PDR3, MYC3, PHO4, gt and LFY, when comparing PN
CP and

PBin (see Supplementary Fig. S4), and repeat-like motifs, like DAF-

12, EWSR1-FLI1, NHP6A & B, SFP1 and SOC1 for PN
CP and PP

CP

(see Supplementary Fig. S5).

4 Discussion

We presented an improved compound Poisson model based on Pape

et al. (2008). This model facilitates motif hit enrichment testing, by

comparing the observed number of motif hits in a given DNA se-

quence to the numbers that would emerge in sequences that are pro-

duced by a background model. As in the original model, the

improved model also considers binding site predictions on both

DNA strands. Furthermore, we proposed two major improvements

over the original model: First, we considered general order-d back-

ground models, as opposed to an order-0 background, to capture

the properties of unbound sequences. While, order-0 background

models (Grant et al., 2011; Pape et al., 2008; Rahmann et al., 2003;

Roider et al., 2007), have been widely used due to their inherent

simplicity, they ignore higher-order sequence features (e.g. CpG fre-

quencies) and may therefore be inappropriate for studying naturally

occurring DNA sequences. General order-d background models are

capable of capturing, e.g. dinucleotide frequencies, which is import-

ant to describe CpG islands, that frequently overlap with regulatory

regions.

Second, we developed a novel approach for approximating the

so-called principal overlapping hit probabilities. We argue that those

give more accurate results for estimating the clump size distribution.

By contrast, the marginal overlapping hit probabilities, which were

used earlier (Pape et al., 2008), describe overlapping hits redun-

dantly, and are therefore prone to overestimate the clump size distri-

bution (especially for repeat-like motifs).

We systematically compared the compound Poisson models and

the binomial model for a range of parameter settings and motif

types. Our results suggest that the improved compound Poisson ap-

proximation generally yields similar or more accurate

approximations compared to the other models, provided that motif

hits occur only rarely (Reinert et al., 2000). We have demonstrated

that when scanning for motif matches with a ¼ 10�3 (or more strin-

gent a), the ‘rare hit’ assumption is largely met, whereas for a

relaxed significance level of a ¼ 102, the compound Poisson ap-

proximation tends to mildly overestimate the variance. However,

we suggest that for a ¼ 10�2 the approximation may be still useful,

since it results in a slightly broader (conservative) approximation ra-

ther than a distribution that is too narrow. For larger a (e.g.

a ¼ 0:1), motif matches would occur too frequently for the com-

pound Poisson approximation to be reasonably applicable.

However, such large choices for a are not supported by the frequen-

cies at which TFBSs are found in the genome, anyway, because TFs

tend to bind to a comparably small proportion of the genome.

We demonstrated the relevance of using higher-order back-

ground models for enrichment testing by counting SP1SP3 binding

sites in human CpG islands, since CpGs are frequently found in

regulatory regions (e.g. promoters). Ignoring higher-order sequence

features in the background model might incur biases that can lead to

an excess of false positive predictions and bears the caveat of reach-

ing false conclusions. On the other hand, such biases may be sub-

stantially reduced by utilizing a general order-d background model.

The choice of background model and order is, however, in itself

a difficult question, hard to answer in general. In principle, it is con-

servative to model the group of sequences under study as back-

ground. That is, if one searches for motifs in promoters, one should

compare to a background that mimics promoters rather than coding

sequence. The latter choice would inflate the significance of the pro-

moter motifs. Selecting an appropriate Markov model order has

been dealt with e.g. based on a Chi-square test for independence

(Reinert et al., 2000) or using the BIC criterion (Csiszár et al.,

2000). For the purposes of estimating statistical significance we

think it is reasonable not to emulate the sequences in too much de-

tail (by choosing a high order d) since the searched motif would be

captured by the background, which would in turn make it appear to

be insignificant. Thus, we recommend to choose an order of max-

imally d¼2 because this captures well the known biological effects,

namely CpG islands.

Lastly, we showed that across a large set of known motifs (from

Jaspar 2014 (Sandelin et al., 2004)), the new compound Poisson ap-

proximation yields similar or better accuracies compared to the

other models, which underlines the relevance of our approach.
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